
Goal-Driven Analysis of Process Model Validity

Pnina Soffer1 and Yair Wand1 2

1Haifa University, Carmel Mountain, Haifa 31905, Israel
{wand, spnina}@mis.hevra.haifa.ac.il

2 The University of British Columbia, Vancouver, Canada
yair.wand@commerce.ubc.ca

Abstract. Business process modeling and design, which has attracted much
attention in recent years, emphasizes mainly graphical representation, usually
without an underlying theory. The lack of a theoretical foundation causes
several important issues to remain intuition- rather than theory -based. In
particular, many process-modeling methods, being semi-formal, lack a
mechanism for verifying the “correctness” of a process in terms of
completeness, consistency, and feasibility. The paper proposes a generic theory-
based process modeling (GPM) framework and criteria for validity evaluation
of process models. The framework, which is based on Bunge’s ontology, is
formal and notation-independent. Validity is defined as the possibility of the
process to achieve its goal. The paper discusses and characterizes causes for
process invalidity and suggests ways to avoid these situations. The concepts of
the framework and their usefulness for evaluating the validity of process
models are demonstrated by applying them to a process taken from the Supply-
Chain Operations Reference-model (SCOR).

1 Introduction

Business process modeling and design has attracted much attention in recent years in
the context of integrated information systems and Business Process Reengineering.

Numerous methods for process modeling and representation have been proposed
(e.g., Business Modeling Language (BML) [9], Event-driven Process Chains (EPC)
[15]), addressing different aspects of processes, such as activity sequencing, resource
allocation, and organizational responsibility for execution.

Process goals are included in many definitions of business processes (e.g., “a
business process is a set of partially ordered activities aimed at reaching a goal” [7]).
However, as opposed to process structure, the notion of goal has received relatively
little attention in the literature. There are two main outcomes of this situation. First,
goals are often viewed as external concepts, not integrated with process models.
Second, most process modeling methods focus on graphical representation, usually
without an underlying theory. The lack of a theoretical foundation causes several
important issues to remain intuition- rather than theory -based. In particular, most
process-modeling methods lack a mechanism for verifying the “correctness” of a
process model in terms of completeness, consistency, and feasibility. An exception is
some workflow-related process models, which use formalisms (e.g Petri-nets) and

2

apply verification mechanisms [20, 21]. However, verification of workflow models
addresses a limited set of aspects of the process, mainly activity sequencing.

This paper proposes a Generic Process Model (GPM), which is a theory-based,
formal and notation-independent process modeling framework. The framework
provides clear-cut criteria for evaluating model validity based on the integration of
goals into process models.

We start by presenting the theoretical framework, then develop validity criteria and
demonstrate their application to a process taken from the Supply Chain Operations
Reference-model (SCOR) [16].

2 Generic Process Model Framework

In this section we present a theoretical framework for process modeling based on
Bunge’s ontology [3, 4], as adapted for information systems modeling (e.g., [14, 22])
and for modeling business process concepts [17, 18].

According to the ontological framework, the world is made of things that possess
properties. Properties can be intrinsic (e.g. height) to things or mutual to several
things (e.g. a person works for a company). Things can compose to form a composite
thing that has emergent properties, namely, properties not possessed by the
individuals composing it. Properties (intrinsic or mutual) are perceived by humans in
terms of attributes, which can be represented as functions on time. The state of a
thing is the set of values of all its attribute functions (also termed state variables).
When properties of things change, these changes are manifested as state changes or
events. State changes can happen either due to internal transformations in things (self
action of a thing) or due to interactions among things. Not all states are possible, and
not all state changes can occur. The rules governing possible states and state changes
are termed state laws and transition laws, respectively.

In addition to the basic ontological concepts we define some more concepts to
provide a formal basis for expressing process-related concepts in ontological terms.
Domain: Part of the world changes of which we want to model.

In ontological terms, a domain includes a set of things and their interactions. By
defining a process over a domain we set the scope of the process and provide a clear
distinction between what would be considered external events, which are outside of
the process’ control, and internal events that may occur while processes are enacted
and are governed by the processes in the domain.
State: A set of time-dependent attributes (state variables) that provide sufficient
information about the domain for the purpose of modeling.

Note, the state of the domain is determined by the states of the things included in it.
However, due to interactions, emergent state variables of composite things or of the
domain might exist. As well, we view states as being discrete, meaning that any
change is from one state to another at a certain moment in time.
Sub-domain: Part of the domain that can be represented by a (fixed in time) subset of
the set of state variables.

A state can be projected on a sub-domain by considering the sub-set of state
variables describing the sub-domain. This subset defines the state of the sub-domain.

