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Abstract. Business process modeling and design, which has attracted much 
attention in recent years, emphasizes mainly graphical representation, usually 
without an underlying theory. The lack of a theoretical foundation causes 
several important issues to remain intuition- rather than theory -based. In 
particular, many process-modeling methods, being semi-formal, lack a 
mechanism for verifying the “correctness” of a process in terms of 
completeness, consistency, and feasibility. The paper proposes a generic theory-
based process modeling (GPM) framework and criteria for validity evaluation 
of process models. The framework, which is based on Bunge’s ontology, is 
formal and notation-independent. Validity is defined as the possibility of the 
process to achieve its goal. The paper discusses and characterizes causes for 
process invalidity and suggests ways to avoid these situations. The concepts of 
the framework and their usefulness for evaluating the validity of process 
models are demonstrated by applying them to a process taken from the Supply-
Chain Operations Reference-model (SCOR). 

1   Introduction 

Business process modeling and design has attracted much attention in recent years in 
the context of integrated information systems and Business Process Reengineering. 

Numerous methods for process modeling and representation have been proposed 
(e.g., Business Modeling Language (BML) [9], Event-driven Process Chains (EPC) 
[15]), addressing different aspects of processes, such as activity sequencing, resource 
allocation, and organizational responsibility for execution. 

Process goals are included in many definitions of business processes (e.g., “a 
business process is a set of partially ordered activities aimed at reaching a goal” [7]). 
However, as opposed to process structure, the notion of goal has received relatively 
little attention in the literature. There are two main outcomes of this situation. First, 
goals are often viewed as external concepts, not integrated with process models. 
Second, most process modeling methods focus on graphical representation, usually 
without an underlying theory. The lack of a theoretical foundation causes several 
important issues to remain intuition- rather than theory -based. In particular, most 
process-modeling methods lack a mechanism for verifying the “correctness” of a 
process model in terms of completeness, consistency, and feasibility. An exception is 
some workflow-related process models, which use formalisms (e.g Petri-nets) and 
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apply verification mechanisms [20, 21]. However, verification of workflow models 
addresses a limited set of aspects of the process, mainly activity sequencing. 

This paper proposes a Generic Process Model (GPM), which is a theory-based, 
formal and notation-independent process modeling framework. The framework 
provides clear-cut criteria for evaluating model validity based on the integration of 
goals into process models. 

We start by presenting the theoretical framework, then develop validity criteria and 
demonstrate their application to a process taken from the Supply Chain Operations 
Reference-model (SCOR) [16]. 

2   Generic Process Model Framework 

In this section we present a theoretical framework for process modeling based on 
Bunge’s ontology [3, 4], as adapted for information systems modeling (e.g., [14, 22]) 
and for modeling business process concepts [17, 18]. 

According to the ontological framework, the world is made of things that possess 
properties. Properties can be intrinsic (e.g. height) to things or mutual to several 
things (e.g. a person works for a company). Things can compose to form a composite 
thing that has emergent properties, namely, properties not possessed by the 
individuals composing it. Properties (intrinsic or mutual) are perceived by humans in 
terms of attributes, which can be represented as functions on time. The state of a 
thing is the set of values of all its attribute functions (also termed state variables). 
When properties of things change, these changes are manifested as state changes or 
events. State changes can happen either due to internal transformations in things (self 
action of a thing) or due to interactions among things.  Not all states are possible, and 
not all state changes can occur. The rules governing possible states and state changes 
are termed state laws and transition laws, respectively.  

In addition to the basic ontological concepts we define some more concepts to 
provide a formal basis for expressing process-related concepts in ontological terms. 
Domain: Part of the world changes of which we want to model. 

In ontological terms, a domain includes a set of things and their interactions. By 
defining a process over a domain we set the scope of the process and provide a clear 
distinction between what would be considered external events, which are outside of 
the process’ control, and internal events that may occur while processes are enacted 
and are governed by the processes in the domain.  
State: A set of time-dependent attributes (state variables) that provide sufficient 
information about the domain for the purpose of modeling. 

