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Abstract. Clinical guidelines provide recommendations to assist clinicians in 

making decisions regarding appropriate medical care for specific patient 

situations. However, characterizing these situations is difficult as it requires 

taking into account all the variations that patients may present. We propose an 

approach which helps with identifying and categorizing the contexts that need 

to be taken into account within a clinical process. Our methodology is based on 

a formal process model and on a collection of process execution instances. We 

apply machine-learning algorithms to group process instances by similarity of 

their paths and outcomes and derive the contextual properties of each group. 

We illustrate the application of our methodology to a urinary tract infection 

management process. Our approach yields promising results with high accuracy 

for some of the context groups that were identified.   

Keywords: clinical guidelines, context, business process learning, process 

goals, soft-goals, process model adaptation, flexibility. 

1  Introduction 

Clinical guidelines are systematically developed statements to assist practitioner 

and patient decision making about appropriate health care for specific clinical 

circumstances [‎1]. They aim to improve patient care, limit unjustified treatment 

variation, and reduce costs. However, a clinical guideline cannot possibly address the 

variations in patient populations that occur in different healthcare institutions who try 

to apply the guideline. For example, the guideline may recommend that a certain 

conventional antibiotic should be given to patients with urinary tract infection (UTI) 

but that for patients who are resistant to the antibiotic (i.e., the pathogens which 

caused UTI in the patient are resistant to the antibiotic), a different antibiotic should 

be provided. Since giving a patient a non-effective treatment has many risks, in 

particular, that the patient's condition would deteriorate, the goal is to know under 

what context a patient is likely to be resistant to the conventional antibiotic. 

Guidelines often leave the conditions under which a patient is likely to be resistant to 

antibiotic undefined.  

In this paper we propose to learn the different contexts relevant to UTI treatment 

in a local hospital, by mining electronic healthcare records (EHRs) of UTI patients. 
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To this end, we apply a context based process learning methodology which we have 

developed.  We postulate that the context [‎2][‎3] of a process, namely, information 

about the properties and environmental events of each medical case, affect the 

process' execution and outcomes. However, the significant affecting variables and 

their effect are not necessarily known. Our approach aims at categorizing possible 

environmental conditions and case properties into context categories which are 

meaningful for the process execution. The context learning algorithm is part of a 

business process learning framework that we are developing, in which the best path 

would be proposed for each context group. 

The remainder of the paper is structured as follows. Section 2 explains what a 

clinical context is and provides the motivation for the context learning framework. 

Section 3 describes our context learning framework and section 4 illustrates the 

application of context learning to a clinical process - the Urinary tract infection 

management process. Finally Section 5 discusses the implications of the model and 

compares it to models proposed in the past that have some similarity to our model.  

2  Clinical contexts 

Clinical processes (anamnesis, diagnosis, treatment) highly depend on the 

characteristics of each patient as well as on environmental conditions (e.g., 

availability of medical equipment and expertise in a healthcare facility).  

Clearly, different contextual conditions should be handled by different paths for 

the process to achieve its goals. To facilitate this, three main challenges need to be 

met. First, normally there is no obvious way to establish a full repository of all 

possible context variations that are yet to appear. Second, while it is possible to have 

information about an (almost) unlimited amount of case properties, we should be able 

to identify which specific properties have an effect on the process. Third, medical 

organizations need to know how to select their process paths per each one of these 

situations in order to achieve the best outcome. 

In this work, we focus on the second challenge and demonstrate via a case study 

of a UTI process the application of a context-learning framework that we developed. 

Context groups cluster together process instances that at the same time have similar 

path and outcome and can be grouped by sets of shared contextual properties, thereby 

limiting the number of context variations to be dealt with. This can be a first step 

towards defining process paths for each context group, such that taking that path 

would lead to desired process outcomes (goals). For this purpose, we target an active 

process, namely, a process which has already been executed for a while, and acquired 

past execution data. Our basic assumption is that in these past executions, some cases 

were‎addressed‎“properly”‎according‎to‎their‎relevant‎contextual properties (although 

a relation between context and path selection was not necessarily formally specified). 

Other cases were not properly addressed, and this should be reflected in the 

performance achieved by the process for these cases, which should be lower when 

compared to the properly addressed cases. Hence, the proposed methodology is based 

on clustering process instance data of past executions, relating to their context, path, 

and outcomes.  



       

3  An approach for learning context groups of business processes 

In this section, we briefly describe our context learning framework [‎11].  

