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Extant process modeling techniques address different aspects of processes, such as activity sequencing, resource allocation, 
and organizational responsibilities. These techniques are usually based on graphic notation and are driven by practice 
rather than by theoretical foundations. The lack of theoretical principles hinders the ability to ascertain the “correctness” of 
a process model. A few techniques (notably Petri Nets) are formalized and apply verification mechanisms (mostly for activity 
sequencing and concurrency).  However, these techniques do not deal with important aspects of process design such as 
process goals. 
 
As previously suggested, a formal process modeling framework, termed the Generic Process Model (GPM), has been used 
to define the notion of process model validity. In GPM, validity is based on the idea that the purpose of process design is to 
assure that an enacted process can reach its goal. In practice, often several processes “work” together to accomplish goals 
in an organizational domain. Accordingly, in this paper we extend the validity analysis of a single process to a “cluster” of 
processes related by the exchange of physical entities or information. We develop validity criteria and demonstrate their 
application to models taken from the Supply Chain Operations Reference-model (SCOR). We also use the formal concepts 
to analyze the role of an information system in inter-process communication and its possible effects on process cluster 
validity.  
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I.   Introduction 
Business process models are used in designing business operations, in reengineering business processes (Hammer and 
Champy, 1994), in analyzing inter-organizational process links and in designing integrated information systems.  Numerous 
modeling techniques exist (e.g., Business Process Modeling Notation (BPMN) (BPMI, 2004), Event-driven Process Chains 
(EPC) (Scheer, 1999), Role Activity Diagrams (RAD) (Ould, 2005), IDEF3 (Mayer et al., 1995), and the UML Activity 
Diagrams (OMG, 2003)). Different modeling techniques tend to emphasize diverse aspects of processes, such as activity 
sequencing, resource allocation, communications, and organizational responsibilities. Most techniques in use are based on 
practice-driven constructs and employ graphical notation to represent these constructs. Being practice driven, most process 
modeling techniques lack formal theoretical foundations (even when employing formally defined notation). A major 
consequence is that mechanisms for verifying the “correctness” of process models (i.e. their completeness, consistency, and 
feasibility) often are not available. Some state-based process models are an exception: these use formalisms (e.g., Petri-
nets, applied in the context of workflow models) and apply verification mechanisms (Aalst, 1997; Aalst and Hofstede, 
2000). Such verification typically addresses activity sequencing. Process specification languages (e.g., Pi-Calculus (Milner, 
1999) and BPEL (Curbera et al., 2003)) employ precisely defined constructs and enable formally-based analysis and 
verification. These languages can be used to specify and verify a given process design. However, they do not provide 
support for the design process itself. In particular, formal techniques often deal with interaction and concurrency of 
activities, but do not support the important design issue of assuring that a process can reach its goals. This is because 
usually goals are introduced as part of the process description, but are not integrated into the process model itself   (e.g. in 
EPC (Scheer, 1999)).  

A recent proposal for a process model, termed the Generic Process Model (GPM) has introduced goals as part of the 
formal process model (Soffer and Wand, 2004). GPM distinguishes between a "hard" goal (or simply – a goal), which 
defines the state of affairs the process needs to accomplish, and "soft" goals, which are performance criteria that depend on 
the way the process reaches its goal. Both types of goal are modeled using the constructs used to model the process and 
hence are integrated into the process model. Thus, GPM supports the assurance that the design enables the enacted 
process to reach its goal, taking into account the soft goals. Note, not all process design efforts need to address goals, 
especially when the important issue is to show process structure, as opposed to process functionality. In such cases, goals 
are perceived as part of an functional - external view of the process (Dietz and Albani, 2005; Dietz, 2006). However, in the 
final analysis, whether a process is successful or not depends on its ability to reach its goals. Accordingly, in the GPM 
framework, a process model will be valid if it can be shown the enacted process can reach its goal. In this sense, the validity 
analysis can be considered semantic rather than technical, as the "meaning" of a process is defined by its goals. 

The validity analysis proposed in (Soffer and Wand, 2004) applies to a single process. However, usually several processes 
work together to accomplish their goals in an organizational setting. This entails that the processes exchange things of 
substance (matter-energy) and information. We demonstrate these exchanges by two examples. First, consider a production 
process that interacts with a procurement process to deliver the purchased goods. Production planning can initiate the 
components purchasing process. The production process, in turn, cannot reach its goal (a set of finished products) unless 
the purchasing process delivers the needed components. Second, consider a procurement process that interacts with a 
suppliers’ selection process. The procurement process will trigger the selection process, but will not be able to be completed 
without the information received from it.  In both cases, the processes cooperate by triggering each other and by 
exchanging physical entities or information. 

Since it is important that all related processes in an organizational domain reach their goals, it is clear the validity of a 
single process model cannot be analyzed independently without an analysis of the validity of the models of all processes 
cooperating with it. Moreover, the very notion of validity often cannot be attributed to an individual process. Hence, validity 
analysis should be applied to clusters of related processes. In this work we suggest a formal approach to support the design 
of cooperating processes in terms of their ability to reach their goals. We propose a classification of the types of problems 
that may prevent processes from reaching their goals. This classification can be used to provide structured guidance for the 
designer to identify potential process design problems and resolve them. 

We use GPM because it provides a theoretical framework to identify various possibilities of process model invalidity and 
possible ways to overcome those.  This framework enables us to analyze the effect of other processes on a given process’ 
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ability to reach its goals, and their effects on the given process’ soft goals. In this paper we extend the GPM-based validity 
analysis from a single process to a cluster of interacting processes. Such interactions might be service relationships, where 
one process provides a service to another process, or concurrency relationships, where processes are performed in parallel 
and might affect each other’s goals.  

In GPM, the effect of one process on another is modeled as an event external to the sub-domain in which the affected 
process operates. The validity analysis of a single process as presented in Soffer and Wand (2004), emphasizes the role of 
such events. However, when dealing with a cluster of related processes, events that are external to one process may result 
from actions in another process. Thus, the notion of external events enables us to extend the validity analysis of a process 
model to process clusters.  In this paper, we analyze the types of relationships that can exist between processes and identify 
the impact these relationships might have on the processes' abilities to reach their goals.  Understanding this impact is 
important in order to co-design interacting business processes, so that each involved process can reach its goal. 

Process designers usually use graphical notation to represent process models. The GPM framework does not employ a 
specific graphical notation. Rather, it includes a set of generic concepts that can be mapped to constructs of commonly-
used graphical process modeling languages. Our intention is not to propose yet another graphical notation, but rather to 
provide principles that can be used in conjunction with existing ones. We do this by choosing a set of fundamental concepts 
including states, events, and laws. These concepts exist, explicitly or implicitly, in most common process modeling 
languages (such as EPC, BPMN, Petri-Nets, and others). 

In the following, we start by presenting the theoretical framework.  We then develop process model validity criteria for a 
single process in a cluster of processes and for the cluster as a whole. We demonstrate the application of these criteria to a 
cluster of sub-processes of a process model taken from the Supply Chain Operations Reference-model (SCOR) (SCOR, 
2005). 

II.   The Generic Process Model Framework 
We begin our presentation of GPM by observing that two extreme views of (process) modeling exist. First, the functional 
view identifies what a process is expected to accomplish. Second, the structural view describes how a process is designed to 
accomplish its objectives (Dietz, 2006). 1 Clearly, these are two different levels of abstraction. A potential problem with this 
dichotomy is a disconnection between the objectives specified for a process and how the process is designed to accomplish 
these objectives. To overcome this problem, Soffer and Wand (2004) have proposed the Generic Process Model (GPM). 
GPM can be viewed as based on an abstraction level more detailed than a pure functional view, but less detailed than the 
pure structural view. This is accomplished by defining a process by its objectives and dynamics, but not including the details 
about how the dynamics are accomplished. The dynamics of the process are described in terms of the transitions that occur 
in the states of the domain where the process operates. These states, in turn, reflect the properties of the components (such 
as actors and resources) of the domain. To formalize the dynamics, we employ concepts from Bunge’s ontological model 
(Bunge, 1977; Bunge, 1979), as adapted for information systems modeling (e.g., Paulson and Wand, 1992; Wand and 
Weber, 1990; Wand and Weber, 1995) and for modeling business process concepts (Soffer et al., 2001). 

Fundamental Concepts 
According to the ontological framework, the world is made of things that possess properties. Properties can be intrinsic (e.g. 
height) to things or mutual to several things (e.g. a person works for a company). Things can compose to form a composite 
thing that has emergent properties, namely, properties not possessed by the individuals composing it. Properties (intrinsic or 
mutual) are perceived by humans in terms of attributes, which can be represented as functions in time. The state of a thing 
at a given time is the set of values its attribute functions (also termed state variables) attain at that time. When properties of 
things change, these changes are manifested as state changes or events. State changes can happen either due to internal 
transformations in things (self action of a thing) or due to interactions among things.  Not all states are possible, and not all 
state changes can occur. The rules governing possible states and state changes are termed state laws and transition laws, 
respectively. The difference between internal transformations and interactions can be modeled by the distinction between 
unstable and stable states. If an event occurs in a thing due to an internal transformation, the state prior to the event is 
considered unstable. If there is no internal transformation that can change the state, it is considered stable and can only be 
changed via interactions with other things. 

To provide a formal basis for expressing process-related concepts in ontological terms, we define additional concepts. Of 
particular importance are the concepts of a domain and a sub-domain. 

                                                   
1 Dietz (2006) uses the terms “functional” and “structural” with respect to system modeling.  We apply this distinction here to process models. 
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Domain: A part of the world whose changes we want to model. 
In ontological terms, a domain consists of a set of things and their interactions. By defining a process over a domain, we set 
the scope (of control) of the process. This provides a clear distinction between what would be considered external events, 
which result from actions of things outside the domain and hence are outside of the process’ control, and internal events 
that may occur while the process is enacted and are governed by the process. This difference leads to the following further 
distinction. An event can be external to a process, but within the analyzed organizational domain, if it is internal to another 
process in the organizational domain (which may be broader than the process domain). An event is external to the 
organizational domain if it is not brought about directly by any process in that domain. 

Recall that our purpose is to define abstract process models that reflect the dynamics of processes. We therefore abstract 
the process domain in terms of its states: 

State of a domain (at a given time): The values at the given time of a set of time-dependent attributes (state variables) that 
provide sufficient information about the domain for the purpose of modeling.  
The state of the domain is determined by the states of the things included in it and by emergent state variables of composite 
things, or of the domain itself, that arise due to interactions. We view states as being discrete, meaning that any change 
from one state to another occurs at a certain moment in time. 