3

Hence on “state” means a state of a domain or any sub-domain. A sub-domain may
set the scope of a sub-process (part of the process occurring in the sub-domain),
similarly to the way a domain sets the scope of a process.

States can be classified as being stable or unstable. The motivation to this
distinction is that later on we will view the execution of a process as a sequence of
unstable states that terminates when a stable state is reached.
Stable state: A state that can only change as a result of an action of something outside
the (sub)domain.
Unstable state: A state of the (sub)domain that must change.

Whether a state is stable or unstable and how an unstable state might change is
defined in terms of the laws that govern the states of the domain and their transitions:
A law: A function from the set of states S into itself.
A transition law: A function on the set of possible unstable states Su into the set of
states S.

Implied in this definition is that the transition law is fully deterministic. However,
our process model allows for uncertainty in how the process will progress when
enacted. This is because we allow for external events to affect the state of the domain
while the process is in progress. Consequently, state variables that affect the law
might change in ways not controlled in the process.

A transition law can be extended to all states as follows: for an unstable state the
law is the transition law, otherwise it maps the state into itself. Hence on we will refer
to the extended laws as domain laws (designated by L).

For modeling processes we will be interested in sequences of unstable states that
terminate on stable states. It is not guaranteed that a domain law will always lead to a
stable state. We therefore need a condition under which every process will terminate
(i.e. the domain will reach a stable state).
Stability condition: A domain will always achieve a stable state if for every s∈ Su
there exists n such that Ln(s) = Ln+1(s).

The stability condition means that a stationary point exists for every sequence of
unstable states. The sequence of unstable states, transforming by law until a stable
state is reached is the basic mechanism of a process:
A process: A sequence of unstable states leading to a stable state.

This definition of a process does not mention the origin of the initial unstable state.
In particular, it can be the outcome of an interaction between the domain and a thing
outside the domain when the domain is in a stable state. Furthermore, the definition
does not mention the process goal explicitly. However, it implicitly assumes that the
stability condition holds and a stable state can be reached.

Our purpose is to add the notion of goal to the formal model of a process. The
formalization below establishes and operationalizes a process goal integrated into a
process model. Note that by “goal” we relate to an operational goal of the process
only, as opposed to business goals of the organization. Business goals, which may
serve as “soft-goals” in process design, are discussed in [18].
Definition 1: Assume the set of state variables defining a domain is s=<x1,…,xn>.
Let S={s | s lawful} be the set of possible domain states. Let Sst⊆S be the subset of
domain stable states. Then a Goal (G) is a set of stable states G ⊆Sst.

We now relate the notion of a goal to a process:

4

Definition 2: A goal G will be said to be a process goal if every execution of the
process terminates in G.

Definition 2 is technical in the sense that it does not provide any meaningful
understanding of how a process is designed to always end in a specific subset of
states. We need to operationalize the concept of goal so it can be related to the actual
design of a process leading to it.
Definition 3: A criterion function is a function on the set of states C: S → D, where D
is a certain domain (of values).

A criterion function maps the values of state variables into a domain where a
decision can be made on whether the process achieved its purpose or not. Examples
for criterion functions are the average of certain state variable values or their distance
from a target value. Often, the mapping is on a subset of state variables that are
considered relevant for deciding whether the process has reached its “goal”. The
domain mapped into is then a sub-domain of the process domain. For example, in a
manufacturing process a criterion function can map the entire set of state variables
into a sub-domain specified by two Boolean state variables sufficient for determining
process termination: “Production is completed” and “Product quality is approved”.
Definition 4: A condition is a logical expression E made of simple expressions of the
form: R::= C rel g,

where rel∈{‘>’, ‘=’, ‘<’}, where C a criterion and g is a value from the
same domain as C, combined by ‘AND’, ‘OR’, ‘NOT’ and precedences
indicated by ‘()’.

We can now operationalize the definition of a goal as: G ={s | E(C(s)) is ‘true’}.
Considering the manufacturing process discussed above, its goal set is
{s| (Production is completed=‘true’) AND (Product quality is approved=‘true’)}.

Having defined and operationalized the goal of a process, we can now apply a set
of concepts to formalize a process model.
Definition 5: A process model is a quadruple MP = <S,L,I,G> where:

S is a set of states
L is a law defined on S
I is a subset of unstable states in S: the set of possible initial states
G is a subset of stable states in S: the goal set

This definition does not seem to address many elements that are usually included in
process models, such as ordered activities, pre and post conditions, resources, and
actors. Nevertheless, we shall now show how the concepts used in the definition relate
to those common process modeling concepts, by viewing a law as a mapping from a
condition over a criterion function to a condition over a criterion function.
Ordered activities are state transitions caused by transformations defined by the law.
Triggering events (or pre-conditions) are the conditions that define the set of initial
states I of the entire process and sub-processes. Post-conditions are the conditions that
define the goal sets for the process and sub-processes. Actors and resources are things
in the ontological model. Our process model represents actors as things that take actions
in response to their state changes and resources as things that take no further actions.