Note, the state of the domain is determined by the states of the things included in it. 
However, due to interactions, emergent state variables of composite things or of the 
domain might exist. As well, we view states as being discrete, meaning that any 
change is from one state to another at a certain moment in time. 
Sub-domain: Part of the domain that can be represented by a (fixed in time) subset of 
the set of state variables. 

A state can be projected on a sub-domain by considering the sub-set of state 
variables describing the sub-domain. This subset defines the state of the sub-domain. 
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Hence on “state” means a state of a domain or any sub-domain. A sub-domain may 
set the scope of a sub-process (part of the process occurring in the sub-domain), 
similarly to the way a domain sets the scope of a process. 

States can be classified as being stable or unstable. The motivation to this 
distinction is that later on we will view the execution of a process as a sequence of 
unstable states that terminates when a stable state is reached. 
Stable state: A state that can only change as a result of an action of something outside 
the (sub)domain. 
Unstable state: A state of the (sub)domain that must change. 

Whether a state is stable or unstable and how an unstable state might change is 
defined in terms of the laws that govern the states of the domain and their transitions:  
A law: A function from the set of states S into itself. 
A transition law: A function on the set of possible unstable states Su into the set of 
states S. 

Implied in this definition is that the transition law is fully deterministic. However, 
our process model allows for uncertainty in how the process will progress when 
enacted. This is because we allow for external events to affect the state of the domain 
while the process is in progress. Consequently, state variables that affect the law 
might change in ways not controlled in the process.  

A transition law can be extended to all states as follows: for an unstable state the 
law is the transition law, otherwise it maps the state into itself. Hence on we will refer 
to the extended laws as domain laws (designated by L). 

For modeling processes we will be interested in sequences of unstable states that 
terminate on stable states. It is not guaranteed that a domain law will always lead to a 
stable state. We therefore need a condition under which every process will terminate 
(i.e. the domain will reach a stable state). 
Stability condition: A domain will always achieve a stable state if for every s∈ Su 
there exists n such that Ln(s) = Ln+1(s).  

The stability condition means that a stationary point exists for every sequence of 
unstable states. The sequence of unstable states, transforming by law until a stable 
state is reached is the basic mechanism of a process: 
A process: A sequence of unstable states leading to a stable state. 

This definition of a process does not mention the origin of the initial unstable state. 
In particular, it can be the outcome of an interaction between the domain and a thing 
outside the domain when the domain is in a stable state. Furthermore, the definition 
does not mention the process goal explicitly. However, it implicitly assumes that the 
stability condition holds and a stable state can be reached. 

Our purpose is to add the notion of goal to the formal model of a process. The 
formalization below establishes and operationalizes a process goal integrated into a 
process model. Note that by “goal” we relate to an operational goal of the process 
only, as opposed to business goals of the organization. Business goals, which may 
serve as “soft-goals” in process design, are discussed in [18]. 
Definition 1: Assume the set of state variables defining a domain is s=<x1,…,xn>.  
Let S={s | s  lawful} be the set of possible domain states. Let Sst⊆S be the subset of 
domain stable states. Then a Goal (G) is a set of stable states G ⊆Sst.  

We now relate the notion of a goal to a process: 
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Definition 2: A goal G will be said to be a process goal if every execution of the 
process terminates in G. 

Definition 2 is technical in the sense that it does not provide any meaningful 
understanding of how a process is designed to always end in a specific subset of 
states. We need to operationalize the concept of goal so it can be related to the actual 
design of a process leading to it. 
Definition 3: A criterion function is a function on the set of states C: S → D, where D 
is a certain domain (of values).  

A criterion function maps the values of state variables into a domain where a 
decision can be made on whether the process achieved its purpose or not. Examples 
for criterion functions are the average of certain state variable values or their distance 
from a target value.  Often, the mapping is on a subset of state variables that are 
considered relevant for deciding whether the process has reached its “goal”. The 
domain mapped into is then a sub-domain of the process domain. For example, in a 
manufacturing process a criterion function can map the entire set of state variables 
into a sub-domain specified by two Boolean state variables sufficient for determining 
process termination: “Production is completed” and “Product quality is approved”.   
Definition 4: A condition is a logical expression E made of simple expressions of the 
form: R::= C rel g,  

where   rel∈{‘>’, ‘=’, ‘<’}, where C a criterion and g is a value from the 
same domain as C, combined by ‘AND’, ‘OR’, ‘NOT’ and precedences 
indicated by ‘( )’.  

