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Abstract 

Reuse of models assists in constructing a new model on the basis of existing knowledge, by 

retrieving a model that matches a preliminary partial input model or some facts about the 

domain and adapting it to the current needs. It often employs similarity measures to identify 

reusable models that are structurally and semantically similar to the input model. However, in 

many cases an input model, being a preliminary one, is of a higher level of abstraction than 

the detailed models to be retrieved, and structural similarity cannot be detected. This paper 

proposes the concept of structural equivalence, which means that a detailed model is a 

refinement of an abstract input model. Measuring structural equivalence rather than structural 

similarity enables retrieving an appropriate model despite differences in the abstraction level 

between the models. The paper discusses the structural characteristics of refinement 

operations in Object-Process Methodology (OPM) models, and presents an algorithm that 

detects structural equivalence. 

 

1. Introduction 

The benefits of applying reuse at various stages of design and implementation have been 

widely recognized. Reuse of software components has been addressed for over forty years, 

and the idea has been extended to other and more abstract design tasks and artifacts, such as 

design specifications (Eckstein et. al, 2001; Kim, 2001; Reinharz-Berger et. al, 2002; Zhang 

and Lyytinen, 2001), requirements engineering (Lai et. al, 1999; Massonet & Lamsweerde, 

1997; Sutcliffe & Maiden, 1998), conceptual models (Pernici et. al., 2000), enterprise 

modeling (Chen-Burger et. al, 2000), method engineering (Ralyte & Rolland, 2001), and 

others. 

Reuse usually employs a repository of reusable artifacts, a retrieval mechanism that retrieves 

artifacts that meet criteria posed by the user, and a mechanism that enables the user to adapt 

the artifact and use it in the current design task. Retrieval can be index-based, according to 

indices that characterize the artifacts; formal specification-based, by matching formal 

specifications of the artifact (e.g. signature); or model-based, by matching an input model 

(query) given by the user with a model stored in the repository (Mili et. al, 1995). The model 

may be the reusable artifact itself, or its representation. While index-based retrieval is 



relatively simple and quick, formal specification or model-based retrieval is more accurate, 

relying on higher volume of information rather than on classification represented by indices. 

When the reusable artifact is a model, the purpose of reuse is to assist in constructing a new 

model, either of the same domain, or of another domain by analogical reasoning. Two types 

of reusable models can be used for this purpose. One is a generic high-level domain model 

that has to be specialized in adaptation to the current needs. Retrieval in this case can be 

index-based, since descriptive indices are sufficient for such generic models. The other type 

of reusable model is a complete and detailed model that matches partial information available 

about the domain. Model-based retrieval, relying on all the information captured in a model, 

enables the selection of the model that best fits the user’s query. It may use a preliminary 

partial model or some facts about the modeled domain as an input query, and retrieve a 

detailed model (or detailed models), found similar to the input model. When model-based 

retrieval is aimed at retrieving other artifacts represented by the model, the input model can 

be a detailed or a partial one. 

Model-based retrieval may entail different types of similarity measures for matching between 

the input model and the repository models. Two common similarity measures are entity 

similarity and structural similarity.  

Entity similarity assessment (also called semantic similarity) aims at identifying entities in the 

reusable models that are semantically similar to entities in the query model. It may employ 

mechanisms of various accuracy and complexity levels, ranging from identification of 

identical entity name and type (Soffer, 2002), through thesaurus-based affinity measurement 

(Castano et. al, 1998; Ralyte & Rolland, 2001), to concept hierarchy-based distance 

measurement (Chen-Burger et. al, 2000; Lai et. al, 1999).   

Structural similarity measurement typically follows the links among the entities in the query 

model and searches for parallels in the reusable model (Chen-Burger et. al, 2000; Massonet & 

Lamsweerde, 1997; Ralyte & Rolland, 2001; Sutcliffe & Maiden, 1998). This is sometimes 

termed neighboring entities search. 

Summarizing this, a model is to be retrieved if it includes the same entities and the same links 

as the input model to some extent. However, if the input model is a preliminary and partial 

model, and the aim of the retrieval is to obtain an appropriate complete and detailed model, 

than one cannot expect the input model and the output model to have the same structure and 

set of links. Rather, the input model would be at a higher level of abstraction, specifying an 

incomplete set of entities and relationships among them. The same entities would appear in 

the detailed model along with other entities, and therefore the link structure might be 

different, including all the other entities that exist in the detailed model. 