In summary, modelling the states that change by law from a set of initial states to a set
of stable states is sufficient for addressing most of process model elements.

5

Note, definition 5 implies that a set of ordered activities is not a process unless it leads
to a defined goal. Consequently, if L does not satisfy the stability condition a process
cannot be defined.

3 Validity of Process Models

This section uses the GPM theoretical framework to develop conditions for
identifying validity and completeness in a process model. Different sources of
invalidity are indicated so that actions to remedy the invalidity can be suggested.

As discussed in Section 2, a process is aimed at attaining a goal, which is a set of
stable states that satisfy a condition over a criterion function. Such a set can,
potentially, be attained in many different ways or paths.
Definition 6: a process path is a set of states <s1,...sn> such that: si ≠ sj, s1∈I, and
sk+1=L(sk) for every k∈{1,n-1}.

Note, definition 6 does not relate to the process goal. Accordingly, a process path
might be unsuccessful by leading to a stable state which is not in the process goal set.
Definition 7: a successful process path is a path such that sn∈G.

We base the evaluation of a process model on whether its goal is reachable or not.
For this purpose, we define and discuss the reachability of states in the goal set.
Definition 8: A goal state s∈G will be termed reachable if there is one (successful)
process path such that sn =s.

If the goal set of a process includes unreachable states it either means these states
are redundant in the goal definition and the goal set can be redefined, or that some
other process paths should be designed and successfully reach these states. However,
we do not consider the existence of redundant goal states as model invalidity.
Definition 9: A process model will be called a valid model iff there exists at least one
successful process path.

Three notes are in order. First, definition 9 relates to validity of a process with
respect to a given goal. Second, the definition does not address the “validity” of the
goal itself in terms of what the process is intended to accomplish. The result of a
“faulty” goal definition may be a “valid” process model that does not provide all the
outputs required from it (typically, by other processes). For example, assume at the
end of a production process the identity of the worker is needed for computing
salaries. Yet, providing this identity is not necessarily defined as part of the
production process goal criterion function (“complete product”). Hence, the
production process can be considered valid with respect to its goal set even if it does
not provide the information required by other processes.

On a more general note - completeness of goal definition should be evaluated in
relation to a set of processes. We do not discuss goal completeness here.

Third, a path might exist, yet not guaranteed to complete. The reason is that some
events that bring about state changes might be considered external to the (sub) domain
on which the process is defined. Since external events are not under the control of the
process, the process might reach a stable state not in the goal that is not guaranteed to
change further. For example, the domain of replenishment might include suppliers.
However, for the replenishment process in the company, suppliers’ behavior is

6

external. Therefore order delivery is not an internal event of the process sub-domain.
The process is not “guaranteed” to complete and might “hang” waiting for delivery.

Based on the above, we distinguish three types of situations when a process model
is invalid, namely, it is not guaranteed to reach its goal. These types are (1)
Incompleteness in the process definition. (2) Inconsistency between the law and the
goal definition. (3) Dependency of the process on external events, where the process
is “waiting” for an external event.
In what follows, we will discuss these situations and suggest remedies for the reasons
the process model is not valid.

Incompleteness in the process definition: The domain and law definition
determines which state variables are addressed by the model. Specifically, the domain
law is defined in terms of a mapping between two conditions over criterion functions.
It may be that a certain combination of state variable values obtained in a given step
(according to the definition of the domain law), does not appear in the law definition
for the following steps. As a result, the following step cannot be “fired”.
Definition 10: A process definition is considered complete iff the domain law is
defined for every combination of state variable values that may be reached from the
initial process states via state transitions defined by the law.

Incompleteness in the process definition can relate to internal events or to external
events. In the case of internal events not completely defined, it may be that steps 1..j
of a process path lead to states defined by C1(x1,..xn-1), while the initial state of step
j+1 is defined by C2(x1,..xn). The law for the current value of xn might not be defined.
Consider, for example, a production-to-order process, in which production should be
triggered by the acceptance of a customer order. Suppose that when an order is
received not all details needed for production are provided. The law might not specify
how to proceed. The problem can be solved simply by correcting the law (as defined
for the order acceptance step) so that all the necessary details will be provided.