We can now operationalize the definition of a goal as: G ={s | E(C(s)) is ‘true’}. 
Considering the manufacturing process discussed above, its goal set is 
{s| (Production is completed=‘true’) AND (Product quality is approved=‘true’)}. 

Having defined and operationalized the goal of a process, we can now apply a set 
of concepts to formalize a process model. 
Definition 5: A process model is a quadruple MP = <S,L,I,G> where: 

S is a set of states 
L is a law defined on S 
I is a subset of unstable states in S: the set of possible initial states 
G is a subset of stable states in S: the goal set 

This definition does not seem to address many elements that are usually included in 
process models, such as ordered activities, pre and post conditions, resources, and 
actors. Nevertheless, we shall now show how the concepts used in the definition relate 
to those common process modeling concepts, by viewing a law as a mapping from a 
condition over a criterion function to a condition over a criterion function. 
Ordered activities are state transitions caused by transformations defined by the law. 
Triggering events (or pre-conditions) are the conditions that define the set of initial 
states I of the entire process and sub-processes. Post-conditions are the conditions that 
define the goal sets for the process and sub-processes. Actors and resources are things 
in the ontological model. Our process model represents actors as things that take actions 
in response to their state changes and resources as things that take no further actions.  

In summary, modelling the states that change by law from a set of initial states to a set 
of stable states is sufficient for addressing most of process model elements. 
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Note, definition 5 implies that a set of ordered activities is not a process unless it leads 
to a defined goal. Consequently, if L does not satisfy the stability condition a process 
cannot be defined. 

3   Validity of Process Models 

This section uses the GPM theoretical framework to develop conditions for 
identifying validity and completeness in a process model. Different sources of 
invalidity are indicated so that actions to remedy the invalidity can be suggested.  

As discussed in Section 2, a process is aimed at attaining a goal, which is a set of 
stable states that satisfy a condition over a criterion function. Such a set can, 
potentially, be attained in many different ways or paths. 
Definition 6: a process path is a set of states <s1,...sn> such that: si ≠ sj, s1∈I,  and 
sk+1=L(sk) for every k∈{1,n-1}. 

Note, definition 6 does not relate to the process goal. Accordingly, a process path 
might be unsuccessful by leading to a stable state which is not in the process goal set.  
Definition 7: a successful process path is a path such that sn∈G. 

We base the evaluation of a process model on whether its goal is reachable or not. 
For this purpose, we define and discuss the reachability of states in the goal set. 
Definition 8: A goal state s∈G will be termed reachable if there is one (successful) 
process path such that sn  =s. 

If the goal set of a process includes unreachable states it either means these states 
are redundant in the goal definition and the goal set can be redefined, or that some 
other process paths should be designed and successfully reach these states. However, 
we do not consider the existence of redundant goal states as model invalidity. 
Definition 9: A process model will be called a valid model iff there exists at least one 
successful process path. 

Three notes are in order. First, definition 9 relates to validity of a process with 
respect to a given goal. Second, the definition does not address the “validity” of the 
goal itself in terms of what the process is intended to accomplish. The result of a 
“faulty” goal definition may be a “valid” process model that does not provide all the 
outputs required from it (typically, by other processes). For example, assume at the 
end of a production process the identity of the worker is needed for computing 
salaries. Yet, providing this identity is not necessarily defined as part of the 
production process goal criterion function (“complete product”). Hence, the 
production process can be considered valid with respect to its goal set even if it does 
not provide the information required by other processes. 

On a more general note - completeness of goal definition should be evaluated in 
relation to a set of processes.  We do not discuss goal completeness here.  