This paper deals with the assessment of structural similarity between two models. Semantic 

similarity assessment has been widely addressed, both in the context of reuse (e.g., Ralyte & 



Rolland, 2001) and in other contexts, such as schema analysis and integration (e.g., Palopoli 

et. al., 2003), and the solution approaches suggested seem satisfactory. Structural similarity 

assessment is particularly problematic when the models being matched are of different 

abstraction levels. Here we seek for structural equivalence rather than similarity, meaning 

that a detailed model to be retrieved can be perceived as a refinement of an input model, 

which is of a higher abstraction level. The paper discusses several types of refinement and 

indicates their structural characteristics, applying the Object-Process Methodology (OPM) as 

a modeling language. Understanding the consequences of model refinement is the basis for an 

algorithm that identifies structural equivalence of two models. 

The remainder of the paper is organized as follows: Section 2 briefly introduces the Object-

Process modeling language; Section 3 discusses different refinement operations and illustrates 

their outcome in an OPM model; Section 4 describes a rule-based algorithm for identifying 

structural equivalence of OPM models; Section 5 reviews related work, and concluding 

discussion is given in Section 6. 

  

2. Object-Process Methodology (OPM) 

This section provides a brief introduction to OPM, whose details are provided in Dori (2002). 

OPM has been applied for various purposes at different design phases and tasks, such as 

conceptual requirements model (Soffer et. al., 2001), ERP system modeling (Soffer et. al., 

2003), web application design (Reinhartz-Berger et. al., 2002), real-time systems specification 

(Peleg and Dori, 1999), algorithm specification (Wenyin and Dori, 1998), and others.  

OPM incorporates two equally important classes of entities: objects and processes. While 

Object Oriented methods encapsulate processes in objects, and business process modeling 

methods represent activities detached from the objects they affect, OPM unifies the system 

structure and behavior into a single representation. It uses a single graphic tool, the Object-

Process Diagram (OPD) set, as a single model of all the system aspects, both structural and 

dynamic.  Structure is expressed by objects related by structural relations such as 

characterization, aggregation, specialization, and general tagged structural relation. The 

behavior of a system is represented by a set of procedural links, which can be classified to 

three classes of links: enabling links, transformation links, and triggering links. Enabling links 

(e.g. Instrument link) relate an object to a process when the presence of the object is required 

for the process to occur, but this occurrence does not affect the state of the object. 

Transformation links (e.g. Effect link) relate an object to a process if its state is transformed 

by the process. Triggering links (e.g. Event link) relate a transformation of an object 

(reflected in its state) to a process it triggers.  



OPM allows refinement of a model by zooming into processes and unfolding the structure of 

objects to enable a top-down analysis. The resulting model is a hierarchical OPD set, which 

specifies all the aspects of a system at a spectrum of detail levels.  

A part of OPM notation is given in Figure 1. 

 

*** Insert Figure 1 about here *** 

 

3. Structural Equivalence 

This section discusses different refinement operations and provides observations that 

characterize their structural impact in an OPM model. We view an OPD as a directed and 

labeled graph, whose nodes are entities (objects and processes) and edges are the links among 

the entities. A refinement operation inserts new nodes and edges into an existing graph. These 

additional parts may replace existing edges thus they may form paths between nodes that 

were directly linked in the original graph.  

We shall examine and characterize the results of two types of refinement operations: 

refinement of structure and refinement of behavior. Specifically, we aim at identifying 

conditions under which a path can be considered as structurally equivalent to a given link. 

Definition 1: Let A, B be entities and let P be a path between A and B. P is structurally 

equivalent to a link of type l iff a link l between A and B can be replaced by P through a 

refinement operation. 

Notation: P ≅ l. 

3.1 Refinement of structure   

The paths established when structure is refined can replace both structural and procedural 

links that originally exist with the entity whose structure is being refined. We shall examine 

these two categories of links, and characterize the path that replaces them in a refined model. 

Structural links: The direct structural link in the abstract model is replaced by a path 

including structural links and entities. This is demonstrated in the example shown in Figure 2, 

in which a Characterization link in the abstract model (a) appears as a path including both 

Specialization and Characterization links in the refined model (b).  

 

*** Insert Figure 2 about here *** 

In general, a path including a number of structural links can always be abstracted to a specific 

link type independently of the order in which these links appear. 

Definition 2: Let L be a set of link types. l ∈ L is dominant with respect to L iff  P ≅ l is true 

for every path P that includes l together with any r ∈ L. 