A business process instance (PI) is completely defined given its context, path, and 

attained termination state (goal or exception). In addition, our initial knowledge of the 

business process model provides us with the criteria necessary to identify when we 

reach our goal or when the process terminates in an exception. The information of the 

business process model and its execution data enable us to learn the relevant context 

groups. In this paper, we consider only goal states as outcomes, and not exceptions. 

However, it is not uncommon not to have a completely defined process model or 

complete contextual information of the recorded process instances. Our context 

learning approach can use partial knowledge of the process model and approximate 

similarity measurements of different process instances.  

Rather than estimating the similarity of paths separately from the similarity of 

outcomes, we apply machine learning algorithms to existing path and goal state data 

together. We developed a clustering strategy constructed of the following stages.  

(1) We partition our process instances based on existing domain knowledge. For 

example, existing UTI guidelines partition patients into populations that depend 

on age, gender, catheter usage, etc. 

(2) We estimate the similarity between all process instance paths and goal states, 

establishing a measure of the similarity of these instances, and grouping them 

into clusters. Technically, this is done by representing the process instance path 

and outcome data as vectors of values of state variables and using a clustering 

algorithm, to find clusters based on vector proximity. Then we use feature 

selection to omit state variables that are not important for determining the 

clusters. 

(3) Once the clusters of PIs (PICs) have been identified, we apply supervised-

learning algorithms (algorithms that build decision trees and prune them) to 

determine the meaning of the context groups that correspond to these groups. To 

do so, we focus only on the context information of the PIs of each PIC and 

express the meaning of the corresponding context group as a logical condition 

over the set of context variables.  The context groups learning procedure is 

schematically shown in Figure 1. 

4  Context group learning in urinary tract infection (UTI) 

management process 

We apply the context learning framework to a clinical process dealing with urinary 

tract infection (UTI) patients. 

4.1 UTI- a brief overview 

Different healthcare organizations have developed their own guidelines for 

diagnosing and managing UTI. These guidelines indicate different care paths for 



       

different partitions of the population, partitioned by age, gender, and other conditions, 

including the use of catheters and existence of complications related to arterial, heart 

and kidney diseases, and diabetes mellitus. The most important partition is the one 

concerning elderly women, which constitute more than two thirds of the impacted 

population. 

 

Figure 1. Architecture of the context groups learning algorithm. PI- process instance; S- Initial partition. 

4.2 UTI process instances and context data 

The data for our case study was collected at a general internal medicine department in 

Carmel Medical Center, Haifa, Israel, and includes 297 patient records. Most patients 

in our database are elderly persons (above 50 years old), who arrived first at the 

emergency room, where they were diagnosed as potentially having UTI. Then they 

were admitted into the general internal medicine department. Most of the context data 

is known from the medical record of the patient (either electronically (EHR) or paper-

based) and is further collected from the patient as a first step of the process. This step 

is‎known‎as‎“anamnesis”.‎In‎it,‎the‎physician‎questions‎the‎patient‎to‎identify‎chronic 

illnesses, medications that the patient is taking for other conditions, symptoms he is 

having, whether UTI is a recurring problem, historical illnesses related to UTI (such 

as calculi existence, reflux problems, kidney problems, etc.), general test results 

(urinalysis), and physical examination results. A partial list of context data includes: 

(1) age, (2) gender, (3) race, (4) vital signs, such as fever, blood pressure, and heart 

rate, (5) symptoms, (6) physical examination results, (7) chronic illnesses, such as 

diabetes mellitus (DM), hypertension (HTN), coronary arterial disease (CAD), 

congestive heart failure (CHF), cancer/hematological disorder, chronic pulmonary 



       

disease (CPD), chronic renal failure (CRF), cerebro-vascular disease (CVD), (8) 

medications, such as beta-blockers (BB), (9) previous UTI, (10) existence of a 

permanent catheter, (11) general mental and overall state of the patient, (12) whether 

UTI was acquired in the hospital, and (13) residence (e.g., nursing home). 

Following the anamnesis and physical examination, the patient is diagnosed. Several 

diagnoses may be given and registered in the medical record; we consider up to ten 

different diagnoses, which impact the further diagnosis and treatment of UTI, 

including, among others, fever, hypertension, chronic renal failure, depression, 

anxiety, pneumonia. 

Following the initial diagnosis, initial treatment may be provided (e.g., antibiotics 

or other medications) and additional tests may be ordered to further diagnose the 

patient's condition and evaluate the expected outcomes (prognosis). Tests may 

include urine culture tests, ultrasound, prostate examination for men, etc. The tests 

depend on the patient's context. The test results may arrive several days after the 

patient has been initially diagnosed and has undergone initial treatment. After the test 

results become available, the treatment may be changed and additional tests may be 

ordered. 