In the case of external events not completely defined, some state variables obtain
values by external events and become known during the process (a formal definition
of this situation appears in [18]). In words, the value of state variables that are
determined by an external event is subject to uncertainty until it is realized during the
process. Possibly, not all the potential results of the external event are taken into
account by the law. Hence, the process might reach a state for which L is undefined.

As an example, consider a process of periodical car maintenance, which includes
examining the state of various systems in the car (e.g., the braking system). If failure
is detected it will be fixed, while otherwise no action is taken. The damage to be
detected reflects an external event which has already occurred by the time the car is in
the garage. It only becomes known during the maintenance process. The law defined
for the maintenance process must consider all the possible states in the state space.
This will in turn specify various possible process paths depending on the findings.

Inconsistency between the law and the process definition: It is possible that as the
process begins progressing, it reaches a state from which it cannot proceed further to
reach a goal state. Two possibilities exit. First, the law keeps causing transitions
without reaching a stable state. If the state space is finite, this would imply the process
has entered an “infinite loop”, meaning the law does not satisfy the stability condition.
Second, it is possible the process has reached a stable state not in the goal for which
there is no external event that can change it to an unstable state. For either case, this

7

implies there is no continuous path from the start state to a goal state. In other words,
the goal is inconsistent with the law. In practice, this situation can be recognized by
detecting state variable values in the goal that can not be set properly by the law.

If the goal is derived from organizational needs, it should not be changed. Hence,
the process model can be made consistent only by correcting the law definition.

Process continuance depends on an external event: An external event may be the
trigger for a step in the process, in which case the process is in a stable state “waiting”
for the external event to occur, with no guarantee that it will eventually occur.
Definition 11: A process path will be termed non-continuous iff it includes a stable
state sj∉G.

Based on this definition, the only way for a non-continuous path to lead to the goal
is if an external event occurs changing the stable state to unstable.
Definition 12: A process will be termed non-continuous iff all its paths are non-
continuous.

A non-continuous process is technically invalid. However, it is common that a
process will be waiting for external events (we do not want to proscribe this, as it
would limit what is a useful process model). For example, handling a manuscript
submitted for publication involves sending it to reviewers. Once the manuscript is
sent to the reviewers the process is in a stable state, and is reactivated by the arrival of
the reviews. However, this might take an indefinite period of time. In fact,
theoretically there is no guarantee that all the reviews will arrive at all.

Assuring the process reaches its goal would require the following corrections:
(1) Add to the Law L a specification that will include some measure of time in

the criterion function, and a condition specifying values in which the
combination of the time variable and other state variables makes the state
unstable. The time can be “absolute” or “waiting” time.

(2) The unstable state should be mapped to (a) connect to a process path, (b) end
on a new stable state that can be affected by external events or be considered
a new goal.

(3) Add the stable state of (2b) to the Goal set.
It can be shown that these corrections are all necessary and together sufficient. The

idea is as follows: given the process might be halted on a stable state not in the goal
set, the only way it can be reactivated is via an external event. In theory, this could be
an event of any source. However, this might again raise the same possibility of failed
external event. Thus, we must include a type of external event that by definition will
always change the state. This must be time, as the passage of time is external to all
processes in the world. In organizational practice one might conceive of other
necessary events that would happen, however, they all will be somehow tied to time.

When defining a state that becomes unstable as a result of the time event, a new
process path must be defined and connected to it. The new process path may include a
monitoring activity, aimed at verifying that the expected external event will indeed
occur. The monitoring activity itself might have to be tied to time.

In addition (or alternatively), the new process path may lead to an “exception”
state, where a process terminates with some special actions reflecting a failure
somewhere. The condition for reaching the exception state can be based on the time
variable, on the number of repetitions of the monitoring activity (which in itself
reflects time), or on a combination of both.

8

We distinguish between two types of stable states reached as a result of
monitoring. First, the stable state is an exception and should be added to the goal set
of the process, implying that the process terminates when its original objective is
achieved or when failure in achieving this objective is evident. Second, the new stable
state could be such that is more likely to be changed by an external event. For
example, notify a supervisor of the problem, and wait for response.

Consider again the example of the manuscript handling process. In order to make it
valid we need to specify time in which to inquire about the status of the review, or
time periods for repeating this inquiry. We should also specify a path for failing to get
a review, in which decision can be made based only on the reviews that have arrived.