Sub-domain: Part of a domain that can be represented by a (fixed in time) subset of the set of state variables describing the 
domain. 
A state can be projected on a sub-domain by considering the subset of state variables describing the sub-domain. This 
subset defines the state of the sub-domain. From here on, the term “state” means a state of a domain or any sub-domain. 
The definition of a sub-domain within an organizational domain (in which several processes might be active) determines the 
scope of a process or of a sub-process (part of the process occurring in the sub-domain). 

Recall the notions of stable and unstable states.  We now link these concepts to the notions of domain and sub-domains: 

Stable state (of a (sub)domain): A state that can change only as a result of an action of a thing outside the (sub)domain. 

Unstable state (of a (sub)domain): A state that must change due to internal events and interactions of things inside the 
(sub)domain. 

This distinction has a special role in our model, as we will later view the execution of a process in terms of state transitions. 
Note, it is possible that a domain will be in an unstable state while a sub-domain will be in a stable state. Specifically, this 
will happen when a thing in a domain is in a stable state, while other things change states (due to internal transitions or to 
interactions). 

Whether a state is stable or unstable and how an unstable state might change, are defined in terms of the laws2 that govern 
the states of the domain and their transitions:  

A (transition) law: A function from the set of states S into itself. 

Consider a thing in an unstable state. It will change its state due to an internal transformation. The transformation can be 
abstracted in terms of a transition from the initial (unstable) state to the next state. This transition can be specified by the 
transition law. Moreover, for a stable state, the transition law maps the state into itself (i.e. L(s)=s). 

We will be interested in sequences of unstable states that terminate on stable states. The following condition specifies when 
such sequences exist: 

Stability condition: A domain will always achieve a stable state if for every unstable state s there exists n such that Ln(s) = 
Ln+1(s).  

We now define the basic abstract notion of a process: 

A process: A sequence of unstable states leading to a stable state. 

                                                   
2 Above we distinguished between state laws and transition laws. Hence on we will assume we only deal with lawful states and use the word “law” for laws 
related to transitions. 
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This definition of a process does not incorporate the origin of the initial unstable state. In particular, it can be the outcome 
of an interaction between (things in) the domain and things outside the domain. Furthermore, the definition does not 
incorporate a process goal explicitly.  

We now proceed to incorporate the notion of goal into the abstract (state-based) view of a process described above. 

Integrating Goals Into Process Models 
Processes are executed in order to attain some pre-specified outcomes. These outcomes are derived from some 
organizational objectives. We term the desired outcome of a process a process or operational goal. To demonstrate the 
difference between an organizational objective and a process goal, consider a product assembly process. The successful 
assembly is a process (operational) goal. It serves the organizational objective of making and selling products for a profit. In 
addition, the organizational objective of profitability requires assembling products at a low cost. Such a criterion is not 
strictly defined in terms of process outcomes, but rather provides some ranking to the different ways these outcomes can be 
accomplished. Hence, it can be viewed as a soft-goal in process design (see, Soffer and Wand (2005)). We now formalize 
the notion of a process goal in terms of the state-abstraction: 

Definition 1: A Process Goal (G) is a set of stable states of the process domain such that every execution of the process is 
required to terminate in G. 

We note that Definition 1 is “technical” in the sense that it does not provide a meaningful understanding of how a process 
can be designed to always end in a specific subset of states. 

In principle, a goal set can be defined by enumerating the goal states. However, in practice, it can be operationalized in 
terms of values and conditions, as follows: 

Definition 2: A goal criterion is a predicate on the set of stable states C: S → {‘true’,’false’}, where C is ‘true’ for (and only 
for) states in the goal set.  

Often, the predicate C is defined on a subset of state variables that are considered relevant for deciding whether the 
process has reached its goal. The predicate specifies the conditions under which the process is considered as having 
achieved its purpose. The relevant state variables can be any subset of the state variable vector. For example, in a 
manufacturing process, a criterion can be based on two (Boolean) state variables: “Production is completed” and “Product 
quality is approved.”  

Having defined the goal of a process, we formalize an abstract process model as follows: 

Definition 3: A process model in a given domain3 is a triplet MP = < L, I, G> where: 

L is a transition law defined on the domain 
I is a subset of unstable states of the domain: the set of possible initial states 
G is a subset of stable states of the domain: the goal set 

We note that the definition is with respect to a given domain (abstracted in terms of its state definition and lawful states).  
Thus, the process can only change state variables that are part of the domain definition.  

I is the initial subset of unstable states (of the domain) on which the process begins. Considering the domain has been in a 
stable state prior to the initiation of the process, these states result from events external to the domain, and these events 
trigger the process. It is important to note that the starting point of the process is an unstable state rather than a (preceding) 
stable state. This is because it is the initial unstable state of the domain that determines how the process will proceed. This 
initial state is attained via various combinations of a prior (stable) state and an external event.  

G is the goal set of the process. 

The pair <I,G> can be considered the abstract functional definition of a process. 

                                                   
3 A domain is abstracted in terms of its state definition and set of lawful states, S. 
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L is the transition law specifying the lawful transformations of the (lawful) states of the domain. It is an abstraction of the 
domain dynamics that needs to be implemented in order for the process, when executed, to accomplish its goal. We will 
term L the domain law.  

Definition 3 is an abstraction of a process, as it does not address elements that are usually included in structural process 
models, such as ordered activities, resources, and actors. We shall now show how the definition relates to those concepts. 

Ordered activities are sequences of state transitions caused by transformations abstracted by the transition law. Triggering 
events result in conditions that define the set of initial states I. Post-conditions are conditions that define the goal set for the 
process and for its steps (defined over sub-domains). Actors and resources are things in the ontological model whose 
transformations and interactions are abstracted by the transition law. The state variables that define the domain represent 
properties of these things and properties that emerge from their interactions.  

For practical reasons, we might not include all state variables of things in the process domain in the definition of domain 
state. This decision on state “granularity” reflects the relevant aspects of the process. Contrary to that, sometimes we may 
want to look at more detailed descriptions of the domain, in particular, to define states of sub-domains. For example, a 
certain actor in the domain might be considered a sub-domain, and state variables of this actor that are not important for 
the domain’s description will become relevant.   

In addition, other concepts such as responsibilities, data, roles, etc. can be represented using constructs of the model. 
Responsibilities can be defined in terms of the effects of state transitions occurring in sub-domains (and, specifically, in things). 
Data will be state variables of an information system representing the states of a domain (a later section discusses this issue in 
detail).  Roles are simply models of things where only certain aspects are represented (in terms of state variables and law 
statements that reflect possible behaviour).  

Note, the definition of a process implies that to be a process, a set of ordered activities needs to lead to a defined goal.  

Finally, we recognize that a process might progress through different sequences of states, depending on the initial state, and on 
state changes caused by events external to the process domain. Hence, we define: 

Definition 4: A path is a set of states the domain goes through via a sequence of transitions determined by the law and by 
external events. 

In practice, it is possible that certain states would be considered equivalent for the purpose of defining a path. For example, 
all inventory levels above a certain value will be viewed as being "satisfactory." If two paths differ only in these values, they 
will be considered the same path. The condition for this to happen will be that the law will be "indifferent" to the differences 
in the values of a set of state variable. In other words, it will have the same effects on other state variables, independent of 
the values of the variables in this set. Hence, in practical settings the law can be specified as a set of mappings between sets 
of states -- each from an initial set of states to a final set of states (which can be viewed as a "goal" of the sub-domain in 
which the specific transition takes place). 

The SCOR Model Example 
In this section we introduce a running example that will serve to demonstrate the concepts introduced in the paper, as well 
as their applicability and usefulness. 

The example is taken from The Supply Chain Operations Reference-model (SCOR) (SCOR, 2005), which is a reference 
model of supply chain management processes, developed and endorsed by the Supply Chain Council as a cross-industry 
standard. While primarily targeted for industrial use, the SCOR model has been used in quite a number of research works 
(e.g., Arns et al., (2002; Humphreys et al., (2001; Stephens, (2001)) as a comprehensive body of common and accepted 
supply chain business processes.  
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Figure 1. The D2 (Deliver Make-to-Order Products) Process of the SCOR Model 

SCOR contains three levels of process details. The top level includes five basic processes: Plan, Source, Make, Deliver, and 
Return. The second level defines categories for each of the five basic processes, according to different logistic categories 
(e.g. make to stock). The third level decomposes each process category into elements, to be further decomposed into 
activities in practical implementations. The SCOR model specifies inputs and outputs of each of these elements, and 
provides metrics and “best practices” associated with each process category and element.  

We demonstrate our approach using the SCOR process Deliver Make-to-Order Products, denoted as D2, presented in 
Figure 1 (taken from SCOR directly). The figure presents ordered activities and their inputs and outputs, which refer to other 
SCOR processes to which they relate (e.g., P2.4.). 

Expressing The SCOR Process In GPM Terms  
The SCOR processes, as shown in Figure 1, are specified using an informal notation, whose focus is on the activities of the 
process. In GPM terms, the domain is represented by a set of state variables, some of which are the inputs and outputs 
specified in Figure 1. Each activity is a transition that a subset of the state variables (namely, a sub-domain) undergoes. 
Values of state variables are transformed from initial values, where that particular sub-domain is in an unstable state, to 
final values, where the particular sub-domain is in a stable state, but another sub-domain is in an unstable state.  

Transforming the SCOR D2 process model to GPM representation involved identifying the relevant state variables and the 
initial and final conditions of each transition (activity). This transformation is an abstraction in essence, requiring an explicit 
specification of state variables. Although presenting the process this way is an abstraction, it served to reveal inaccuracies 
and missing information in the SCOR model. To overcome these, we performed the transformation in two steps. In the first 
step (the results of which are shown in Table 1), we applied the following rules: 

1. The specified inputs to each step form its initial state criterion, either by their existence or by their value (if it is 
specified). 



 

 

182 
Issue 3 Volume 8 Article 2 

2. The specified outputs of each step form its final state criterion, either by their existence or by their value (if it is 
specified). 

3. Precedence relations among steps (denoted by arrows in the SCOR model) express the fact that the state 
achieved by the completion of the preceding step (at least part of its final set criterion) is (at least part of) the 
initial set criterion of the following step. When this information is not explicit in the model, it is assumed to be 
implied in the step’s name (e.g., “consolidate orders” whose final set includes states where orders are 
consolidated). 