Hence, the main activities in the UTI management process path and the main 

outcome state variables that we expect to be reflected in the patients' records include 

the following 6 data items: (1) the ten diagnosis terms (mentioned above), (2) initial 

treatment (with 27 kinds of antibiotics), (3) three categories of medical tests (urine 

culture, blood tests, ultrasound), (4) modified  treatment (after test results return), (5) 

additional tests ordered after treatment has been modified (three possible tests), and 

(6) four possibilities of final status: death, cured, partially cured, follow up needed by 

other specialists. A partial sample of path data is provided in Table 1. 

Table 1. Path data structure. 

Process instance ID 253467 

Initial Treatment < Augmentin> 

Diagnosis <CVD, CRF, UTI> 

Urine Culture test results <…>(1 field for each measure), <ESBL+= Y> 

Blood test results <…>‎(1 field for each measure) 

Ultra sound <OK> 

Modified treatment < ZINACEF> 

Additional tests  <<CT, OK>, <ESBL+> 

Final Patient status  <Partially cured- require home care > 

4.3 Establishing context groups for the UTI data 

Different patients may have different initial conditions, such as different symptoms 

and different chronic illnesses. Hence, the UTI diagnosis and treatment process may 

vary from one patient to another. The question we are trying to answer using our 

context learning framework is: can we group patients' data into context groups in 

such a way that consistent outcomes are achieved for a defined set of process paths 

for each group?  



       

We describe how our context learning algorithm follows the three steps defined in 

Section  ‎3 for the UTI case. 

Step 1: Initial partitioning of context data. We partition the data based on different 

populations addressed in UTI clinical guidelines. Through a review of existing 

guidelines, we saw that UTI guidelines distinguish between the following partitions: 

(1) New born; (2) Children; (3) Pregnant women; (4) Young women; and (5) Elderly 

Men and women. Some guidelines distinguish between patients with permanent 

catheters and without catheters. Since most of the patients in our database are elderly 

men and women (above 50 years old), we will focus on analyzing partition #5. 

Step 2: For the 297 patients, we recoded the process activities (e.g., medications, 

tests, procedures, diagnosis) and outcome state variables discussed in Section 4.2. 

Using a modification of the two-step clustering offered as part of the SPSS package 

[‎4], we clustered process instances (PIs) according to similar path and outcome data 

and assigned each PI to a PIC ID. To find a set of clusters that achieves good 

clustering results, we generated 15 cluster sets, consisting of 1 to 15 clusters, 

respectively. Using the Akaike information criterion (AIC) [‎5] as a measure of the 

goodness of fit of an estimated statistical model and is grounded in the concept of 

entropy, we identified the set of clusters that achieves the best results. The best cluster 

set partitioned the 297 samples into five clusters (PIC1 through ...PIC5) of size 54, 27, 

51, 80, and 85 samples, respectively. 

After the process instance data was clustered, we used the chi-square statistical test 

as a method for feature selection. Using the chi-square statistic, we analyzed the 

significance of each variable to each one of the five clusters in order to omit from the 

cluster features that are non-significant.‎For‎example,‎the‎variable‎“Urinary‎Cancer”‎is‎

most significant for Cluster #3 but could be omitted from the context variables of the 

rest‎ of‎ the‎ clusters.‎ The‎ variable‎ “Renal‎ Failure‎ not‎ including‎ CRF”‎ is‎ highly 

significant for Cluster #2 and #3, but could be omitted from the context variables of 

clusters #1, #4, #5. Performing feature selection for each one of the variables reduced 

the number of variables representing the clusters' context by an average of 20 %.  

Step 3: We partitioned the context variables of the PIs into 35 variables, 

categorizing the values of each variable into discrete ranges of values that would be 

significant for a medical expert. For example, the age was partitioned into the 

following ranges: 45-55, 55-65, 65-75, 75-85, 85-90 and 95-105 years. Based on the 

context data of the PIs clustered in each cluster, we used a modified Chi-squared 

Automatic Interaction Detection (CHAID) growing decision tree algorithm [‎6] to 

construct the decision tree that represents the context groups and their relationships 

(see Figure 2). We provide CHAID with the context data of the PIs and with the PIC 

ID of each PI, which was deduced in step 2 according to the path and outcome data of 

the PIs. The PIC ID serves as the dependent label. CHAID tries to split the context 

part of the PI data into nodes that contain PIs that have the same value of the 

dependent variable (i.e., which were labeled in step 2 by the same PIC ID). The root 

of the tree shown in Figure 2 is partition #5 (Male and Female patients over 50 years), 

selected in Step 1. From there, the tree-building algorithm hierarchically partitions the 

nodes further, using at each split a context variable that is most important for 

segmenting the tree node, importance being estimated by chi-square. For example, 

nodes 0 is split based on age. The semantics of the nodes are criteria over the state 

variables. Node 4, for example, corresponds to age in the range 45-55. 