Notation: DL = l. 



Considering the example of Figure 2, it is clear that D{Specialization, Characterization} = 

Characterization, as inheritance maintains characteristics along the hierarchy. 

Observation 1: Let A, B be entities, and P be a path from A to B. Let L be the set of link 

types included in P. If DL = l then P ≅ l.  

Observation 1 is a direct result of the definition of dominance with respect to a set of link 

types. It is useful for identifying equivalence regarding paths that include structural links, 

since dominance can easily be established considering these link types, as in the above 

example. 

Procedural links: When a procedural link exists between an entity whose structure is being 

refined and another entity, the resulting path in the refined model consists of both structural 

and procedural links. As an example, Figure 3 (a) shows an abstract model including an 

Effect link between Engineering Change Processing and Item Technical Data. A refined 

model (b) shows that the Item Technical Data is composed of Bill of Material and Routing, 

which are affected by Engineering Change Processing, and Technical Specification, which 

remains intact. 

 

*** Insert Figure 3 about here *** 

 

In general, a refined model may specify the interaction of a process with attributes, parts, or 

specializations of an entity, whereas an abstract model simply specifies an interaction with the 

entity. 

Observation 2: Let A, B, C be entities. Let P be a path from A to B, so that A is linked to C 

and C is linked to B by a procedural link of type l. If the link from A to C is 

(Characterization) OR (Aggregation) OR (Specialization) then P ≅ l. 

The proof of Observation 2 is by a simple demonstration that such refinement is possible (e.g. 

Figure 3).  

Note, that observation 2 does not imply the dominance of procedural links with respect to 

structural links, since there may be paths that cannot be abstracted to a procedural link. For 

example, in Figure 3(b) the path between Engineering Change Processing and Technical 

Specifications is not structurally equivalent to the Effect link included in it. 

 

3.2 Refinement of behavior   

Behavior of a system or a domain is captured by processes. A process can be refined into a 

sequence of activities (sub-processes) that comprise it. Such a sequence is modeled as a path 

leading from an initial state (or input objects) to a final state (or output objects). The sub-

processes in a refined process may interact with other objects besides the ones the higher-



level process interacts with, but these objects can be considered “internal”, meaning that in 

the abstract view of the process the interaction is not observed.  

The difficulty in identifying a refined process lies in the fact that unlike refinement of 

structure, in which a link is replaced by a path, when a process is refined an entity is replaced 

by a path (or a number of paths). Therefore, the initial and final states are the only reference 

points available. However, this information is not always sufficient for a conclusive 

identification of structural equivalence. Consider a process of a high level of abstraction, 

having an initial state and a final state. This process can be refined into many different 

processes, all having the same initial and final states and subset of interactions as the abstract 

one. Yet, while being all equivalent to the abstract model, these refined processes are not 

equivalent to one another. As an example, consider the abstract process of Supplying 

Customer Order in Figure 4(a), which can be refined to the two different processes in Figure 

4(b) and (c). These two refined processes have identical initial and final states, as does the 

abstract process. However, while both processes can be retrieved for a query specifying the 

abstract model, none of them should be retrieved if the query specifies the other (e.g., if (b) is 

the query model (c) should not be retrieved). It is therefore easier to formulate a necessary 

condition rather than a necessary and sufficient condition for structural equivalence of 

processes.  

 

*** Insert Figure 4 about here *** 

 

Observation 3: Let m1 be a model portion, in which process A transforms an initial state s1 

into a final state s2. Let E1 be the set of entities directly linked to A in m1. Let m2 be a model 

portion that refines m1. Then m2 consists of a path P, and a set E2 of entities that are directly 

linked to the entities of P, so that P is from an initial state s1 to a final state s2 and E1 ⊆ E2. 

Note, that the initial and final states are not necessarily explicitly represented in an abstract 

model, in which case the inputs and outputs of the process should be considered in a similar 

manner to the states.  

Observation 3 provides a necessary condition, which might not be sufficient for the 

identification of equivalence. Notice, that it is likely that at least one of the sub-processes in a 

refined model bears a name that can be identified as similar to the general process’ name as 

appears in the abstract model. Such resemblance can be detected by affinity detection 

techniques (which are assumed to be used, although they are not the focus of this paper). This 

can be explained by a tendency to name the process in the abstract model after the main 

activity that constitutes the essence of the process. In fact, such tendency is not unique to 

process models. Castano et. al. (1998), suggesting a semi-automatic procedure for abstracting 

a database schema, refer to a “representative” element of the detailed schema, whose name 



should be given to the generalizing element in the abstracted schema. When refining an 

abstract process to lower abstraction levels, details of other activities are revealed. In the 

example of Figure 4 Supplying Goods to Customer can be identified as similar to Supplying 

Customer Order. 