Each step should be triggered by an event (a change in at least one state variable value) that puts its sub-domain in an 
unstable state. This information is not specified in the SCOR model, hence it may require domain knowledge. The triggering 
event of each step is marked by (T) in Table 1. If no triggering event is identified with respect to the events derived from the 
SCOR model, we note that a triggering event is not specified (as a comment in Table 1). 

Table 1. GPM Representation of the D2 (Deliver Make-to-Order Products) Process: first step 

Step Initial set criterion Final set criterion Comments  
D2.1  
Process inquiry & quote 

Customer inquiry= received (T) Customer inquiry = quote sent  

D2.2  
Receive, configure, validate 
order 

Customer inquiry = quote sent; 
Order rules: existing; 
Configuration rules: existing; 
Credit history: existing; 
Contract terms: existing; 

Customer order= booked;  
Payment made = X 
 

No triggering event 
identified; 
X≥0 

D2.3  
Reserve resources & 
determine delivery date 

Customer order= booked (T); 
sourcing plans: existing; 
production plans: existing; 
delivery plans: existing; 
product availability: existing; 
production schedule: existing 

Order signal= given;  
order backlog= updated; 
inventory availability= updated;   
ATP date= updated;  
inventory status = updated; 
Delivery date = determined 

 

D2.4  
Consolidate orders 

Order signal= given;  
order backlog= updated; 
inventory availability= updated;   
ATP date= updated;  
inventory status = updated; 
Delivery date = determined (T) 

Orders= consolidated  

D2.5  
Plan & build loads 

Orders= consolidated (T) Loads= planned  

D2.6  
Route shipments 

Loads= planned (T); 
Routing guide: existing 

Delivery = scheduled  

D2.7  
Select carrier & rate 
shipments 

Delivery = scheduled (T) 
Rated carrier data: existing 

Carrier = assigned  

D2.8  
Pick staged product 

Finished product= released (T); 
Inventory availability: existing; 
Production schedule: existing 

Product = consolidated  

D2.9  
Load vehicle, generate ship 
docs., verify credit & ship 
product 

Product = consolidated  Product=shipped;  
ship docs=generated 

No triggering event 
identified 

D2.10  
Receive & verify product at 
customer’s site 

Advanced ship notice: existing Product= received & verified by 
customer 

No triggering event 
identified 

D2.11  
Test & install product 

Product= received & verified by 
customer (T) 

  

D2.12  
Invoice & receive payment 

Product = installed (T) Invoice = issued;  
Payment = received 

 

Initial set of the process Customer inquiry= received 
Goal set of the process Product= installed; Payment = received 
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The second step of transforming the SCOR model to GPM representation addressed the cases where no triggering event 
was identified. This required the use of additional domain knowledge to identify events that are expected in real life but are 
missing in the SCOR model. These events are included in the modified specifications that are listed in Table 2 (the 
modifications made are highlighted). 

In summary, the representation of the SCOR process in GPM terms required a more precise definition of the pre-conditions 
and outcomes of each step, and enabled the identification of information that was missing in the model. This demonstrates 
a potential value of the abstraction of process models to the GPM view. 

Table 2. Modifications to Table 1 
Step Initial criterion Final criterion Comments  
D2.2  
Receive, configure, validate 
order 

Customer order = received (T); 
Order rules: existing; 
Configuration rules: existing; 
Credit history: existing; 
Contract terms: existing; 

Customer order= 
booked;  
Payment made = X 
 

Step triggered by an 
external event (customer 
order received); 
X≥0 

D2.9  
Load vehicle, generate ship 
docs., verify credit & ship 
product 

Current date ≥ delivery date (T); 
Product = consolidated (T) 

Product=shipped;  
ship docs=generated 

Time-related triggering 
event, combined with 
completion of previous 
step 

D2.10  
Receive & verify product at 
customer’s site 

Product = received at customer’s site 
(T); 
Advanced ship notice: existing 

Product= received & 
verified by customer 

Step triggered by an 
external event  

The Role of External Events 
We now show how to use the concepts of state and law to model aspects of processes that will be important for our 
analysis. 

For our analysis of process interactions, it will be important to identify the events that are external to the process sub-
domain, yet might affect the process. Let S be the set of states the sub-domain can assume, then these events can be 
identified by examining L and S. If an event that ends in a state in S cannot be reached by L from an unstable state in S, 
then it is considered external to the process. Such an event can occur in the sub-domain of another process and change a 
state variable that is mutual to (things in) both sub-domains. 

As an example, consider a sales process that occurs in a sub-domain defined by state variables of the sales clerk, the goods 
to be supplied, and some state variables reflecting mutual properties of the customer and the sales domain. Such state 
variables are often represented by customer order details. For example, agreed price and delivery date are clearly 
negotiated by both parties and do not depend on the product alone, the customer alone, or the supplier alone. Rather, they 
depend at least on the customer and the supplier. The state variables representing intrinsic properties of the customer are 
outside the domain definition. Hence, state changes related to these properties (e.g., changes in customers’ expectations) 
are considered external events that are not within the process’ control. However, they might affect the process, if they can, in 
turn, cause changes to mutual state variables of the customer and the sales clerk (e.g. a new price is negotiated). 

Events that are external to a process might occur in another process in the domain of analysis (and thus can be subject to 
process design), or outside the domain of analysis (and even occur outside the organization). It is important to distinguish 
events occurring within the (organizational) domain of analysis from events external to the domain. This distinction can be 
made in principle as follows. Assume a certain change of state is needed for a process to proceed (otherwise the process 
domain remains in a stable state). Consider the law as defined over the domain of analysis (where our process operates 
together with some other processes). If a transition defined by the law exists that can change the state, then this is a change 
that can be done by another process in the organizational domain. Otherwise, the change can only occur as a result of 
activities outside the domain of analysis. 

If the change can occur in another process within the domain, this would mean that some states exist where (at least) the 
two processes (the one in a stable state and the one that generates the external event) affect some different parts of the state 
(i.e. different state variables defining the state of the organizational domain). 
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In the example above, the customer originates external event, hence it is not generated by any process in the organizational 
domain. Assume, however, that the order processing process has reached a state where it awaits an approval to proceed 
(e.g. due to checking the customer’s credit). The state will change once the credit checking process is completed. This 
means that the paths of both processes (customer order processing and credit check) “cooperate” by affecting different 
parts of the state definition (with some state variables shared by both processes). 

III.   Validity of A Single Process Model 
This section uses the GPM theoretical framework to develop conditions for identifying validity and completeness in a process 
model. The analysis relates to a stand-alone process model, where other processes in the organization are assumed to exist 
and interact with the process, but these interactions are not within the scope of control of the process. Different sources of 
invalidity are indicated so that actions to remedy the invalidity can be suggested.  

Model Validity And Process Goal 
As discussed in Section II, a process is aimed at attaining a goal, which is a set of stable states. Such a set can, potentially, 
be attained in different ways or paths. However, it is not always certain that a possible path will indeed reach the process 
goal. We base the evaluation of a process model on whether, when enacted, it will reach a goal state. Since process 
enactment is manifested in our model by a process path, we begin by defining: 

Definition 5: a successful process path is a process path <s1,…sn> such that sn∈G. 

Note, the transitions in a path might include internal and external events. Since the progress of the process will sometimes 
depend on the occurrence of external events, the evaluation should be done with respect to a given set of expected external 
events. These events may be crucial, since the process will be in a stable state until the occurrence of the expected external 
event. For example, a procurement process might depend on the arrival of the purchased goods from the supplier (an 
external event). In fact, it is in a stable state "waiting" for this arrival to reactivate it. The evaluation of the process will relate 
to this event as an expected external event. 

A good process design should define a process for which every enactment will complete in a goal state. In the following we 
will show that in some cases the process might fail, even though all external events happen as expected. We will term this a 
process design failure. In other cases, the enacted process might fail because the external events do not occur as expected, 
or unexpected external events happen. We will call this a process enactment failure. The purpose of good design is to avoid 
both types of failure. 

We first address design failures. We begin by observing that it is not necessary that all goal states are reached: 

Definition 6: A goal state s∈G will be termed reachable if at least one (successful) process path exists such that sn=s. 

If the goal set of a process includes unreachable states, it either means these states are redundant in the goal definition, 
and the goal set can be redefined, or that some other process paths should be designed that can successfully reach these 
states. However, we do not consider the existence of redundant goal states as model invalidity.  

Next, we define a successful design with respect to a goal set: 

Definition 7: A process model will be called a valid model with respect to a set of external events if every process path 
(given the set of expected external events) ends on a goal state. 

Four notes are in order. First, Definition 7 relates to the validity of a process with respect to a given goal. Second, the 
definition does not address the validity of the goal itself in terms of what the process is intended to accomplish. The result of 
a faulty goal definition may be a valid process model that does not provide all the outputs required of it (typically, by other 
processes). For example, assume at the end of a production process, the identity of the worker is needed for computing 
salaries. Yet, providing this identity is not necessarily defined as part of the production process goal (meeting the condition 
“complete product”). Hence, the production process can be considered valid with respect to its goal set even if it does not 
provide the information required by other processes. 

On a more general note, completeness of goal definition should be evaluated in relation to a set of processes. This issue 
will be analyzed in Section IV.   
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Third, defining the set of expected external events is crucial for testing the model for validity. This observation points at the 
need for the process designer to carefully identify these events. We believe that this usually happens implicitly. However, we 
claim this should be an explicit step in process design. 

Finally, external events become "known" to a process via mutual state variables of the process domain and its environment. 
However, when analyzing a process model, we cannot tell when events will actually occur. Hence, rather than relating to 
external events, in the following analysis we refer to the mutual state variables set by these events. 

We now discuss enactment failures. Such failures can occur, even if the process model is valid, for two reasons. First, the 
domain might reach a stable state for which an external event exists in the defined set (to reactivate it), but the event does 
not happen. For example, a production process requires raw materials that fail to arrive. Second, an external event for 
which the process was not designed occurs. For example, raw materials arrive, but not at the right quality, and the process 
designer has not accounted for this possibility. Accordingly, we define: 

Definition 8: a process model will be termed enactment-valid if when executed, it will always terminate on a goal state. 

Different types of situations may lead to model invalidity and enactment invalidity. In what follows, we analyze types of 
process model and enactment invalidity.  

Types of Process Model Invalidity 
A process model will be considered invalid if at least one path exists that will not terminate on a goal state. Recall, the 
progression of a path depends on the law and the external events. This gives us a clue to what might go wrong. We identify 
two types of situations when this might happen: (1) Incompleteness of the law definition, and (2) Inconsistency between the 
law and the goal definition. In what follows, we will discuss these situations and suggest remedies for the reasons the 
process model is not valid. 