Third, a path might exist, yet not guaranteed to complete.  The reason is that some 
events that bring about state changes might be considered external to the (sub) domain 
on which the process is defined. Since external events are not under the control of the 
process, the process might reach a stable state not in the goal that is not guaranteed to 
change further. For example, the domain of replenishment might include suppliers. 
However, for the replenishment process in the company, suppliers’ behavior is 
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external. Therefore order delivery is not an internal event of the process sub-domain. 
The process is not “guaranteed” to complete and might “hang” waiting for delivery.  

Based on the above, we distinguish three types of situations when a process model 
is invalid, namely, it is not guaranteed to reach its goal. These types are (1) 
Incompleteness in the process definition. (2) Inconsistency between the law and the 
goal definition. (3) Dependency of the process on external events, where the process 
is “waiting” for an external event. 
In what follows, we will discuss these situations and suggest remedies for the reasons 
the process model is not valid. 

Incompleteness in the process definition: The domain and law definition 
determines which state variables are addressed by the model. Specifically, the domain 
law is defined in terms of a mapping between two conditions over criterion functions. 
It may be that a certain combination of state variable values obtained in a given step 
(according to the definition of the domain law), does not appear in the law definition 
for the following steps. As a result, the following step cannot be “fired”.  
Definition 10: A process definition is considered complete iff the domain law is 
defined for every combination of state variable values that may be reached from the 
initial process states via state transitions defined by the law.  

Incompleteness in the process definition can relate to internal events or to external 
events. In the case of internal events not completely defined, it may be that steps 1..j 
of a process path lead to states defined by C1(x1,..xn-1), while the initial state of step 
j+1 is defined by C2(x1,..xn). The law for the current value of xn might not be defined. 
Consider, for example, a production-to-order process, in which production should be 
triggered by the acceptance of a customer order. Suppose that when an order is 
received not all details needed for production are provided. The law might not specify 
how to proceed. The problem can be solved simply by correcting the law (as defined 
for the order acceptance step) so that all the necessary details will be provided.  

In the case of external events not completely defined, some state variables obtain 
values by external events and become known during the process (a formal definition 
of this situation appears in [18]). In words, the value of state variables that are 
determined by an external event is subject to uncertainty until it is realized during the 
process. Possibly, not all the potential results of the external event are taken into 
account by the law. Hence, the process might reach a state for which L is undefined.  

As an example, consider a process of periodical car maintenance, which includes 
examining the state of various systems in the car (e.g., the braking system). If failure 
is detected it will be fixed, while otherwise no action is taken. The damage to be 
detected reflects an external event which has already occurred by the time the car is in 
the garage. It only becomes known during the maintenance process. The law defined 
for the maintenance process must consider all the possible states in the state space. 
This will in turn specify various possible process paths depending on the findings. 

Inconsistency between the law and the process definition: It is possible that as the 
process begins progressing, it reaches a state from which it cannot proceed further to 
reach a goal state. Two possibilities exit. First, the law keeps causing transitions 
without reaching a stable state. If the state space is finite, this would imply the process 
has entered an “infinite loop”, meaning the law does not satisfy the stability condition. 
Second, it is possible the process has reached a stable state not in the goal for which 
there is no external event that can change it to an unstable state. For either case, this 
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implies there is no continuous path from the start state to a goal state. In other words, 
the goal is inconsistent with the law. In practice, this situation can be recognized by 
detecting state variable values in the goal that can not be set properly by the law. 

If the goal is derived from organizational needs, it should not be changed. Hence, 
the process model can be made consistent only by correcting the law definition. 

Process continuance depends on an external event: An external event may be the 
trigger for a step in the process, in which case the process is in a stable state “waiting” 
for the external event to occur, with no guarantee that it will eventually occur.  
Definition 11: A process path will be termed non-continuous iff it includes a stable 
state sj∉G. 

Based on this definition, the only way for a non-continuous path to lead to the goal 
is if an external event occurs changing the stable state to unstable. 
Definition 12: A process will be termed non-continuous iff all its paths are non-
continuous. 

A non-continuous process is technically invalid. However, it is common that a 
process will be waiting for external events (we do not want to proscribe this, as it 
would limit what is a useful process model). For example, handling a manuscript 
submitted for publication involves sending it to reviewers. Once the manuscript is 
sent to the reviewers the process is in a stable state, and is reactivated by the arrival of 
the reviews. However, this might take an indefinite period of time. In fact, 
theoretically there is no guarantee that all the reviews will arrive at all. 