In such cases, we expect the refined model to include a path from the initial state to the 

similarly-named process and to the final state. A path is also expected to relate the process to 

other entities that interact with it in the higher abstraction level. If such paths exist in a 

detailed model, and if they are structurally equivalent to the links of the abstract model, than 

the detailed model can be considered as a refinement of the abstract one. Observation 4 

indicates a condition under which a path that may include a number of processes and objects 

or states is considered as structurally equivalent to a specific type of procedural link. 

Observation 4: Let A be an object or a state of an object, B be a process, and P be a path 

between A and B. Let l be the procedural link by which A is related to P, then P ≅ l. 

Note, that the direction of the path can be from the object to the process or backwards, 

depending on the specific links involved.  

Observation 4 can be justified when abstracting the entire path (processes and objects) to a 

process (named after its “representative” activity, B). The link that determines the nature of 

the interaction between this abstracted process and the object is the link relating the object to 

the path. In the example of Figure 4(b) and (c) the path from the state Open of Customer 

Order Status to Supplying Goods to Customer is equivalent to the direct link from Open to 

Supplying Customer Order in (a).  

Observation 4 provides a sufficient condition for identifying structural equivalence. However, 

this condition, though sufficient, is not a necessary one. It is based on the assumption 

discussed above, that the abstract process is named after its main activity. This assumption is 

not necessarily always true. For example, a production process can be refined into processes 

of cutting, drilling, milling, etc. In such cases the path between the initial and final state in the 

abstract model has to be matched against the path in the detailed model. That path can be 

decomposed into individual links for this purpose. 

 

4. Tracking Structural Equivalence 

Section 3 identified conditions that enable the detection of structural equivalence. When 

models are retrieved from a repository, we seek for a measure that expresses the level of 

structural equivalence rather than a Boolean indicator. Such a measure should indicate the 

likelihood that one model is a refinement of another one. 

Consider a query OPM model (OPD) being matched against a set of detailed OPM models in 

a repository of reusable models. The matching includes a semantic affinity measurement, 



which is out of the scope of this paper, and a structural equivalence measurement, in which 

the links among the entities in the input model are searched in the reusable model. The 

commonly applied structural similarity measures typically provide the proportion of matching 

links with respect to the total number of links in the query model (e.g., Ralyte and Rolland, 

2001). Another possibility is Dice’s function (Castano et. al, 1998), computed as twice the 

number of matches over the total number of links in the two models. This metric, clearly, 

regards a symmetric matching of models, unlike our problem, in which the matching is single 

sided (the retrieved models have to match an input model).  For our structural equivalence 

measure, if the reusable model includes a link that matches a link of the input model, then it is 

counted (as in structural similarity measurement). Otherwise, an equivalent path between the 

source entity and the destination entity of the link is searched and counted if found. The 

measure is the proportion of links that are successfully matched, either by a link or a path 

with respect to the total number of links in the query model. 

This section describes a rule-based algorithm that identifies equivalent paths for computing a 

structural equivalence measure. The rules follow the discussion and observations of Section 3. 

4.1 Search Rules 

The search for an equivalent path employs rules of two types: Link Selection rules and 

Equivalence Conditions. Both rule types are defined for each type of link in OPM. A Link 

Selection Rule defines the types of links that can be included in an equivalent path and 

provides searching priorities for the search algorithm. An Equivalence Condition defines 

conditions for a path to be equivalent to a link of a certain type. Conditions may specify link 

types that must be included in a path and their required position: at the source of the path, at 

its destination, or at any point in the path.  

A Link Selection Rule is of the following form: 

Link Selection (Link Type): {Set of Types} 

Where Link Type is the type of link to which the path is to be equivalent, and Set of Types 

is an ordered set of link types. All the link types in the set can be included in a path, which is 

equivalent to Link Type. Their order in the set determines the priority in which the search 

algorithm considers links in the examined OPD when searching for a path.  

On the basis of Observation 1, the Set of Types specified for structural link types satisfies 

DS=l, where l is the Link Type and S is the Set of Types. For procedural link types the Set of 

Types is defined on the basis of Observation 4. According to this observation, the link that 

determines the equivalence is the one related to the source or destination object without 



restrictions on the types of links in the path. Hence, the Set of Types for procedural link types 

includes all the types of links in OPM.  