Incompleteness of the process definition  
The domain and law definitions determine which state variables are addressed by the model. Specifically, the domain law is 
defined in terms of a mapping between sets of states. It may be that a certain combination of state variable values obtained 
in a given step (according to the definition of the domain law) does not appear in the law definition. In such cases, the law 
will be unspecified. Accordingly, we define: 

Definition 9: A process definition is considered complete if the domain law is defined for every combination of state variable 
values that may be reached from states in the process via state transitions defined by the law and the expected external 
events. 

If the process model is incomplete, the law is not defined for all states. The obvious correction would be to amend the law 
definition to include these states. For example, consider a production process for which needed components are expected 
to arrive in different lot sizes. If the process is only designed for some of these sizes, the process definition is incomplete.  

Inconsistency between the law and the process definition 
It is possible that as the process progresses, it reaches a state from which it cannot proceed further to reach a goal state. 
Two possibilities exist. First, the law keeps causing transitions without reaching a stable state. If the state space is finite, this 
would imply the process has entered an “infinite loop,” meaning the law does not satisfy the stability condition. An example 
would be a quality control process, where the product is repeatedly checked. Since a new problem may be found in every 
iteration, there is no guarantee that satisfactory results are ever achieved and that the process can proceed to its goal. 
Second, it is possible the process has reached a stable state not in the goal set and there is no external event that can 
change it to an unstable state. An example would be a machine breakdown where no provision was made for such a case 
and no scheduled maintenance (external event) exists to repair the machine. For either case, this implies the process has 
reached a state from which there is no continuous sequence of states to a goal state. This means the goal is inconsistent 
with the law (at least for some process paths), as the law does not ensure that the goal can always be reached. 

If the goal is derived from organizational needs, it should not be changed. Hence, the process model can be made 
consistent only by correcting the law definition. However, a stable state might be reached that is not in the goal, and cannot 
be expected to become unstable by an external event, yet reflects a possible domain state. Also, it might not be possible to 
correct the law to turn this state into an unstable one. An example would be a research and development process where, 
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during the process, it is found the goals cannot be accomplished within the means of the process.4 In such cases, the state 
can be added to the goal set, as it marks a possible (albeit likely not desirable) end of process. To deal with such situations 
we define: 

Definition 10: The exception set: a stable state will be termed an exception if it is not in the original goal set, and no 
external event exists that can change it to unstable. 

We define exception states to denote situations that may be expected, where the process terminates without having achieved 
its targeted goal. This is in contrast to a state that has not been anticipated. The latter case falls into the category of 
incomplete law definition discussed above. 

Types of Process Enactment Invalidity 
The progress of an enacted process depends on the law and on the external events that actually occur (which are 
manifested via values of mutual state variables). Assume the process model is valid (with respect to a relevant set of external 
events). This means that in principle every path can end on a goal state. However, since the execution of the path might 
depend on external events, it is possible a path will not complete successfully in one of two situations.  First, events in the 
relevant expected set might not happen as expected. Second, events might happen that are not in the expected set. We now 
analyze these two possibilities. 

External events fail to occur 
A process might reach a stable state (with respect to the domain law) that is not in the goal set. The only way the process 
can then be resumed is when the state changes to an unstable state. By definition, this can only be the outcome of an 
external event.5 In this case, an external event may be the trigger for a step in the process, thus the process is “waiting” for 
the external event to occur. However, there is no guarantee that it will eventually occur. In practical situations, an event that 
fails to occur within a given time might lead to either poor performance (e.g. in terms of delivery time) or even to process 
failure (e.g. when a product must be delivered by a certain time). 

 Because of the above reasons, we consider dependence on external events a reason for potential enactment invalidity. 
Such situations can be observed by analyzing the process model. Accordingly, we define: 

Definition 11: A process path will be termed non-continuous if it includes a stable state not in the goal. 

Based on this definition, discontinuity points in a process may potentially cause enactment failures, since the only way for a 
non-continuous path to lead to the goal is by an external event that changes the stable state to unstable. It is common that 
a process will be waiting for external events. For example, handling a manuscript submitted for publication involves sending 
it to reviewers. Once the manuscript is sent to the reviewers, the process is in a stable state and is reactivated by the arrival 
of the reviews. However, this might take an indefinite period of time. In fact, theoretically there is no guarantee that all the 
reviews will arrive at all.  

To correct such situations, it might not suffice to just change the law. Since an event that has not yet occurred might still 
occur, we need to have a measure of how long it is reasonable to wait for an external event. Thus, some timing 
considerations should be added and the law changed. This can be done by adding to the state definition some measure of 
time and to the law a condition specifying values for which the combination of time and other state variables makes the 
state unstable. The addition of wait time can be considered a specification that time needs to be monitored in some 
processes. The law should be defined to specify the change of state (reflecting action to be taken) that needs to take place if 
the designated time has passed (and perhaps other conditions apply). 

However, it is possible that no law correction will guarantee the process will end successfully (but rather the process will 
reach a new stable state not in the goal).  

We distinguish between two types of stable states reached as a result of time monitoring. First, the stable state is an 
exception and should be added to the exception set of the process. This would designate a situation where the process 
completed, albeit by failing to generate one of desired results. By adding the exception set to the goal (the set of states on 

                                                   
4 We might want to restart the development process with a different goal – but than this would not be exactly the same process. 
5 A related case is where the process is repeating a sequence of unstable states, which ends if a state variable is changed as a result of an external event. 
In this case the repeating sequence might be viewed at a certain “higher” level of detail, as a stable state. For example, an alarm system gets into a mode 
where it repeats generating a sound every few minutes, until it is turned off. The alarm might be viewed as being in a stable state “triggered”. 
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which the process terminates), the process model becomes valid at the "cost" of accepting additional states to the goal set 
which are considered "undesirable."6 

Second, the new stable state could be such that it is more likely to be changed by an external event. For example, if nothing 
happened for a certain period of time, notify a supervisor of the problem, and wait for response. Again, an exception can 
be defined for this (new) situation as well, if no action is taken within (or by) a certain time. 

Consider again the example of the manuscript handling process. Assume the process is awaiting a review. The three 
possible remedies are: first, if some reviews do not arrive, the editor will effectively also serve as a reviewer (this is a 
correction to the law). Second, it is possible to define a time limit after which some action will be taken (e.g. searching for 
another reviewer). Third, perhaps it is not possible to find an alternative reviewer. This is the “true” exception. 

Unexpected external events 
As discussed above, a process model is defined with respect to a given set of expected external events, as reflected in the 
mutual state variables of the process domain and its environment. However, during the enactment of the process, it is 
possible other events will happen. Since the process model did not take such events into account, they might interfere with 
the success of the process. In such cases, the law is undefined for states where state variables were affected by unexpected 
events. Two cases exist. First, it might be possible to correct the law so the process completes successfully. Second, a 
correction that guarantees successful completion might not exist. This will lead to terminal stable states not in the goal 
definition that should be added to the exception states.  

Finally, we distinguish between two cases. First, the outcome of an external event is known and reflected in the mutual state 
variables. Second, the outcome is not known unless a special action is taken to observe the value of a mutual state 
variable. For example, arriving products may need to be tested for quality.  We term such state variables realized, since 
their value is unknown until realized by observation (a formal definition of this situation appears in Soffer and Wand 
(2005)). It is possible that if the outcome of an external result has to be specially observed, not all potential results of the 
external event in such cases are taken into account by the law. For example, the process that handles the products whose 
quality is inspected should be designed to account for all possible outcomes of the quality check. 

As a last note, our notions of model validity and enactment validity may seem related to notions that are commonly used in 
relation to Petri-Nets. In the context of Petri-Nets, a model can be assessed with respect to its soundness. Soundness refers 
to a situation where every initial placement leads to a (predefined) final state. Our notion of validity is similar to Petri-Net 
soundness when considering model validity with respect to a null set of external events. However, our definition of validity 
extends this concept of soundness in several ways. Soundness focuses on (in our terms) law/goal consistency and does not 
address completeness of the law definition. In addition, the analysis of Petri-Nets does not make the following distinctions: 
(1) between internal transitions and transitions caused by external events and (2) between model validity and enactment 
validity. Our analysis thus provides an additional level of detail, and, in particular, leads to defining different causes for 
exceptions and ways to modify the model to account for them. This analysis is important in view of the observation made by 
Russel et al. (2006) of failures of existing workflow management systems to handle exceptions.  

The validity analysis and possible corrections of a single process, as presented in this section, are summarized in Table 3. 

Table 3: Possible sources of single process invalidity 
Invalidity type Situation Possible correction 

Incompleteness of the law definition: 
The law is undefined for certain states that 
can occur in the process 

Modify law definition 

Law / goal inconsistency: infinite loop Modify law definition 

Model invalidity 

Law / goal inconsistency: stable state not in 
the goal (from which no external event exists 
that leads to a goal-reaching path) 

Exception state to be added to the 
goal 

Enactment 
invalidity 

External event failure to occur in a 
discontinuity point (a stable state not in the 
goal, for which an external event exists that 
leads to a goal-reaching path) 

1. modify the law to make the state 
unstable after a certain waiting time 

2. connect the unstable state to a 
process path 

or 
3. possibly define a state (after a certain 

                                                   
6 Unacceptable states can be defined using the notion of soft goal (Soffer and Wand, 2005). 
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waiting time) to be added to the 
exception set 

Unexpected external events Modify law definition if possible. 
Otherwise – add to the exception set. 

At this point it is of interest to consider the following question: Given that sources of process invalidity are formally defined 
and categorized, would it be possible in principle to automate the analysis of process model validity?  We claim that for 
several reasons this would not be beneficial. First, it is not likely that all possible values of state variables can be predefined. 
Therefore, the data for such analysis might be incomplete. This is especially so for large models. Second, some possible 
sources of failure, notably those related to external events, require a human designer to be identified, as they depend on 
domain understanding. Finally, it is clear that the required corrections can only be determined by a human designer. Thus, 
while the analysis (summarized in Table 3) can provide structured guidance for process design, we do not consider it as a 
basis for a completely computerized approach. 

In the next section we demonstrate how our analysis can be employed in a practical case. We use existing graphical 
models, thus demonstrating also how the approach can be applied with an existing notation. 

SCOR Example Demonstration 
We now demonstrate our concepts and perform a validity analysis of our example D2 (Deliver Make-to-Order Products) 
process taken from the SCOR model. 