Assuring the process reaches its goal would require the following corrections:  
(1) Add to the Law L a specification that will include some measure of time in 

the criterion function, and a condition specifying values in which the 
combination of the time variable and other state variables makes the state 
unstable. The time can be “absolute” or “waiting” time. 

(2) The unstable state should be mapped to (a) connect to a process path, (b) end 
on a new stable state that can be affected by external events or be considered 
a new goal. 

(3) Add the stable state of (2b) to the Goal set. 
It can be shown that these corrections are all necessary and together sufficient. The 

idea is as follows: given the process might be halted on a stable state not in the goal 
set, the only way it can be reactivated is via an external event. In theory, this could be 
an event of any source. However, this might again raise the same possibility of failed 
external event. Thus, we must include a type of external event that by definition will 
always change the state. This must be time, as the passage of time is external to all 
processes in the world. In organizational practice one might conceive of other 
necessary events that would happen, however, they all will be somehow tied to time. 

When defining a state that becomes unstable as a result of the time event, a new 
process path must be defined and connected to it. The new process path may include a 
monitoring activity, aimed at verifying that the expected external event will indeed 
occur. The monitoring activity itself might have to be tied to time. 

In addition (or alternatively), the new process path may lead to an “exception” 
state, where a process terminates with some special actions reflecting a failure 
somewhere. The condition for reaching the exception state can be based on the time 
variable, on the number of repetitions of the monitoring activity (which in itself 
reflects time), or on a combination of both. 
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We distinguish between two types of stable states reached as a result of 
monitoring. First, the stable state is an exception and should be added to the goal set 
of the process, implying that the process terminates when its original objective is 
achieved or when failure in achieving this objective is evident. Second, the new stable 
state could be such that is more likely to be changed by an external event. For 
example, notify a supervisor of the problem, and wait for response. 

Consider again the example of the manuscript handling process. In order to make it 
valid we need to specify time in which to inquire about the status of the review, or 
time periods for repeating this inquiry. We should also specify a path for failing to get 
a review, in which decision can be made based only on the reviews that have arrived.  

Fig. 1. SCOR S1 process of sourcing stocked products 
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4   Application to the SCOR Model 

In this section we demonstrate our approach by applying it to a process taken from 
the Supply Chain Operations Reference-model (SCOR) [16].  

The SCOR model is a reference model of supply chain management processes, 
developed and endorsed by the Supply Chain Council as a cross-industry standard. 
While primarily targeted for industrial use, the SCOR model has been used in quite a 
number of research works (e.g., [1, 8, 19]) as a comprehensive body of common and 
accepted supply chain business processes.  

SCOR contains three levels of process details. The top level includes five basic 
processes: Plan, Source, Make, Deliver, and Return. The second level defines 
categories for each of the five basic processes, according to different logistic 
categories (e.g. make to stock). The third level decomposes each process category into 
elements, to be further decomposed into activities in practical implementation. The 
SCOR model specifies inputs and outputs of each of these elements, and provides 
metrics and “best practices” associated with each process category and element.  

We demonstrate our approach using the SCOR process Source Stocked Products, 
denoted as S1, presented in Figure 1 (taken from SCOR directly). The inputs and 
outputs in the figure refer to other SCOR processes they relate to (e.g., P2.4, etc.). 

4.1 Expressing the SCOR Process  

The S1 process includes five steps (or sub-processes). We may apply our set of 
concepts to the entire process or to each of its steps, as shown in Table 1.  