Fig. 1. SCOR S1 process of sourcing stocked products

S1.4

Transfer
Product

• (Supplier) Sourced
Products

• Receipt Verification (ES.1,
ES.2, ES.6 ES.8)

• (P2.4) Sourcing Plans
• (ES.2) Source Execution Data
• (ES.6) Logistics Selection
• (M1.1, M2.1, M3.2) Production Schedule
• (M1.2, M2.2, M3.3, D1.3) Replenishment

Signals

• Procurement Signal (Supplier)
• Sourced Product on Order (P2.2), (ES.9)
• Scheduled Receipts (M1.1, M2.1, M3.2,

D1.8, D4.2)

• Inventory Availability (P2.2, ES.4,
M1.2, M2.2, M3.3, D1.8, D4.2)

• (M) (D) Product Pull Signals
• (ES.4) Product Inventory Location
• (EM) WIP Inventory Location
• (ED) Finished Goods Inventory Location

S1.5

Authorize
Supplier
Payment

• Receipt Verification
(ES.1, ES.2)

• (ES.9) Payment Terms
• (Supplier) Invoice

S1.1

Schedule
Product

Deliveries

S1.2

Receive
Product

S1.3

Verify
Product

9

4 Application to the SCOR Model

In this section we demonstrate our approach by applying it to a process taken from
the Supply Chain Operations Reference-model (SCOR) [16].

The SCOR model is a reference model of supply chain management processes,
developed and endorsed by the Supply Chain Council as a cross-industry standard.
While primarily targeted for industrial use, the SCOR model has been used in quite a
number of research works (e.g., [1, 8, 19]) as a comprehensive body of common and
accepted supply chain business processes.

SCOR contains three levels of process details. The top level includes five basic
processes: Plan, Source, Make, Deliver, and Return. The second level defines
categories for each of the five basic processes, according to different logistic
categories (e.g. make to stock). The third level decomposes each process category into
elements, to be further decomposed into activities in practical implementation. The
SCOR model specifies inputs and outputs of each of these elements, and provides
metrics and “best practices” associated with each process category and element.

We demonstrate our approach using the SCOR process Source Stocked Products,
denoted as S1, presented in Figure 1 (taken from SCOR directly). The inputs and
outputs in the figure refer to other SCOR processes they relate to (e.g., P2.4, etc.).

4.1 Expressing the SCOR Process

The S1 process includes five steps (or sub-processes). We may apply our set of
concepts to the entire process or to each of its steps, as shown in Table 1.

With respect to the entire process, I is the set of states where all the inputs to the
first step exist. Specifically, the instability of the states is caused by the replenishment
Signals given. Therefore, this is the external event that triggers the process. The Law
is not completely and explicitly specified. Rather, it is manifested by the state
transformation caused by each of the process steps. Table 1 specifies the conditions
that define I and G for each step. The law is defined by the mapping from I states to G
states. In the transformation from Figure 1 to Table 1 we applied domain knowledge
to specify the exact condition values (e.g., Sourcing plans = In process), which were
not provided in the SCOR model. The goal of the entire process is not specified in the
SCOR model at all, but is implicitly understood as the set of states where supplier
payment is completed. Considering each step, it is a sub-process defined over a sub-
domain. Its goal states, while clearly not stable in terms of the entire domain, are
stable in terms of the specific sub-domain. For example, consider the step S1.2
Receive Product, whose output is Receipt Verification (obviously with respect to
quantity rather than quality). The goal of this step includes all the states where the
quantity received is verified. It is clearly not a stable state in terms of the entire
process, since the quality of the product is not yet verified. However, it is a stable
state in terms of a sub-domain, which may include a person whose job is to unload
goods and verify that the content of the shipment delivered. This person has
completed his job once the quantity received is verified.

10

Table 1. SCOR process representation

Step I condition G condition
S1.1 (Sourcing plans = Open) AND (Source

Execution Data = Defined) AND
(Logistics Selection = Defined) AND
(Production Schedule = Defined) AND
(Replenishment signals = Given) AND
(Sourced products = Not Ordered)

(Sourcing plans = In process) AND
(Replenishment signals = Closed)
AND (Procurement signal = Sent to
supplier) AND (Sourced products =
On Order) AND (Scheduled
Receipts = Date, quantity)

S1.2 Sourced products = Arrived Sourced products = Quantity
verified

S1.3 Sourced products = Quantity verified Sourced products = Quality verified
S1.4 (Sourced products = Quality verified)

AND (Pull signal = Given) AND
[(Inventory location = Defined) OR
(WIP location = Defined) OR
(Finished goods location = Defined)]

(Sourced products = Transferred)
AND (Pull signal = Closed) AND
[(Inventory = location, quantity) OR
(WIP = location, quantity) OR
(Finished goods = location,
quantity)]

S1.5 (Sourced products = Transferred)
AND (Payment Terms = Defined)
AND (Invoice = Received)

(Sourced products = Paid) AND
(Invoice = Paid)

4.2 Validity Analysis

Table 2 is a basis for analyzing the process model validity. The table addresses the
state variables whose state is transformed by each step of the process and specifies the
source from which each variable receives its initial and final value. The table also
indicates whether a state variable constitutes (possibly in combination with other state
variables) the external event that triggers the sub-process by putting the sub-domain
in an unstable state. The sources of the initial values of the state variables can be
external events or some other steps in the process. The source of the goal values of the
state variables is the law, possibly on the basis of external events whose outcome is
realized in the process (denoted in the table as By Law | external).