The order of the types in the Set of Types always sets the relevant Link Type as the first 

priority for the search algorithm. For procedural link types it lets the algorithm prefer 

procedural links over structural ones.  

An Equivalence Condition is of the following form: 

Equivalence Condition (link type): Mandatory type must be located Required Position 

in the path. 

Where Mandatory Type is a link type that is necessarily included in the path in order to 

preserve the nature of the interaction, and Required Position is the exact position where it 

should appear. 

Required Position: enum (at Source Position, at Destination Position, Anywhere) 

Mandatory Type is, with one exception, the Link Type itself. The exception is an Invocation 

link, which represents the triggering of a process by the completion of another process. This 

can also be modeled as an event, created by the first process, and triggering the second one. In 

this case an Event link replaces the Invocation link. 

For structural link types the Required Position is “Anywhere”, since the Link Selection rules 

ensure the dominance of the specific link type with respect to the links in the path. Hence, 

their position in the path is of no importance as long as they are present. For procedural link 

types the Required Position, according to Observation 4, depends on the link type. Links 

whose direction is from the object to the process (e.g., Instrument link) require the Mandatory 

Type at the source of the path, while links that lead from the process to the object (e.g., Result 

link, which is a uni-directional Effect link) require the Mandatory Type at the destination of 

the path. 

As explained above, the two types of rules are based on Observation 1, which addresses 

structural links when structure is refined, and on Observation 4, which addresses procedural 

links when behavior is refined. Observation 2, which addresses procedural links when 

structure is refined, is not applied as part of the rule base, but is taken into account by the 

search algorithm. The details of this algorithm are given in the following section. 

4.2 Searching an Equivalent Path 

Consider a pair of OPDs <Q, R>, where Q is the query model and R is a reusable model being 

matched. Assume R is searched for a path between two entities that are directly related in Q. 

The search is performed in steps, whose maximal number is nR-1, where nR is the number of 

entities in R. It applies the following notation: 



s: the source entity of the link in  Q whose equivalent path is being searched in R. 

d: the destination entity of the link in Q whose equivalent path is being searched in R. 

LM(a,b): Let a and b be entities, then LM(a,b) is a Boolean variable whose TRUE value 

indicates the existence of a direct link from a to b in a model M. 

LinkM(A,B): Let A and B be non-overlapping sets of entities in model M, then LinkM(A,B) is 

an indicator expressing the existence of a direct link from an entity in A to an entity in B.  
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SM: The set of entities in model M. 

Ci: The set of entities in R to which a path from s has been found until the ith step of the 

search. 

Ui: The set of entities in R whose relationship with s has not yet been investigated by the ith 

step of the search. 

Ci and Ui partition SM so that at each step i of the search SR = Ci + Ui + {d}. Each entity in R 

belongs either to the set of entities that have already been established as linked to s (including 

s itself), or to the set of entities whose relationship with s is unknown yet, or to the set that 

holds d only.  

Lemma: Let R be searched for a path from s to d at the ith step of the search. A path from s to 

d exists only if Max [LinkR(Ci,{d}), LinkR(Ci,Ui)*LinkR(Ui,{d})] = 1. 

Proof: Assume a path exists. It can lead from Ci directly to d, then LinkR(Ci,{d}) = 1. 

Otherwise it leads from Ci to some entity a∈Ui and from a to d. Then LinkR(Ci,Ui) =1 AND 

LinkR(Ui,{d}) = 1. Assume a path does not exist. Then LinkR(Ci,{d}) = 0 AND  

(1) If LinkR(Ci,Ui) = 1 then LinkR(Ui,{d}) = 0. 

(2) If LinkR(Ui,{d}) = 1 then LinkR(Ci,Ui) = 0.  

Note, that the above lemma is one sided, that is, it does not imply that if max[LinkR(Ci,{d}), 

LinkR(Ci,Ui)*LinkR(Ui,{d})]=1 then a path exists. Rather, this is a necessary condition for the 

existence of such a path. 

The search initial state is C0 = s, U0 = SR – {s, d}. At each step, if the condition specified in 

the Lemma is satisfied, one entity is moved from Ui to Ci by following a link, implying that a 

relation of this entity to s is established. The steps repeat until either a path is found, i.e., 

LinkR(Ci,{d})= 1, or the condition of the Lemma is not satisfied, that is, the searched path 

does not exist. 