With respect to the entire process, I is the set of states where all the inputs to the 
first step exist. Specifically, the instability of the states is caused by the replenishment 
Signals given. Therefore, this is the external event that triggers the process. The Law 
is not completely and explicitly specified. Rather, it is manifested by the  state 
transformation caused by each of the process steps. Table 1 specifies the conditions 
that define I and G for each step. The law is defined by the mapping from I states to G 
states. In the transformation from Figure 1 to Table 1 we applied domain knowledge 
to specify the exact condition values (e.g., Sourcing plans = In process), which were 
not provided in the SCOR model. The goal of the entire process is not specified in the 
SCOR model at all, but is implicitly understood as the set of states where supplier 
payment is completed. Considering each step, it is a sub-process defined over a sub-
domain. Its goal states, while clearly not stable in terms of the entire domain, are 
stable in terms of the specific sub-domain. For example, consider the step S1.2 
Receive Product, whose output is Receipt Verification (obviously with respect to 
quantity rather than quality). The goal of this step includes all the states where the 
quantity received is verified. It is clearly not a stable state in terms of the entire 
process, since the quality of the product is not yet verified. However, it is a stable 
state in terms of a sub-domain, which may include a person whose job is to unload 
goods and verify that the content of the shipment delivered. This person has 
completed his job once the quantity received is verified. 
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Table 1.  SCOR process representation 

Step I condition G condition 
S1.1 (Sourcing plans = Open) AND (Source 

Execution Data = Defined) AND 
(Logistics Selection = Defined) AND 
(Production Schedule = Defined) AND 
(Replenishment signals = Given) AND 
(Sourced products = Not Ordered) 

(Sourcing plans = In process) AND 
(Replenishment signals = Closed) 
AND (Procurement signal = Sent to 
supplier) AND (Sourced products = 
On Order) AND (Scheduled 
Receipts = Date, quantity)  

S1.2 Sourced products = Arrived Sourced products = Quantity 
verified 

S1.3 Sourced products = Quantity verified Sourced products = Quality verified 
S1.4 (Sourced products = Quality verified) 

AND (Pull signal = Given) AND 
[(Inventory location = Defined) OR 
(WIP location = Defined) OR 
(Finished goods location = Defined)] 

(Sourced products = Transferred) 
AND (Pull signal = Closed) AND 
[(Inventory = location, quantity) OR 
(WIP = location, quantity) OR 
(Finished goods = location, 
quantity)] 

S1.5 (Sourced products = Transferred) 
AND (Payment Terms = Defined) 
AND (Invoice = Received) 

(Sourced products = Paid) AND 
(Invoice = Paid) 

4.2 Validity Analysis 

Table 2 is a basis for analyzing the process model validity. The table addresses the 
state variables whose state is transformed by each step of the process and specifies the 
source from which each variable receives its initial and final value. The table also 
indicates whether a state variable constitutes (possibly in combination with other state 
variables) the external event that triggers the sub-process by putting the sub-domain 
in an unstable state. The sources of the initial values of the state variables can be 
external events or some other steps in the process. The source of the goal values of the 
state variables is the law, possibly on the basis of external events whose outcome is 
realized in the process (denoted in the table as By Law | external). 

Note, the table specifies for each step only the goal defining state variables [18], 
i.e., state variables that are part of the goal criterion function of the specific step. 
Analysis tables such as Table 2 can indicate the three cases of invalidity discussed: 

(1) Incompleteness of process definition can be identified by tracking:  
(a) State variable whose initial value depends on a previous step of the 

process, where the required value is not specified as part of the goal 
condition of that step. Then a pre-condition might not be satisfied and a step 
cannot be fired. In our example the changes in Sourced Products, that 
progress from step to step, are specified correctly. 

(b) State variables whose goal value depends on external events (By law | 
external), where the law is not specified for all their possible values. In our 
example there are two such cases, namely steps S1.2 and S1.3. In both cases 
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not all possible results are considered, as it is possible that the quantity will 
not be verified (S1.2) or quality will not be approved (S1.3). Hence, these are 
two cases of incomplete specification. 

(2) Goal-law inconsistency can be identified by detecting loops in the process – 
when the initial value of state variables is obtained in the goal state of a step 
that is not previous to the current one. Loops can also be the result of repeating 
external events. Such possibility can be identified if the initial state of a step 
depends on an external event only, without considering the value of goal-
defining state variables (that changes once the step is performed). Once a loop 
is detected there must be a state variable whose value serves as a guaranteed 
termination condition (repetition counter, time, etc.). Otherwise the stability 
condition is violated. In our example the process does not include loops. 