Since model validity is analyzed with respect to a set of external events, we should identify this set as reflected in the model. 
These external events relate to the values of state variables that are mutual properties of the process domain and its 
environment. Table 4 lists the external events related to each step of the process. Below, we first analyze the model validity 
and then the enactment validity of the D2 process. 

Model validity analysis of the D2 (Deliver Make-to-Order Products) Process with respect to its external events:  

We shall check the two possible causes for model invalidity. 

(1) Inconsistency of the law and the goal:  
(a) The process might be entering a repeating sequence of steps (infinite loop) – repetitions should be tracked and 
analyzed. The D2 process does not include any repetitions. 
(b)  The process might reach a stable state from which no external event in the relevant set can reactivate it. The D2 
process does not include any such state. 

(2) Completeness of the law definition:  
The law should be defined for every state variable value combination that can be achieved by an internal event or by an 
external event in the defined set. The D2 process is completely defined with respect to its set of external events. 

We can conclude that the D2 process model is valid. However, we should analyze it for enactment validity. 

Table 4: D2 (Deliver Make-to-Order Products) process with its expected external events 

Step Initial criterion Final criterion External events 
D2.1 Process inquiry & 
quote Customer inquiry= received  Customer inquiry = quote 

sent 
Customer inquiry= 
received 

D2.2 Receive, configure, 
validate order 

Customer order=received; 
Order rules: existing; 
Configuration rules: existing; 
Credit history: existing; 
Contract terms: existing; 

Customer order= booked;  
Payment made = X (X≥0) 
 
 

Customer order = 
received; 
Payment = X 

D2.3  
Reserve resources & 
determine delivery date 

Customer order= booked;  
sourcing plans: existing; 
production plans: existing; 
delivery plans: existing; 
product availability: existing; 
production schedule: existing 

Order signal= given; 
Delivery date = determined;  
(order backlog, inventory 
availability, ATP date,  
inventory status) = updated 

Delivery date = 
approved by 
customer 

D2.4 Consolidate orders Delivery date = determined  Orders= consolidated  
D2.5 Plan & build loads Orders= consolidated Loads= planned  

D2.6 Route shipments Loads= planned;  Delivery = scheduled  
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Routing guide: existing 

D2.7 Select carrier & rate 
shipments 

Delivery = scheduled;  
Rated carrier data: existing Carrier = assigned  

D2.8 Pick staged product Finished product= released  Product = consolidated Finished product= 
released 

D2.9 Load vehicle, 
generate ship docs., verify 
credit & ship product 

Current date= Delivery schedule 
due date; 
Product = consolidated  

Product=shipped; customer 
order= delivered;  
ship docs=generated 

 

D2.10 Receive & verify 
product at customer’s site Product = arrived to customer  Product= received & verified 

by customer 
Product= received & 
verified by customer 

D2.11 Test & install product Product= received & verified by 
customer  Product= installed  

D2.12 Invoice & receive 
payment Customer order = delivered  Invoice = issued;  

Payment = received Payment = received 

 

Enactment validity analysis of the D2 (Deliver Make-to-Order Products) Process: 

Analysis of enactment validity is done by looking at the set of expected external events (under which the process is required 
to reach its goal states). The model is examined for two possible types of failure: (1) the expected events do not occur, and 
(2) other (unexpected) events will occur instead of the expected ones. Note that we are not looking for unexpected events to 
occur in other places in the process that do not depend on expected (external) events. The logic applied here is that when 
the process expects an external event (that is, undergoes a state change in properties that is mutual with the environment), 
the event might not be the expected one (that is, the value of the mutual property will become different from the one 
expected). 

(1) Possible failures of expected external events: 
The following steps are discontinuity points in the process as they relate to external events that may fail to occur. 
D2.2 – The expected customer order might not arrive. 
D2.2 – Payment may not arrive, but as this is not mandatory (the required payment is of X≥0), we may say that the 
law is defined for both situations, namely both for payment received and for payment not received at this step. 
D2.3 – The customer's approval of the determined delivery date may not arrive.  
D2.8 –The products that should be released by the M2 (“Make” - production) process may not be released in an 
acceptable time.  
D2.10 – The approval of the product by the customer may not arrive. 
D2.12 – Payment may not arrive.  
Note that if the external event related to the first step of the process (arrival of customer inquiry) does not occur, the 
process is simply not triggered. Also note that the likelihood of failure might not be identical with respect to all the 
listed external events. Yet, we have to consider all such possibilities. For example, after a quote is sent to the 
customer, there is no certainty that an order will arrive at all (D2.2). Yet, the process design does not take into 
account a possibility that an order is not placed. Another external event that is not certain to occur is the arrival of 
payment (D2.12). In contrast, the likelihood of failure in the arrival of the customer's response to the determined 
delivery date (D2.3) is not very high. Nevertheless, as this is an external event, it is not within the control of the 
process, thus there is no full certainty about it. 
In addition, the reasonable or acceptable time the process can wait for an external event to occur before realizing 
a failure in the occurrence or an exception differs for different events. The verification and approval of the product 
by the customer (D2.10) is expected within a short time of the delivery, while the arrival of a customer order (D2.2) 
may occur a while after a quote was sent. Special attention should be given to the time it takes for the production 
process to release the products (D2.8), since a delay in this event may lead to failure in meeting the delivery date 
promised to the customer, and thus result in failure to reach the process goal (and not just a less favorable value of 
a soft goal). 

(2) External events that are not in the set of expected external events: to address this we should analyze each of the external 
events that are involved in the process and ask whether different events may occur instead of the ones we expect. We find 
that: 

D2.3 – the customer may not approve the delivery date determined. Furthermore, assuming that this is truly the 
earliest possible delivery date, the customer may cancel the order. The two events ‘non-approved delivery date' and 
‘cancel order’ should be added to the set of possible external events.  
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D2.10 – the product may not be verified (and approved) by the customer. Alternatively, the customer may not 
approve the product and decide to return it or demand some compensation. These two events should be added to 
the set of possible external events. 

Having identified the above potential causes for enactment invalidity, the process should be redesigned to account for the 
additional external events added to the relevant set. 

For example, to address the possible failure in the event of customer order arrival (D2. 2), the law should be modified so 
the stable waiting state becomes unstable after a given time period. First, a reminder can be sent to the customer, leaving 
the process again in a stable state waiting for the customer's response. Second, it is possible to add another step that 
recognizes the rejection of the quote, either as a result of a notification from the customer, or when no response to the 
reminder is received after another given time period. The state where the quote is rejected should be added to the exception 
set, terminating the process without having achieved the original goal.  

Another example is the possible state where the customer does not approve the delivery date and cancels the order. This is 
a stable state that is not in the goal, and no other external event is expected to change it. It should be included in the 
exception set. 

IV.   Extending The Analysis To Multiple Processes 
We now turn to analyzing multiple processes operating in the same domain. We first note that the effect of one process on 
another is via sharing state variables that are set in one of them and might affect the progress or outcome of the other. The 
affecting process causes external events to the sub-domain in which the affected process operates. The following 
possibilities exist: 

(1) The external event is part of a process path leading to the goal. In other words, it moves the state of the sub-
domain to an unstable state (from which the goal might be reached). 

(2) The external event affects the value of a soft goal. 

(3) The external event will place the sub-domain in a stable state, and hence the affected process will require at least 
one additional external event to reach its goal. 

(4) The external event places the process domain in a state from which the goal cannot be reached. 

We base our analysis on two principles. First, we use the classification of Section III for sources of process model invalidity 
or process enactment invalidity. Second, we consider the ways by which processes communicate. We conduct the analysis 
by exploring how communication between processes might trigger or invoke the generic process invalidity types. Recall, we 
identified the following categories of invalidity: 

Process model invalidity of two types: incompleteness of the law definition and inconsistency between the law and the goal 
definition. 

Process enactment invalidity of two types: due to events in the set of expected external events that might not happen as 
expected, and due to external events that are not in the relevant set. 

Above, we suggested how a process design can be corrected to deal with the various problems. It was assumed the 
problems were present, and their sources unknown. However, when analyzing several processes together, it might be 
possible to identify the sources of the problems in other processes and perhaps correct them at the source. For example, 
what was considered an exception might be the outcome of a malfunctioning process affecting the process under study. If 
the malfunctioning process is corrected, the need for exception handling might disappear. As an example, when analyzing a 
product assembly process in isolation, it might be necessary to plan for the exception where not all necessary components 
are delivered. However, if in addition, the supply process is analyzed, it can be designed not to deliver partial supplies to 
the assembly process. 

Consider now how processes can communicate. In principle, one process can affect another process via state variables 
shared by the sub-domains over which the two processes operate. In the following, we term the process that sets the value 
of a shared state variable an originator and the process whose progress might be affected by this state variable a receiver. 
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In the analysis we will assume the originator needs to terminate to provide the necessary effect for the receiver to reach its 
goal.7 

Assume first the originator is both model and enactment valid. Consider the interaction of the receiver with the originator as 
its only source of external events. Since the originator is valid, we have full information about the states it can bring about. 
Furthermore, we have control of these states through the originator's law. This enables us to design the receiver to allow for 
the effects of all possible external events. The analysis leading to the design can be done by considering all mutual state 
variables that can be affected by the originator and their possible values.  

Consider the design of the receiver. It is possible that some of the values set by the originator will result in receiver states for 
which the law is undefined, or that do not lead to the receiver's goal. Above, we dealt with such situations by correcting the 
(receiver) process law. However, when analyzing both processes together, we can also change the originator.  

This analysis points at five possibilities: (1) the receiver only can be changed to correct the situation, (2) the originator only 
can be changed to correct the situation, (3) either of the processes can be changed, (4) both processes need to be 
changed, (5) neither process can be changed to correct the problem without the other one becoming design-invalid.  

In the third case, the decision can be made based on soft goals. For example, consider a purchasing process that feeds a 
production process. It might be less expensive (soft goal) to change the supplier selection criterion in order to avoid the 
procurement of poor quality materials than to purchase equipment that can deal with low quality materials in production (if 
such equipment can be bought), or to introduce more elaborate quality control in the receiver. 

In the fifth case, it is not possible that both processes can reach their goals together. This can be considered inter-process 
goal incongruence. For example, assume the goal states of the purchasing process are such that the purchasing agents are 
not allowed to exceed certain prices. It is possible that as a result, the agents cannot purchase from suppliers that can 
deliver the right quality of materials as required by the production process. In this case, it is not possible for both processes 
to complete successfully. The conflict can only be resolved by either changing the goals of the purchasing process (allowing 
for higher purchasing costs) or of the production process (to allow for producing lower quality products), or of both. 