Note, the table specifies for each step only the goal defining state variables [18],
i.e., state variables that are part of the goal criterion function of the specific step.
Analysis tables such as Table 2 can indicate the three cases of invalidity discussed:

(1) Incompleteness of process definition can be identified by tracking:
(a) State variable whose initial value depends on a previous step of the

process, where the required value is not specified as part of the goal
condition of that step. Then a pre-condition might not be satisfied and a step
cannot be fired. In our example the changes in Sourced Products, that
progress from step to step, are specified correctly.

(b) State variables whose goal value depends on external events (By law |
external), where the law is not specified for all their possible values. In our
example there are two such cases, namely steps S1.2 and S1.3. In both cases

11

not all possible results are considered, as it is possible that the quantity will
not be verified (S1.2) or quality will not be approved (S1.3). Hence, these are
two cases of incomplete specification.

(2) Goal-law inconsistency can be identified by detecting loops in the process –
when the initial value of state variables is obtained in the goal state of a step
that is not previous to the current one. Loops can also be the result of repeating
external events. Such possibility can be identified if the initial state of a step
depends on an external event only, without considering the value of goal-
defining state variables (that changes once the step is performed). Once a loop
is detected there must be a state variable whose value serves as a guaranteed
termination condition (repetition counter, time, etc.). Otherwise the stability
condition is violated. In our example the process does not include loops.

(3) Dependency on external events can be identified by state variables, which
constitute triggering events for steps (other than the first step of the process),
and whose initial value is of an external source. These could indicate that the
process is non-continuous. In our example there are three such cases, in steps
S1.2, S1.4, and S1.5. In all these three cases the occurrence of the external
triggering events is not guaranteed and is not monitored.

In summary, Table 2 indicates that the process model is invalid, since it includes
two cases of incomplete law specification with respect to state variables whose value
is realized in the process, and three cases of unmonitored non-continuity.

Table 2. Sources of state variable values

Process
step

State variable Source of
initial value

Triggering
event

Source of goal
value

Sourcing plans External No By Law
Replenishment
signals

External Yes By Law

Procurement Signal No By Law
Sourced Products No By Law

S1.1

Scheduled Receipts No By Law
S1.2 Sourced Products External Yes By Law | External
S1.3 Sourced Products S1.2 Yes By Law | External

Pull Signals External Yes By Law
Sourced Products S1.3 Yes By Law
Inventory External No By Law
WIP External No By Law

S1.4

Finished goods External No By Law
Sourced Products S1.3 Yes By law S1.5
Supplier invoice External Yes By law

4.3 Modifying the Process Model to Achieve Validity

In this section we suggest example corrective actions to achieve validity of the S1
process. Clearly, different solutions may be suggested, depending on the procedures

12

of the specific organization. Table 3 summarizes the modified process model. The
possible values of the realized state variables are specified and mapped to relevant
goal states in S1.2 and S1.3. In S1.3 the case of unapproved quality will terminate the
process, when the sourced products are to be returned to the supplier by another
process and a re-planning signal is given. This state should be added to the goal of S1.

Table 3. Modifications to Process S1

Step I condition Realized value
of state

variables

G condition Explanation

S1.1 See Table 1
S1.2m (Time passed

= ti) AND (i≤n)
AND (Sourced
products =
Order Opened)

 [(Arrival Control =
OK) OR (Arrival
Control =
Exception)] AND (i
= i +1).

i is a counter.
Begin monitoring
if ti time has
passed.

S1.2e (i > n) OR
(Arrival
Control =
Exception)

 (Sourced products =
Order closed) AND
(Re-planning signal
= given).