(3) Dependency on external events can be identified by state variables, which 
constitute triggering events for steps (other than the first step of the process), 
and whose initial value is of an external source. These could indicate that the 
process is non-continuous. In our example there are three such cases, in steps 
S1.2, S1.4, and S1.5. In all these three cases the occurrence of the external 
triggering events is not guaranteed and is not monitored. 

In summary, Table 2 indicates that the process model is invalid, since it includes 
two cases of incomplete law specification with respect to state variables whose value 
is realized in the process, and three cases of unmonitored non-continuity. 

Table 2. Sources of state variable values 

Process 
step 

State variable Source of 
initial value 

Triggering 
event 

Source of goal 
value 

Sourcing plans External No   By Law 
Replenishment 
signals 

External Yes  By Law 

Procurement Signal  No   By Law 
Sourced Products   No   By Law 

S1.1 

Scheduled Receipts  No   By Law 
S1.2 Sourced Products External Yes By Law | External 
S1.3 Sourced Products S1.2 Yes By Law | External 

Pull Signals External Yes By Law 
Sourced Products S1.3 Yes By Law 
Inventory External No   By Law 
WIP External No   By Law 

S1.4 

Finished goods External No   By Law 
Sourced Products S1.3 Yes By law S1.5 
Supplier invoice External Yes By law 

4.3 Modifying the Process Model to Achieve Validity 

In this section we suggest example corrective actions to achieve validity of the S1 
process. Clearly, different solutions may be suggested, depending on the procedures 
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of the specific organization. Table 3 summarizes the modified process model. The 
possible values of the realized state variables are specified and mapped to relevant 
goal states in S1.2 and S1.3. In S1.3 the case of unapproved quality will terminate the 
process, when the sourced products are to be returned to the supplier by another 
process and a re-planning signal is given. This state should be added to the goal of S1. 

Table 3. Modifications to Process S1 

Step I condition Realized value 
of state 

variables 

G condition Explanation 

S1.1 See Table 1 
S1.2m  (Time passed 

= ti) AND (i≤n) 
AND (Sourced 
products = 
Order Opened) 

 [(Arrival Control = 
OK) OR (Arrival 
Control = 
Exception)] AND (i 
= i +1). 

i is a counter. 
Begin monitoring 
if ti time has 
passed. 
 

S1.2e (i > n) OR 
(Arrival 
Control = 
Exception) 

 (Sourced products = 
Order closed) AND 
(Re-planning signal 
= given). 

If monitoring time 
ended  (i > n) or 
exception  is 
recognized by 
inquiry – process 
ends 

Actual quantity 
= Stated 
Quantity 

(Sourced products = 
Quantity verified)  

 S1.2 Sourced 
products = 
Arrived 

Actual quantity 
≠ Stated 
Quantity 

(Sourced products = 
Quantity verified) 
AND (Claim to 
supplier = to be sent)  

 

Quality = meets 
specification 

Sourced products = 
Quality verified  

 S1.3 Sourced 
products = 
Quantity 
verified 

Quality ≠ meets 
specification 

(Sourced products = 
to be returned) AND 
(Re-planning signal 
= given) 

 

S1.4m Pull signal ≠ 
Given 

 Pull Control = OK Monitoring by an 
immediate 
notification 

S1.4 See Table 1 
S1.5m (Time 

condition = t) 
AND (Invoice ≠ 
Received) 

 Invoice Control = 
OK 

Monitoring by  
notification when 
waiting  time = t 

S1.5 See Table 1 
 
The non-continuous parts need, as discussed in Section 3, to be monitored. The 

monitoring procedure may vary, depending on the level of uncertainty related to the 
external event and on the criticality of continuance to the organization. In the case of 
S1.2, waiting for goods to arrive from the supplier involves a relatively high level of 
uncertainty and is indeed critical. Hence we proposed a time-dependent control, 
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which repeats itself in time intervals of ti, where i is the number of repetitions. The 
exception path will be taken based on the number of monitoring repetitions or on the 
inquiry response, and its goal state should be added to the goal set of the entire 
process, S1. The monitoring activity is denoted in Table 3 as S1.2m, and the 
exception, which terminates the process, is marked S1.2e. 
The two other cases of discontinuity in the process (S1.4, S1.5) seem less critical or 
likely to occur. Hence, the monitoring suggested (S1.4m, S1.5m) is less tight as it 
includes no repetitions, and a possible exception is not considered. 