Consider now the cases where a correction to the originator seems necessary (cases 2, 3, and 4 above). Recall, we have 
assumed the originator is both model and enactment valid. Hence, the question arises as to what could be the source of the 
inter-process problem, and what kind of change can correct the situation. This brings about a new observation--that even a 
well-designed process might not be “perfect” in a multi-process situation because of inter-process communication 
problems. There might be two reasons for this situation.  

First, it might be that the goal of the originator does not include states that match the events expected by the receiver. For 
example, a production process is fed by a material issuing process that takes place in a warehouse. The production process 
must receive materials whose quality is uniform in each batch, whereas the goal of the warehouse process is simply to issue 
materials. It may, for example, issue materials based on the order in which they were received in the warehouse (hence, not 
necessarily of uniform quality). Note, this is not goal incongruence, since the originator can be fixed so that both processes 
can attain their goals.  

Second, the originator might not have been “informed” (in terms of required values of mutual state variables) of the events it 
should generate. For example, the goal of the issuing process might be to issue the amount of material requested by the 
production process. However, due to problems in the information flow between the processes, it may get a wrong message 
about the requested amount. This case will be addressed later in the paper, in the context of information flow and the role 
of an information system. 

The above analysis was done assuming the originator was enactment-valid. This means that the originator will only function 
as expected. This enables the analysis of the receiver under a known set of external events. Consider now what might 
happen if the originator is not enactment-valid. In such cases, the originator might not function as expected and hence fail 
to generate expected events, or generate unexpected external events for the receiver. Two possibilities exist. First, the 
originator is not redesigned to handle these situations. The outcomes of such cases might cause the receiver to not be 
enactment-valid and should be dealt with by redesigning the receiver as discussed above (under single process analysis). 

                                                   
7 This might appear as a limiting assumption, as the originator can change mutual state variables prior to terminating. However, in such case, a sub-
process of the originator can be defined with an appropriate goal (of generating the required values of mutual state variables) and the analysis can be 
done with respect to this sub-process. Hence, this assumption does not limit our analysis. 
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However, under multi-process design, it is possible to handle these situations differently. Unexpected or delayed events can 
be defined as exceptions in the originator. These exceptions should be added to the set of external events (via state 
variables mutual to the two sub-domains involved) for which the receiver is designed.  

For expected events that fail to occur, two types of changes can be made, depending on which process is responsible for 
monitoring delayed events: 

(1) The receiver monitors events (with respect to its environment): rather than just waiting for an external event to occur (in 
an originator), the receiver can pass a request to the originator to generate the needed event. This will require a change in 
the receiver, but it might require changes in the originator's definition as well. To demonstrate, consider an assembly 
process that needs a part. The process can "trigger" a manufacturing process to create the part (immediately, or in a 
produced batch at a later time). 

(2) The originator monitors events: it can be changed to notify the receiver about possible failures to generate the expected 
change. The receiver now has a new known type of event for which it can be designed. For example, assume the above part 
making process cannot complete the request (perhaps because, in turn, it "discovers" that the inventory delivery process 
cannot deliver the raw materials needed). It can then notify the receiver process about this failure. The receiver process can 
take an alternative path to achieve its goal (for example, outsource the necessary parts). 

We summarize the validity analysis for two processes and the possible cases of problems and corrections in Table 5. 

Table 5: Various invalidity types for two cooperating processes 
Possible corrective action Originator status  
Originator change Receiver change 

Comments 

Model and 
enactment valid 

   

none Modify law to 
accommodate for more 
expected external events 

 

Modify goal + law to 
achieve required states as above 

Both the originator 
and the receiver need 
to be modified 

as above as above 
Only one should be 
changed – decision 
based on soft-goals 

as above none  

goal mismatch with 
the receiver 

No correction possible 
without making the 
process invalid 

No correction possible 
without making the 
process invalid 

Goal incongruence; 
decision is needed 
regarding changing 
the goal of at least 
one of the processes 

wrong information 
about required state 

none none Information flow 
should be examined 

Modify law to monitor 
exceptions and notify 
the receiver 

Modify law to 
accommodate for more 
expected external events 

Enactment invalid 

Modify law to 
accommodate for 
receiver's requests 

Modify law to monitor 
and request events from 
originator 

The originator should 
be modified to 
become enactment 
valid 

The above discussion refers to goal-related conflicts. However, often the case would be that conflicts will exist not in 
achieving goals, but in reaching good levels of soft goals. Here we recognize two possibilities: 

(1) Reaching the goal of the receiver requires the originator to choose a path that leads to inferior levels of soft goals. For 
example, to fulfill an order that requires producing a certain number of products (receiver process goal) when parts are 
scarce might require expensive purchasing (originator process), leading to high-cost products (undesired soft goal of the 
(receiving) production process).  
 (2) Improving a soft goal in either the originator or receiver deteriorates the soft goal of the other. For example, low cost 
purchasing conflicts with fast response to customers who make special orders. 
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Since we assume that both processes operate in the same organizational context, a managerial decision should be made 
with respect to the trade-off between the different soft goals and resolve this conflict. This decision might be outside the 
scope of designing the processes, and its outcome can be used to guide their design. However, we note that the analysis 
can point out when such decisions might be needed. 

We summarize by noting that a precise analysis of the concepts above is possible because: 

(1) The notions of goals and soft goals are part of the process model and are defined in terms of states;  

(2) Process interactions are formalized in terms of shared state variables reflecting interactions among (things in) sub-
domains; and 

(3) Process dynamics (possible progression) is formalized in terms of laws over the process (sub)domain. 

SCOR Example Demonstration 
The set of expected external events of the D2 (Deliver Make-to-Order Products) process includes one triggering event. This 
event is generated by another process in the organization, namely, the arrival of finished products from the Make process 
(M2 in SCOR terminology), and should trigger step D2.8 (see Figure 1 and Table 4). The other events in the set are 
generated externally to the organization. The enactment validity analysis of the D2 process presented in Section III indicated 
a possibility of failure in this event, in case the M2 (Make) process does not provide the finished goods within an acceptable 
time. In what follows, we shall demonstrate the proposed two-process analysis, considering D2 as the receiver process and 
M2 as an originator process. 

We note that the SCOR model does not explicitly specify the goal of the D2 process, and we can only speculate about 
whether or not it relates to time. Delivery time may be a soft goal (so the goal of the process is to deliver, and a short 
delivery time is better than a long one), or a goal (so the process is not "allowed" to deliver in a time that exceeds a certain 
threshold). In the following analysis, we shall assume the second case, since it is more restrictive than the first one. It is also 
possible that when delivery is delayed, the customer will cancel the order. Hence, throughout our analysis, we assume that 
the goal of D2 is to deliver within a certain time and receive payment from the customer. 

The analysis identifies possible causes for failure of the originator in generating the expected inter-process event (release of 
finished products on time) and suggests possible corrections. This is done first under the assumption that the originator is 
enactment-valid, and then under the assumption that it is not. 

(1) Assuming the originator is enactment-valid, our analysis indicates two possibilities.  

(2) The originator does not have a time threshold as part of its goal, and it may be operating with respect to a soft 
goal other than time (e.g., maximizing machine utilization, minimizing production costs). If this is the situation, a 
managerial decision should be taken to sort the trade-off between time and the originator's soft goals, or to 
include a time threshold in the originator's goal. 

The originator (M2 - Make) operates to satisfy a "wrong" completion time. Possible causes for such a situation should be 
analyzed by tracking the source of the required completion time set to the originator. This analysis requires a deeper 
discussion of information flow between processes, which is presented in the following section. 

Relaxing the enactment-validity assumption for the originator (M2 - Make), it should be analyzed to identify possible failures 
in its expected external events and possible unexpected external events. This analysis should lead to new paths as well as to 
a defined exception set of the originator. Since this analysis is done in a manner similar to the one demonstrated with 
respect to the D2 process (see Section III), we shall not present it here. However, we shall elaborate possible changes in the 
originator that might concern the receiver as well as respective changes in the receiver. Such possible change might happen 
when the originator monitors events (for time to occur). The originator can be changed to notify the receiver whenever an 
exception state is detected (e.g., materials have not arrived on time, a machine breakdown occurred). An early notification 
of an originator exception state can notify the receiver (via mutual state variables of the appropriate sub-domains) in 
advance that the originator is expected to fail in generating the event required by the receiver. The receiver, in turn, can be 
redesigned to accommodate for an event of failure notification received from the originator. Depending on the value of 
other state variables, it may take a path of renegotiating the delivery date with the customer, offering an alternative product, 
or outsourcing the product. These will all be paths that enable the receiver to reach its goal (of delivering to the customer) 
despite the originator's failure. In addition, the originator's exception may lead to an exception in the receiver too. This 
exception should be defined and added to the exception set of the receiver.  
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V.   On The Role of Information In Inter-Process Communication 
Our analysis assumed inter-process communication, as in the case of planned delivery time in the SCOR example. In 
practice, often such communication is accomplished via an information system. The information system itself might create 
inter-process failures. Here we briefly analyze these effects. 

In our model, processes affect each other via the values of state variables mutual to their (sub) domains. So far we have 
discussed the ways one process may affect another, but we have not addressed the nature of the state variables that are 
involved in inter-process communications. We now address this point. 

We begin by noting that in the ontological view we use, the world is made of (substantial) things that can have mutual 
properties (which, in turn, reflect interactions among the things). Hence, any exchange between processes is modeled as 
changes of values of mutual state variables of such things. 

Actions in organizational processes are taken by actors (people, organizational units, machines – including computers, or 
combinations of those). In the ontology we use, actors are things, and their ability to change the state of the domain is 
formalized in terms of their states and laws. These actors often do not share mutual properties with other things directly, but 
instead are informed  (i.e., made “aware”) about the values of those properties, via some mechanism that we will generally 
term an information system. We begin with the following definition of an information system which is based on the notion of 
an IS as a representation (Wand and Weber, 1995):  

Definition 12: A set of things whose states are homomorphic to states of things in the domain will be termed an information 
system.8 

Note, this definition is very general and refers to any possible way an agent can find out the states of things in the domain. 
This includes even the case of directly sensing the states of other things, as there must be some “technology” to connect 
those things to the agent. The definition also implies the condition for an information system to function properly--it should 
not only have the matching states, but it should also assume them according to the states of the represented domain.  

For the agents to be informed, they must share state variables with the information system (reflecting interactions between 
agents and the IS). However, to be able to affect the domain via their actions, they should also have mutual state variables 
with other things in the domain affected by the process. We therefore define: 

Definition 13: An agent is a thing that can generate changes in the domain, based on representations of states of other 
things. 