The equivalence rules ensure that the found path is equivalent to the link being searched. The 

algorithm, specified in Figure 5, employs the following operations: 

Fold_Structure (entity): A folding operation of structural relations in OPM is an abstraction 

operation, in which a detailed OPD portion, including structural relations, such as 

characterization, aggregation, and specialization, is replaced by an OPD portion of a higher 

abstraction level. The entities that provide the structure details of the entity being folded 

(which is the parameter of this operation) are not shown in the abstracted OPD. Other entities, 

which are originally related to the structure details, are related directly to the folded entity. 

This operation is employed only when the link, whose equivalent path is searched, is a 

procedural link. Its role is to replace paths created through refinement of structure by their 

equivalent procedural links, on the basis of Observation 2. 

Exclude_Links: This operation excludes links that cannot be included in the path. Links can 

be excluded from the search for three reasons. One reason is that they cannot be a part of the 

path according to the Equivalence Conditions, in which case they are excluded at the 

beginning of the search. The second reason is that their direction is opposite to the search 

direction. At every step of the search the uni-directional links from the entities of Ui to the 

entities of Ci are excluded from the search. The last reason applies to the Is-A link, which may 

be included in a path in both directions, from the “special” to the “general” as well as the 

other way. When going up the relation, the links to other specializations of the “general” 

entity cannot be included in the path. 

Select_Entity: At every step of the search all the links from the entities of Ci to the entities of 

Ui are arranged according to the order defined by the relevant Link Selection Rule. The first 

link according to this order is selected and the entity it relates to is moved to Ci and becomes 

the Current entity. 

Verify_Equivalence: Equivalence Conditions specify for a given link the link type that must 

be included in the path, and its required position. If the required position is at the source or 

destination of the path, then all the links from s or to d, which are not of the mandatory type, 

are excluded from the search at the first step by the Exclude_Links operation. As a result, a 

Boolean variable Condition is assigned a TRUE value. If the position is Anywhere, the 

condition is verified by a set of indicators ECe. 

Let e be an entity in Ci, then ECe = 1 iff a link of the mandatory type is in the path from s to e. 

Starting at ECs = 0, and let e be moved from Ui to Ci through a link of type t from an entity 

a∈Ci, then 
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When a path is found, then the Equivalence Condition is met only if ECd =1, in which case 

Condition = TRUE. 

 Compute_Cardinality: This operation is performed only when structural relations are 

searched. The cardinality of a link is defined as <SL, SU, DL, DU>, where SL is the source 

lower participation constraint, SU is the source upper participation constraint, DL is the 

destination lower participation constraint, and DU is the destination upper participation 

constraint.  

Let e be an entity in Ci, then the aggregated cardinality of the path from s to e is denoted by 

<SLe, SUe, DLe, DUe>, where s holds <1, 1, 1, 1>.  

Let e be moved to Ci through a link whose cardinality is <SL, SU, DL, DU> from entity 

a∈Ci, then SLe = SLa * SL, SUe = SUa * SU, DLe = DLa * DL, DUe = DUa * DU. 

For example, assume an item is supplied by 0 to 3 suppliers and a supplier has 1 to 2 contact 

persons (a supplier can supply 1..m items). The aggregated cardinality of the path between an 

item and a purchasing contact person is <1, m, 0, 6>. 

*** Insert Figure 5 about here *** 

4.3 An Example 

The algorithm steps are illustrated by the example given in Figures 6 and 7, in which a query 

model (Figure 6(a)) is matched against a detailed model (Figure 6(b)). 

 

*** Insert Figure 6 about here *** 

*** Insert Figure 7 about here *** 

None of the procedural links specified in Figure 6(a) appears as a direct link in Figure 6(b). 

Nevertheless, they are all matched by equivalent paths in the detailed model. We shall follow 

the steps of the search algorithm applied for tracking an equivalent path that matches the 

Instrument Link from Production Order BOM to Issuing to Production (Figure 6(a)) in the 

detailed model (Figure 6(b)), as illustrated in Figure 7. 

Step 1: C1 includes the source entity, Production Order BOM (highlighted). The source entity 

is the Current, and a Fold_Structure(Current) operation is performed. As a result, its structural 

details are not seen, and the Instrument links originally related to these details are now related 

directly to Production Order BOM itself. U1 includes all the other entities in the model, 



except the destination entity, Issuing to Production (highlighted). C1 is linked to U1, which is 

linked to the destination entity, thus the condition of the lemma is satisfied. 