This demonstrates how the proposed model can be used as the basis for design 
decisions and the type of considerations that may guide the process’ designer. 

5   Related Work 

Related work includes the areas of goal-driven process models and process model 
verification. Attempts to incorporate goals into process modeling include [12], who 
suggest an informal approach in which goals provide a basis for process definition. 
Business process modeling is addressed by [10] using the Enterprise Knowledge 
Development (EKD) framework, which entails a goal model among other views, and 
sets the understanding of goals as a basis for business process identification. 

A formally defined set of concepts, incorporating goals and processes, is provided 
in [11], whose model is based on mathematical systems theory. Their approach to 
process modeling is state-oriented, viewing a process as a subset of trajectories in 
some state space, and a process goal as a set of conditions defining a surface in the 
state space.  This set of concepts is extended in [2] and used for defining a process 
pattern, allowing the design of generic processes that can be specialized for specific 
situations. This model bears much similarity to our model. However, the distinction of 
external events is not explicitly made there. 

Verification of process models is mainly associated with workflow control models. 
Workflow model verification is notation-specific, defined often for Petri-nets [20, 21], 
and sometimes for other languages, e.g., UML Activity diagrams [6]. 

Basically there are two approaches to the verification. In one, the model is 
converted into formal specifications that can be analyzed by existing formal model 
checkers (e.g., SPIN, that also served for verifying UML statecharts [5, 13]) or 
dedicated model checkers [6]. The other approach is based structural properties of the 
model (e.g., soundness) [20, 21]. Note, our validity criteria are not structural only, 
addressing semantics as well via the values of the state variables in the model. 

Our process model is less restrictive than the soundness property required in 
workflow models. For example, in sound workflow models only one termination 
place is allowed, in contrast to our goal set.  

Note, workflow models represent the behavior of the workflow management 
system (WFMS) only and not its environment. Specifically, workflow processes are 
usually non-continuous, since the WFMS has to wait for human actions to be reported 
to it. Hence, workflow models generally assume the environment behaves fairly [21]. 
In addition, as opposed to workflow verification methods, our approach is conceptual 
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rather than technical. It explores the sources of invalidity and provides remedy to 
specific cases. Finally, it is independent of any specific notation. 

6   Concluding Discussion 

The GPM, proposed in this paper, is a theory-based model of a process. This model is 
utilized for defining validity of a process model and identifying causes for invalidity. 
Understanding these causes can lead to suggestions for correcting invalid models. 

The suggested process model is goal-driven, basing the notion of validity on goal 
reachability. A process goal is not an obscure notion, but a set of stable states defined 
by a condition. Hence, goal reachability can be systematically verified.  

The verification criteria, though systematic, are conceptual rather than technical. 
They provide an understanding of the sources of invalidity, so the insight gained will 
assist the modeler in designing valid process models from the beginning. 
Alternatively, they provide guidance for modifying the model and make it a valid one. 

The suggested process model is generic and notation-independent. It employs a 
small number of constructs to express many aspects addressed by various process 
modeling languages. Consequently, models in these languages can be mapped to our 
generic model and their validity evaluated regardless of the specific notation.  

Furthermore, applying the suggested model as an infrastructure to models created 
in any modeling language can help to structure the modeling process, by presenting a 
set of questions to the modeler. As an example, assume a process is modeled using 
Petri nets. Normally the modeler would be occupied with transitions (activities) and 
firing sequence. Using our model as infrastructure, the modeler will also have to 
understand the process goal (a condition over a criterion function) and define the 
places in the model in terms of state variables.  

The application of the GPM framework is not limited to validity evaluation. 
Currently we are extending it to other aspects of process modeling, such as process 
decomposition, process specialization, and process model reuse. 
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