If monitoring time
ended (i > n) or
exception is
recognized by
inquiry – process
ends

Actual quantity
= Stated
Quantity

(Sourced products =
Quantity verified)

 S1.2 Sourced
products =
Arrived

Actual quantity
≠ Stated
Quantity

(Sourced products =
Quantity verified)
AND (Claim to
supplier = to be sent)

Quality = meets
specification

Sourced products =
Quality verified

 S1.3 Sourced
products =
Quantity
verified

Quality ≠ meets
specification

(Sourced products =
to be returned) AND
(Re-planning signal
= given)

S1.4m Pull signal ≠
Given

 Pull Control = OK Monitoring by an
immediate
notification

S1.4 See Table 1
S1.5m (Time

condition = t)
AND (Invoice ≠
Received)

 Invoice Control =
OK

Monitoring by
notification when
waiting time = t

S1.5 See Table 1

The non-continuous parts need, as discussed in Section 3, to be monitored. The

monitoring procedure may vary, depending on the level of uncertainty related to the
external event and on the criticality of continuance to the organization. In the case of
S1.2, waiting for goods to arrive from the supplier involves a relatively high level of
uncertainty and is indeed critical. Hence we proposed a time-dependent control,

13

which repeats itself in time intervals of ti, where i is the number of repetitions. The
exception path will be taken based on the number of monitoring repetitions or on the
inquiry response, and its goal state should be added to the goal set of the entire
process, S1. The monitoring activity is denoted in Table 3 as S1.2m, and the
exception, which terminates the process, is marked S1.2e.
The two other cases of discontinuity in the process (S1.4, S1.5) seem less critical or
likely to occur. Hence, the monitoring suggested (S1.4m, S1.5m) is less tight as it
includes no repetitions, and a possible exception is not considered.

This demonstrates how the proposed model can be used as the basis for design
decisions and the type of considerations that may guide the process’ designer.

5 Related Work

Related work includes the areas of goal-driven process models and process model
verification. Attempts to incorporate goals into process modeling include [12], who
suggest an informal approach in which goals provide a basis for process definition.
Business process modeling is addressed by [10] using the Enterprise Knowledge
Development (EKD) framework, which entails a goal model among other views, and
sets the understanding of goals as a basis for business process identification.

A formally defined set of concepts, incorporating goals and processes, is provided
in [11], whose model is based on mathematical systems theory. Their approach to
process modeling is state-oriented, viewing a process as a subset of trajectories in
some state space, and a process goal as a set of conditions defining a surface in the
state space. This set of concepts is extended in [2] and used for defining a process
pattern, allowing the design of generic processes that can be specialized for specific
situations. This model bears much similarity to our model. However, the distinction of
external events is not explicitly made there.

Verification of process models is mainly associated with workflow control models.
Workflow model verification is notation-specific, defined often for Petri-nets [20, 21],
and sometimes for other languages, e.g., UML Activity diagrams [6].

Basically there are two approaches to the verification. In one, the model is
converted into formal specifications that can be analyzed by existing formal model
checkers (e.g., SPIN, that also served for verifying UML statecharts [5, 13]) or
dedicated model checkers [6]. The other approach is based structural properties of the
model (e.g., soundness) [20, 21]. Note, our validity criteria are not structural only,
addressing semantics as well via the values of the state variables in the model.

Our process model is less restrictive than the soundness property required in
workflow models. For example, in sound workflow models only one termination
place is allowed, in contrast to our goal set.

Note, workflow models represent the behavior of the workflow management
system (WFMS) only and not its environment. Specifically, workflow processes are
usually non-continuous, since the WFMS has to wait for human actions to be reported
to it. Hence, workflow models generally assume the environment behaves fairly [21].
In addition, as opposed to workflow verification methods, our approach is conceptual

14

rather than technical. It explores the sources of invalidity and provides remedy to
specific cases. Finally, it is independent of any specific notation.

6 Concluding Discussion

The GPM, proposed in this paper, is a theory-based model of a process. This model is
utilized for defining validity of a process model and identifying causes for invalidity.
Understanding these causes can lead to suggestions for correcting invalid models.

The suggested process model is goal-driven, basing the notion of validity on goal
reachability. A process goal is not an obscure notion, but a set of stable states defined
by a condition. Hence, goal reachability can be systematically verified.

The verification criteria, though systematic, are conceptual rather than technical.
They provide an understanding of the sources of invalidity, so the insight gained will
assist the modeler in designing valid process models from the beginning.
Alternatively, they provide guidance for modifying the model and make it a valid one.

The suggested process model is generic and notation-independent. It employs a
small number of constructs to express many aspects addressed by various process
modeling languages. Consequently, models in these languages can be mapped to our
generic model and their validity evaluated regardless of the specific notation.

Furthermore, applying the suggested model as an infrastructure to models created
in any modeling language can help to structure the modeling process, by presenting a
set of questions to the modeler. As an example, assume a process is modeled using
Petri nets. Normally the modeler would be occupied with transitions (activities) and
firing sequence. Using our model as infrastructure, the modeler will also have to
understand the process goal (a condition over a criterion function) and define the
places in the model in terms of state variables.