It follows that ontologically, an agent must have at least two types of state variables: (1) those that are representations, and 
(2) mutual state variables with "physical" things in the environment (which again can be some “technology”9). 

Consider now the type of state information that an agent might be interested in.10 First, the agent might need to know the 
current state of other things (e.g. an order processing clerk might need to know the present availability of inventory items). 
Second, the agent might need to know about past events, as these events might affect its decision regarding actions (e.g., a 
purchasing agent might want to know past performance of a supplier). Finally, the agent might need to have some notion 
of desired future states (e.g., the purchasing agent would like to know about desired levels of inventory). In ontological 
terms, we describe these possibilities as follows: 

Definition 14: The roles of an information system are one or more of the following: 

(1) Reflection of current states – which we term monitoring. 

(2) Representation of past states – which we term history. 

                                                   
8 Some conditions about this set of things can be imposed, in particular, that they form a system (i.e. interactions exists among them (Wand and Weber, 
1990) and they have the ability to “track” the represented system (Wand and Weber, 1995). However, these requirements will not affect our following 
analysis. 
9 The agent could act on other things directly, e.g., by moving them, or can activate a machine that will affect the states of these other things. The agent 
can even “command” other agents to cause changes. 
10 By the word “interested” we do not mean a human interest, but the formal notion that certain state variables appear in the definition of the law 
controlling the agent’s actions.  
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(3) Statement of intended future states – which we term plans. 

According to the three roles of an information system, we can differentiate state variables by their role: 

Definition 15 (information): 

(1) State variables that represent the current state of the domain will be termed current state variables. 

(2) State variables that represent history (sequences of past states) will be termed historical state variables. 

(3) State variables that represent (intended) future states will be termed expected state variables. 

Note that expected state variables refer to future states and reflect either desired (goal) states or anticipated (predicted) 
states. 

The analysis of inter-process validity can, in principle, explore the role of information systems in the validity of a cluster of 
processes. Since we have introduced an IS as the mechanism for this inter-process communication, we now face two 
possibilities: 

(1) A prefect information system – the IS reflects faithfully the domain. In this case, any wrong or missing value is a 
consequence of the originating processes. 

(2) The information system is imperfect, thus it might  

(a) Fail to reflect an event that sets a receiving process in an expected state. 

(b) Provide a wrong reflection that sets the receiving process in a wrong state. 

(c) Provide a representation of only part of the state variables that may be required by the law of the 
receiving process. 

The exact effects, or corrective actions needed, might differ with the nature of the state variables reported by the IS, namely, 
current, historical, or expected. We will not pursue this point in detail, but will discuss it briefly. 

If an expected event involving current state variables is not observed, this would indicate that either the information system 
needs to be repaired, or the originator process has not generated the expected event and informed the information system 
about it. In the first case, no change to processes is needed.  In the second case, the originator process needs to be 
repaired (i.e. its law changed), as discussed in Section IV.  

The case with historical state variables is different. Since they reflect past states of a process as executed, no originating 
process correction can be done. If some historical state variable values are missing, this would only mean that the 
information system needs to be repaired.  If some historical state variables place the process in a state for which the law is 
undefined, then the information system needs to be inspected.  If it is operating properly, then only corrections to the law 
governing the receiving process can overcome the problem. 

Finally, expected state variables can only affect future states of a process, in particular, its goals. If goals are unreachable, 
this might indicate wrong plans. Again, the information system providing this information should be examined. If it is found 
to function properly, then there are two possible repairs. First, the plans might have to be changed, namely, the process that 
generates the plans (and defines objectives) will require changes. Second, the receiving process law might have to be 
changed, to make the goals reachable. 

In addition, while historical and current state variables reflect states that have occurred (reflecting past or present states of 
other processes), expected state variables can change as the process proceeds, as they do not reflect a real situation.  This 
means that the information system needs to be read immediately prior to the actual use of expected state variables (namely, 
when the outcome of the law acting on a state will be affected by their values), to make sure the plan is up-to-date. 
Furthermore, if plans are changed by the originator after they have been used by a receiver, the receiver should be notified 
about this change, as it may affect other expected state variables within the receiver's domain. 
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To summarize this discussion, Table 6 presents the effect of the types of the state variables involved in inter-process 
communication problems on the possible corrective actions, as discussed in Section IV. 

Table 6: State variables and possible effects of information systems 
Type of state variable Problem Possible correction 

Modify the originator Missing 
Modify the information system 

Wrong value (does not 
reflect the real value) 

Modify the information system 

Current 

Correct value, but 
unexpected by the 
receiver 

Modify the originator or the receiver (or 
both) 

Missing  Modify the information system 
Unexpected – incorrect 
values 

Modify the information system 
Historical 

Unexpected – correct 
values 

Modify the receiver 

Modify the information system Missing 
Modify the originator  

Wrong value – IS 
malfunctions 

Modify the information system 
 

Wrong value – IS 
functions properly 

Modify the receiver to "read" current value 
before using it 

Plans changed by 
originator after 
information have been 
used 

Modify the originator to notify the receiver 
about changes made after using the state 
variable, and the receiver to accommodate 
a change of plans. 

Expected 

Unexpected by the 
receiver – receiver 
cannot handle certain 
plans 

Modify the originator or the receiver (or 
both) 

SCOR Example Demonstration 
The interaction between the D2 (Deliver Make-to-Order Products) process and the M2 (Make) process, analyzed in Section 
IV, relates to current state variables, namely, the arrival of the finished product from M2 to D2, and the time this 
transformation occurs. Addressing possible failures of such state to be achieved (or possible other unexpected events 
instead), Section IV suggested changes in the law of both M2 and D2. We shall now demonstrate how interactions that 
involve other types of state variables can be addressed. 

Historical state variables 
An example of a historical state variable that is used by the D2 process is the credit history of the customer, which is used 
when an order is received (see Figure 1 and Table 1). The importance of this state variable is in its use for minimizing the 
possibility of payment failure. It is expected that the stricter the organization is with customers whose credit history has been 
problematic, the less often payment failures will occur. In addition, the credit history state variable should truthfully represent 
the payment history of the customer. To ensure the accuracy of this representation, we may examine the originator of this 
state variable, which is another process within the organization – the Manage Deliver Information process (ED.3 in SCOR 
terminology). Since the credit history is a historical state variable, corrective actions do not address the originator itself 
(specifically, by changing its law). Rather, the only possible corrective action should address the information system, which 
records the states of past process occurrences. The information system should be inspected to make sure that all the 
required state variable values are collected, stored, and made available for use.  

Expected state variables 
The analysis in section IV indicated that a possible cause for failure in the interaction between M2 (Make) and D2 (Deliver 
Make-to-Order Products) is when M2 operates to satisfy a wrong completion time. The required completion time passed to 
M2 is a expected state variable, as it relates to a (planned) future state. To find possible causes why this state variable might 
assume a wrong value, we examine the events (state changes) that might affect it. The required completion time is set by the 
Planning process (P3 in SCOR terminology). P3 sets this based on the delivery date determined by the D2 process. Now 
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recall, the delivery date was determined by the D2 process, based on the current production plans passed from the P3 
process.  

Let us analyze the possible causes for a mismatch between the completion time as expected by the D2 process and the one 
scheduled (and achieved) by the M2 process. 

(1) Partial representation of state variables by the information system: The D2 process receives production plans from 
P3 in order to determine the delivery date, and creates a demand for production. The P3 process, in turn, 
aggregates all the demands, allocates them to production resources, and issues a new plan. It is possible that the 
production plan as used by the D2 process does not specify all the state variables needed for determining a 
feasible delivery date, and more information regarding the resource requirements is needed for the D2 process. To 
remedy this, more information (operationalized as state variables) should be passed from the P3 process to the D2 
process (via the information system). 

(2) Changes in plans: As mentioned earlier, the production plan used by the D2 process comprises expected state 
variables. Such state variables hold information about future (planned) states. Naturally, the actual realization of 
these states is subject to uncertainty. Furthermore, plans frequently change when the current state at a moment in 
time is different from the planned state for that moment. This difference may cause adjustments to the plans in 
order to increase the chance that they can be attained in the future. This is a normal course of affairs. However, 
the D2 process does not relate to any feedback from the P3 process when plans are changed. Therefore, the 
defined delivery date (which is an expected state variable by itself) might not match the plans as they change. A 
corrective action for such a problem should be to change the law of P3 so that it notifies D2 whenever the relevant 
plan is changed. Such notifications will be added to the set of expected external events of the D2 process, and its 
law should be changed to accommodate for these changes (similarly to the way exceptions in the M2 process are 
addressed).  

VI.   Related Work 
In this section we review literature about process model analysis in order to clarify the added contribution of the analysis we 
have presented. The relevant work includes three main categories: goal-driven process models, process model verification, 
and interactions among business processes. We discuss each of these lines of work in turn. 

One of the difficulties in addressing goal-oriented process modeling is that no general agreement on the notion of goal 
exists, and often goals are not defined formally. Thus, different meanings are assigned to the term “goal.” Kueng and 
Kawalek (1997) suggest an informal approach in which goals provide a basis for process definition. The EKD (Enterprise 
Knowledge Development) approach to business process modeling, as presented by Kavakli and Loucopoulos (1998), 
includes a goal model among other views, and sets the understanding of goals as a basis for business process 
identification. Neiger and Churilov (2004) suggest a formalization to allow goal-oriented modeling with EPC. However, 
their goal concept is defined as “a statement of something that one wants to strive toward,” which, as before, can be 
interpreted both as desired states of the world and as business objectives (which we term soft goals), and is therefore not an 
accurate definition. 

The Map model (Rolland et al., 1999; Rolland and Prakash, 2000) is an intention-oriented process model, which addresses 
goals as the human intentions that drive a process. Recently, an attempt was made to formalize this notation by mapping it 
to the GPM approach discussed in this paper (Soffer and Rolland, 2005). This work provides insights into the relationships 
between human intentions and process goals as discussed here. 

A formally defined set of concepts, which incorporates goals and processes, is provided by Khomyakov and Bider (2000), 
whose model is based on mathematical systems theory. Their approach to process modeling is state-oriented, viewing a 
process as a subset of trajectories in some state space, and a process goal as a set of conditions defining a surface in the 
state space.  This set of concepts is extended by Bider et al., (2002) and used for defining a process pattern, allowing the 
design of generic processes that can be specialized for specific situations. That model bears much similarity to our model. 
However, there are two significant differences between their approach and ours. First, the distinction of external and internal 
events is not explicitly made there. Second, their approach is aimed at producing an executable model, where the path to 
the goal can be redefined by human intervention at run time. Hence, they do not provide detailed analysis of goal 
reachability of the type we present in this paper, nor do they analyze process interaction. 
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Verification of process models is mainly associated with workflow control models. Workflow model verification is notation-
specific, defined often for Petri-nets representations of process models (Aalst, 1997; Aalst and Hofstede, 2000), and 
sometimes for other process modeling notations, e.g., UML Activity diagrams (Eshuis and Weiringa, 2002). 