Step 2: Following the Instrument link, C2 includes Releasing Production Order as well. Note, 

that the Equivalence Condition of an Instrument link requires that the first move should be 

through an Instrument link, and it is satisfied. Two Instrument links that lead to Releasing 

Production Order are excluded from the search, since their directionality is opposite to the 

path direction. C2 is still linked to U2, which is linked to the destination entity. 

Step 3: Following the Effect link, Order Documents is included in C3. Note, that this is a 

random choice from the three Effect links that lead from Issuing to Production. C3 is still 

linked to U3, which is linked to the destination entity. 

Step 4: Following the next Effect link from C3, Kitting List is now added to C3. C3 is now 

linked to the destination entity, thus establishing a path that meets the Equivalence 

Conditions, and is therefore equivalent to the direct link of the input model. 

Note, that step 3 is actually redundant, and could be avoided by a different choice of link. 

Nevertheless, by addressing all the links of the Ci set, the algorithm is able to simply look one 

step ahead at a time and avoid a recursive back-tracking.  

The complexity of the search algorithm is O(nR), where nR is the number of entities in R. The 

search is performed for each link in Q when the structural equivalence measure is computed. 

Since the maximal number of links in Q is nQ(nQ-1)/2, the complexity of measuring structural 

equivalence is O(nQ
2nR). Note, that nQ is expected to be significantly smaller than nR. 

 

5. Related Work 

Model similarity has been addressed by several disciplines. The ones that are relevant to this 

work are the disciplines of reuse and schema analysis and matching. The difference in 

abstraction level between a query model and a model to be retrieved has not, to the best of our 

knowledge, been explicitly addressed in the reuse literature. Kim (2001) presents an OO 

model reuse application in which an initial model, including classes and non-specific links, 

serves as a basis for retrieving an existing complete model. The retrieved model is then 

modified and adapted to the current needs using modification rules, whose details are not 

presented. No details are available about how a complete model is retrieved and evaluated, 

how this retrieval considers the non-specific links of the input model, and how structurally 

different from each other are the models that are retrieved.  

Structural similarity plays an important role in the works that deal with analogical reasoning 

(Sutcliffe & Maiden, 1998; Massonet & Lamsweerde, 1997), where models defined for a 



certain domain are applied to other domains by analogy. The retrieval is based on structural 

properties of the model and on semantics, which is based on generalizations. In Sutcliffe & 

Maiden (1998) the models to be retrieved include a number of layers, each dealing with 

different information types, going from abstract to detailed. The matching with the input 

information interactively follows these layers of specific information types, and the user is 

required by the system to provide enough information to discriminate between existing 

models. Hence, the structural similarity deals with models of the same abstraction level. In 

Massonet & Lamsweerde (1997), while the entities of an input model are generalized to a 

higher level in an Is-A hierarchy, their link structure is expected to remain the same and 

serves as a basis for structural similarity assessment. 

Other works that apply reuse for method engineering (Ralyte & Rolland, 2001) and for 

enterprise modeling (Chen-Burger et. al., 2000) use simple structural similarity assessment 

along with semantic similarity based on affinity (Ralyte & Rolland, 2001) or on 

generalization hierarchy (Chen-Burger et. al., 2000). The model used by Ralyte & Rolland 

(2001) includes multiple abstraction levels. Hence, there might be a match between the 

abstraction level of a query model and one of the levels of the reusable models, but it is not 

explicitly addressed and verified.  

Schema matching literature focuses on the semantic mapping of one schema to the other. 

While semantic similarity in the reuse literature is mostly affinity-based, or in some cases 

relies on Is-A hierarchies, semantic matching in the schema matching literature sometimes 

combines affinity of terms with structural considerations. Schema matching maps elements of 

one schema to elements of another schema rather than computes similarity measures between 

the two schemas. Hence, each pair of elements is thoroughly examined and structural aspects, 

such as attributes and Is-A relations are taken into account (Madhavan et. al., 2001; Rahm & 

Bernstein, 2001; Rodriguez & Egenhofer, 1999). In some cases paths are sought where direct 

links do not exist (Palopoli et. al., 2003). Nevertheless, dealing with schemas means dealing 

with a low level of abstraction. Some schemas may be more detailed than other ones, and the 

techniques suggested are aimed at overcoming such differences rather than at dealing with 

models that are basically at different abstraction levels. Typical to this situation is the use of 

the term “structural equivalence” of schemas (Alagic & Bernstein, 2001), which relates to a 

consistent mapping of schema elements from one schema to another and backwards in the 

lowest abstraction level. It is defined as structural as opposed to semantic equivalence, which 

relates to integrity constraints as well.    