The application of the GPM framework is not limited to validity evaluation.
Currently we are extending it to other aspects of process modeling, such as process
decomposition, process specialization, and process model reuse.

References

[1] Arns, M., Fischer, M., Kemper, P., and Tepper, C. (2002), “Supply Chain
Modelling and its Analytical Evaluation“, Journal of the Operational Research
Society, Vol. 53, pp. 885-894

[2] Bider, I., Johannesson, P., Perjons, E. (2002), “Goal-Oriented Patterns for
Business Processes”, Position paper for Workshop on Goal-Oriented Business
Process Modeling (GBPM’02).

[3] Bunge. M., Treatise on Basic Philosophy: Vol. 3, Ontology I: The Furniture of
the World. Reidel, Boston, 1977.

[4] Bunge. M., Treatise on Basic Philosophy: Vol. 4, Ontology II: A World of
Systems, Reidel, Boston, 1979.

15

[5] Eshuis, R., Jansen, D. N., and Weiringa, R. (2002), “Requirements-Level
Semantics and model Checking of Object-Oriented Statecharts”, Requirements
Engineering, 7, pp. 243-263.

[6] Eshuis, r., and Weiringa, R. (2002), “Verification Support for Workflow Design
with UML Activity Graphs”, Proceedings of the 24th International Conference
on Software Engineering (ICSE), ACM Press NY USA, pp. 166-176.

[7] Hammer, M. and Champy, J. (1994), Reengineering the Corporation – A
manifesto for Business Revolution, Nicholas Brealey Publishing, London.

[8] Humphreys, P. K., Lai, M. K., and Sculli, D. (2001), “An Inter-organizational
Information System for Supply Chain Management”, International Journal of
Production Economics, Vol. 70 No. 3, pp. 245-55.

[9] Johannesson, P. and Perjons, E., 2001, “Design Principles for Process Modeling
in Enterprise Application Integration”, Information Systems 26 pp. 165-184.

[10] Kavakli, V., and Loucopoulos, P. (1998), “Goal-Driven Business Process
analysis Application in Electricity Deregulation”, in Pernici, B. and Thanos, C.
(ed.), Advanced Information Systems Engineering (CAiSE’98), LNCS 1413,
Springer-Verlag Berlin, pp. 305-324

[11] Khomyakov M., and Bider, I. (2000), “Achieving Workflow Flexibility through
Taming the Chaos” OOIS 2000 - 6th international conference on object oriented
information systems. Springer-Verlag Berlin, pp. 85-92

[12] Kueng, P., and Kawalek, P. (1997), “Goal-based Business Process Models:
Creation and Evaluation”, BPMJ, Vol. 3 No.1, pp. 17-38

[13] Latella, D., Majzik, I., and Massink, M. (1999), Automatic Verification of a
Behavioural Subset of UML Statechart Diagrams Using the Spin Model-
checker, Formal Aspects of Computing, 11, pp. 637-664.

[14] Paulson, D. and Wand, Y., (1992) “An Automated Approach to Information
Systems Decomposition”, IEEE Transactions on Software Engineering, Vol. 18
No. 3, pp. 174-189

[15] Scheer, A. W., 1999, ARIS – Business Process Frameworks, Springer, Berlin.
[16] SCOR Reference model, Supply chain council. www.supply-chain.org.
[17] Soffer, P., Golany, B., Dori, D., and Wand, Y. (2001) “Modeling Off-the-Shelf

Information Systems Requirements: An Ontological Approach”, Requirements
Engineering, Vol. 6, pp.183-199

[18] Soffer, P., and Wand, Y., 2003, “On the Notion of Soft Goals in Business
Process Modeling”, Business Process Management Journal (to appear).

[19] Stephens S. (2001), “Supply Chain Operations Reference Model Version 5.0: a
New Tool to Improve Supply Chain Efficiency and Achieve Best Practice”,
Information Systems Frontiers, Vol. 3 No. 4, pp. 471-476

[20] Van der Aalst, W. M. P. (1997), “Verification of Workflow Nets”, Application
and Theory of Petri Nets, LNCS 1248, Springer-Verlag, Berlin, pp. 407-426.

[21] Van der Aalst, W. M. P. And Ter Hofstede, A. H. M., 2000, “Verfication of
Workflow Task Structure: A Petri-net-based Approach”, Information Systems
25(1), pp. 43-69.

[22] Wand, Y. and. Weber, R (1990), “An Ontological Model of an Information
System”, IEEE Trans. on Software Engineering, Vol. 16, No. 11, pp. 1282-1292.