Basically there are two approaches to process model verification. In one, the model is converted into formal specifications 
that can be analyzed by existing formal model checkers (e.g., SPIN, that also served for verifying UML statecharts (Eshuis et 
al., 2002; Latella et al., 1999)) or dedicated model checkers (Eshuis and Weiringa, 2002). The other approach is based on 
structural properties of the model (e.g., soundness) (Aalst, 1997; Aalst and Hofstede, 2000).  

In contrast, our validity criteria are not structural only. Rather, they also include semantics by ontologically linking the 
concepts of state variables, goals, and laws. Furthermore, our process models are not as restrictive as the soundness 
property required in workflow models. For example, in sound workflow models only one termination place is allowed. This is 
in contrast to our concept of goal, which is, in general, a set of states (that can sometimes be defined by an explicit 
condition). In addition, our model includes the notion of soft goals (which, again, are linked to state variables). 

Note, workflow models represent the behavior of a workflow management system (WFMS) only and not of its environment. 
Specifically, workflow processes are usually non-continuous, since the WFMS has to wait for human actions to be reported 
to it. Hence, workflow models generally assume the environment behaves “fairly” (Aalst and Hofstede, 2000), and employ 
exception handling mechanisms for addressing cases where it does not. However, existing exception handlers are not 
always capable of addressing all possible situations (Russel et al., 2006). Our model explicitly allows for taking into 
consideration failures of the process environment to act as expected, and incorporates their handling into the process 
model. Also, in contrast to workflow verification methods, our approach is conceptual rather than technical. It explores the 
sources of invalidity and suggests remedies to specific cases. In addition, it is general in not being dependent of any specific 
notation. 

Recently, efforts have been put into the development of various pattern bases for different aspects of process modeling (e.g., 
Aalst et al., 2003; Andersson et al, 2005; Bergholtz et al., 2004). Patterns, as a form of reusable knowledge, can 
contribute to the design of valid processes, if integrated properly. However, a limitation of the pattern-based approach is 
that it depends on reusable knowledge rather than on analysis based on the process model elements. Specifically, in the 
pattern-based approach, one can only use patterns that already exist. In contrast, our approach relies on an abstract 
understanding of process models in terms of inter-relationships among processes as a means to their validation. However, 
we note that our approach does not contradict a pattern-based approach. Furthermore, we believe that integrating the 
notion of goals (including soft goals) into formalized process models can be useful in defining process patterns, as it can 
provide for identifying processes by their goals. 

Interaction among processes is addressed mainly from an inter-organizational perspective. Inter-organizational process 
management literature focuses on how to create, operate, and maintain inter-organizational processes. The main effort is 
devoted to providing an infrastructure that should enable collaborative processes. For example, Cassati and Discenza 
(2001) address interaction among workflows (both within and between organizations). They suggest a mechanism for 
exchanging events between interacting workflows. Synchronous process interaction is supported by “send event” nodes, 
where the process exports events (information about state changes) to its environment, and “request event” nodes, where 
the process sends a request for an external event and waits until it arrives. Their work provides a technical mechanism that 
allows workflow interactions and a means for specifying them in workflow models. This enables verifying that a response for 
each request can be appropriately generated. However, they do not investigate the question of why such interactions may 
fail. Another example is the work by Guelfi et al. (2004), who propose to model inter-organizational processes using UML, 
combined with a translation of the model into a designated language (COALA), which provides formal semantics. Their 
approach enables specification of the interaction among roles (organizations), management of shared resources, and 
exception handling. While covering a relatively wide range of aspects, it is still a solution to be applied rather than an 
explanation of how interaction takes place, why exceptions might occur, and how to analyze process models to identify 
possible remedies to potential problems. The focus of the works we have described differs from ours, which is on the 
semantics of process collaboration, analyzing how the processes can operate together in terms of their internal and 
interface design. 

Interaction among processes is also implicitly addressed by the literature about process architectures.  This literature deals 
with identifying processes and structuring them according to a “prescriptive” structure (or architecture), which forms a 
template where meta-roles (of processes) are assigned. As an example, Riva (Ould, 1997; Ould, 2005) identifies three 
types of processes: case process, case management process, and case strategy process. Case processes are identified by 
Units of Work (UOWs), which are basic entities whose lifecycle should be managed. Case management processes are 
coordination processes, which manage the interaction among case processes (in order to, e.g., avoid incongruence and 
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exceptions). However, interaction naturally takes place between the case management processes and the case processes. 
We note that faults in this interaction may occur, and events outside the organization might fail. Hence, our analysis 
approach can be used to complement the architectural design. 

Another perspective on process interaction is the study of coordination. The theory of coordination (Malone et al., 1999) 
deals with coordination among activities (or processes), defined as the management of dependencies. Three basic types of 
dependencies are distinguished by Malone et al. (1999): (a) Flow dependency, where one activity (process) produces a 
resource that is used by another activity; (b) Sharing dependency, where multiple activities (processes) use the same 
resource; and (c) Fit dependency, where multiple activities (processes) produce a single resource. While this approach 
addresses inter-process communication via resources, it is still not formally tied to the ability of processes to achieve their 
goals, as we do in this paper based on the GPM. Moreover, all these types of dependency can be expressed in GPM terms. 
Flow and sharing dependency are determined by the law (as conditions on possible transitions), and fit dependency relates 
to goals. The situation of coordinated activities can be modeled in GPM as a set of sub-processes (either concurrent or 
sequential), each having a goal, where the goal of the entire process is defined over a domain consisting of the sub-
domains in which the sub-processes operate.  

Dependencies among activities are addressed also by Andersson et al. (2005), who identify four dependency types, partly 
overlapping Malone's types. However, the aim of dependency identification there is to provide a motivation and rationale 
for activity sequencing in a process design. Hence, the focus there is on business-oriented dependencies mainly, and their 
possible effects on design flaws are not investigated. 

Communication as an enabler of processes is a basic notion in the Language/Action Perspective. For example, (Searle, 
1979) identifies five types of speech acts that partly correspond to our types of state variables. For example, directive acts 
can be related to expected state variables. Operational approaches that build on the Language/Action Perspective include, 
e.g., DEMO (Dietz, 2001), which provides a systematic methodology for process design. However, they keep the functional 
and constructional views separated and thus do not focus on goal achievement as we do. Specifically, since such models 
do not integrate the notion of goal, they do not lend themselves easily to validity analysis as presented in this work. 

Summarizing the above review of related literature, we observe that problems related to modeling business processes and 
their interaction are raised, solutions are sought, and mechanisms are developed. However, no generic theoretical 
foundation is used in the analysis to generate proposed solutions. Hence, they are sometimes tailored to a very specific 
situation, or are oriented toward implementation (workflow) and therefore might not be easily generalized. Moreover, the 
notion of goal is often not integrated with formal aspects of process definition. The framework presented in this paper 
enables the analysis of interacting processes in terms of their ability to achieve their goals. This analysis is not oriented 
toward a specific situation, a specific application, a specific modeling language, or a specific implementation environment. 
Rather, it provides a theoretical foundation that can be used for developing generalized understanding, taking into account 
the behavioral reasons for valid or invalid processes and combinations of interacting processes.  

VII.   Conclusion 
In this paper we suggest a structured approach to analyze the validity of process models for a group of interacting 
processes. The notion of validity is based on the ability of each process to achieve its goal. We recognize two main types of 
design deficiency. First, inherent design problems may exist where a process in principle might not be able to reach its goal. 
Second, enactment failures can occur, where, while designed correctly, a process in the group might fail to reach its goal 
due to external problems.  

We use for our analysis the Generic Process Model, which is a theory-based model of a process derived from generalized 
ontological foundations. The suggested process model is goal-driven and affords basing the notion of validity on goal 
reachability. A process goal is not an obscure notion, detached from elements of process models, but a well-defined set of 
stable states (that sometimes can be specified by a condition). These states should be reachable via the combined effect of 
the system laws and external events, some generated by other processes, and some generated outside the domain of 
analysis. The model enables a systematic analysis of goal reachability, including identification of possible reasons for failure 
and possible design corrections. This analysis leads to defining two types of validity: process model validity and process 
enactment validity. The model enables the identification of causes for model and enactment invalidity of individual 
processes and of clusters of related processes. Understanding these causes can provide for identifying potential problems in 
given process designs and generating suggestions for correcting them. 

The analysis and related validity criteria, though systematic and formalized, are based on conceptual foundations rather 
than on a purely technical analysis. Thus, they provide an understanding of the possible sources of process model and 
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enactment invalidity at an abstract level. Nevertheless, we hope the insights gained by using the approach can assist 
process designers in creating valid process models at the outset, and provide guidance for modifying process models when 
potential problems might exist. 

The suggested process model and the related analysis are generic and notation-independent. They employ a small number 
of constructs to express many aspects addressed by various process modeling languages. Consequently, models in these 
languages can be mapped to our generic model and their validity evaluated regardless of the specific notation.  

Furthermore, applying the suggested model as an infrastructure to models created in a specific modeling language can 
help to structure the modeling process by presenting a set of generalized questions to the modeler. As an example, assume 
a process is modeled using Petri nets. Normally the modeler would be occupied with transitions (activities) and firing 
sequences. Using our model as infrastructure, the modeler will also need to understand the process goal (often as a 
criterion defined over states) and define the places in the model in terms of state variables of components in the modeled 
domain.  

The model provides for a formal analysis of the role of information and information systems in inter-process communication 
and identifies information systems-related problems that might impact the ability of a cluster of processes to reach its goals 
(or attain desired performance criteria, defined by soft goals). To the best of our knowledge, this analysis is novel. 

The application of the GPM framework is not limited to validity evaluation. Currently, we are extending it to other aspects of 
process modeling, such as process decomposition, process specialization, and process model reuse. Another direction of 
related research deals with the mapping of various modeling languages to GPM, and the evaluation of the mapping in 
terms of its effect on the modeling process when these languages are used and on the resulting models. We also intend to 
investigate possibilities for automating parts of the validity analysis. This can be addressed both generically and in the 
context of specific modeling languages. 
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