Similarity assessment of entities, presented by Rodriguez & Egenhofer (1999), relates to 

parts, functions, and attributes of two entity classes. Their similarity measure applies a 

function that provides asymmetric values for entity classes that belong to different levels of 



abstraction. While addressing single entity classes, they take contextual information into 

account for the similarity measurement. Yet, context information of an entity cannot be 

considered equivalent to a view of the entity as a part of a model, including relationships with 

other entities. 

A more holistic view of schema analysis, including a variety of techniques for schema 

abstraction, matching and reuse is presented in Castano et. al. (1998). Schema abstraction is 

an operation in the opposite direction compared to our discussion of refinement operations. 

The ERD schemas addressed limit the discussion to structural links only, without addressing 

the representation of behavior. Yet, their abstraction operation is consistent with our opposite-

direction refinement, and applying the algorithm presented here to their examples of detailed 

and abstract schema yields a match. A number of schema similarity measures are presented 

there, dealing mainly with semantics, and to a limited extent with model structure, 

particularly with attributes. Interestingly enough, their fuzzy similarity measure is 

asymmetric, and may indicate that schema a matches schema b to a higher extent than in the 

other direction. This is explained as being a result of differences in the abstraction level 

between the two schemas.  

In summary, the main contribution of this paper as compared to related earlier work is in 

explicitly addressing models of different abstraction levels, representing both structure and 

behavior of a domain. 

 

6. Concluding Discussion 

Reuse of models and model-based retrieval of artifacts employ in many cases a structural 

similarity assessment, aimed at retrieving models that are structurally similar to an input 

model. In this paper we stressed that differences in the abstraction level are likely to exist 

between an input model and a detailed model to be reused, and therefore structural 

equivalence is a better measure than structural similarity. Structural equivalence is identified 

when the detailed model is a refinement of the abstract input model. 

The discussion of refinement operations and the observations that characterize their impact on 

model structure, as well as the search algorithm, address OPM models. Other modeling 

languages are different mainly in the separation of structural and behavioral aspects of the 

modeled domain. However, the notion of structural equivalence is of relevance to models 

independently of the modeling language. Some of the observations made in this paper can 

easily be generalized and become applicable to other modeling languages. For example, 

Observation 1, which deals with dominance of structural relations in a path, is not specific to 

OPM only. Regarding the behavioral aspects, generalization is less straightforward. In multi-



view modeling languages (e.g., UML), consistency among views might also need 

consideration.  

An equivalent-path search algorithm is, naturally, language-specific, and apparently needs to 

be developed for each modeling language. However, the algorithm presented here is mainly a 

path searching algorithm, while specific features of the OPM links are captured by the 

equivalence rules. Hence, the main body of the algorithm might be applicable for other 

modeling languages, while the unique features of the language might be affected mainly 

through the equivalence rules. 

The search algorithm that enables structural equivalence measurement has been implemented 

in a reuse application that supports business process alignment and gap analysis in the 

implementation of ERP systems (Soffer, 2002). The application matches abstract enterprise 

requirement models with a detailed model of the ERP system, and retrieves the parts that 

match the requirements. 

Future research should extend the structural equivalence concept and apply it to other 

modeling languages that serve in reuse applications, such as UML and ERD. 
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Figure 1: OPM notation 



 

 

Figure 2: Example of refinement involving a structural link 



 

 

Figure 3: Example of a procedural link in structure refinement 



 

 

Figure 4: An abstract model and two possible refinements 



 

 

Figure 5: Equivalent path search algorithm 

Current = s 
Fold (d) 
Exclude_Links 
Do while (LinkR(Ci,Ui)*LinkR(Ui,{d}) = 1) AND (LinkR(Ci,{d}) <> 1) 

If Link_Type is procedural then Fold_Structure(Current) 
Exclude_Links 
Verify_Equivalence 
If Link_Type is structural then Compute_Cardinality 
Select_Entity 

End Do 
If (LinkR(Ci,{d}) = 1) AND (Path_Cardinality = Link_Cardinality)    

AND (Condition) then Path_Found 
Else Path_Found = FALSE 



 

 

Figure 6: Structural Equivalence Example 



 

 

Figure 7: Search Algorithm Steps 