       

Although CHAID aims to split the root node into clean nodes, each containing PIs 

that received a single PIC ID label in step 2, not all nodes formed are clean. For 

example, in Figure 2, nodes 21 and 23 are clean, containing PIs that were labeled as 

PIC #4 and PIC #3, respectively, as seen by the single column in the bar graph for 

these nodes. On the other hand, node 8 is less clean than nodes 21 and 23 as it 

contains similar levels of PIs with different labels and hence it is hard to select the 

most probable value for this node when trying to classify instances through it. 

Therefore, we state that this node has a high level of prediction error, while nodes 21 

and 23 have very low prediction error. The predicted PIC ID for each node in the tree 

is the PIC ID that minimizes the prediction error. A common way of minimizing the 

prediction error is choosing the most dominant PIC ID for the node.  For instance, 

considering node 17 or node 21, the output would be PIC = 4 with a probability of 

98%, for node 23 it would be PIC =3 with a probability of almost 100%, while for 

node 8 it is not possible to predict the value of the output.  

We used a cross-validation procedure [‎13] to find the misclassification (prediction) 

error we may expect for future PIs that we would classify with the tree. Cross 

validation divides the sample into a number of subsamples, or folds. Tree models are 

then generated, excluding the data from each subsample in turn. The first tree is based 

on all of the cases except those in the first sample fold, the second tree is based on all 

of the cases except those in the second sample fold, and so on. For each tree, 

misclassification risk is estimated by applying the tree to the subsample excluded in 

generating it. Cross validation produces a single, final tree model. The cross-validated 

risk estimate for the final tree is calculated as the average of the risks for all of the 

trees. In Table 2, we cross-tabulate the actual PIC ID (column 1) that was used to 

train the tree with the predicted PIC ID of the final tree. For example, of the 54 PIs 

that were originally labeled in PIC #1, 37 were predicted by the tree to have label of 

PIC #1, but 7 PIs were predicted to have label #2, and 10 PIs to have label #5.   

Our objective is that the tree model would provide the predicted PIC for every new 

PI that we would submit to it. The ideal case would be that each leaf node of the tree 

would contain instances from one single PIC. However, this is not feasible due to the 

inherent errors of machine learning classification, and in addition, due to data 

completeness and correctness issues that arise despite our best to have the data 

validated and corrected. Therefore, we cannot be sure that we have all the context-

related variables neither can we be sure that the data source is 100 % correct.  

More importantly, we assume that when the analysis is performed there is no 

definition of path per context group. So we cannot expect all instances of the same 

context to follow the same path; the process is performed differently for different 

instances, even if they belong to the same context group, simply because there are no 

defined decision rules that relate path to context. Therefore we are not expecting our 

learning approach to find perfect correspondence between context groups and PICs.  

Moreover, it is very likely to see different levels of success, measured via the 

classification error ratio, for different clusters, as seen in Table 2. For example, we 

see that for PIC ID #1 and #2 we have less than 70% successful prediction rate, for 

PIC ID #3 and #4 we have a prediction rate of 74-78%, and for PIC #5 we have a 

success rate of over 90%. The overall classification success rate for the provided set 

of data is 72%.  

 



       

Table 2. Tree cross-validations results for the UTI process, considering the elderly males 

and females partition. 

PIC  ID used to 

train the tree 
PIC ID predicted by the decision-tree 

1 2 3 4 5 % Correct 

1 37 7 0 0 10 67.7% 

2 13 13 20 0 5 39.7% 

3 1 21 0 0 5 78.2% 

4 11 9 0 60 0 74.6% 

5 7 1 0 1 76 90.0% 

Overall % 23.3% 17.1% 6.9% 20.5% 32.2% 72.0% 

 

 

Figure 2. Decision tree resulting from applying Step 3 to the UTI process data. The initial node 

(Node 0 at the left) is the starting point of the process of growing the tree, corresponding to 

partition 5 obtained in Step 1. The variables that are used to split n nodes are written to the right 

of each node. The thresholds of the variable that determines the criteria representing each node 

are marked at each split. For example, Node 0 is split over the variable age into 6 different 

splits (50, 60, 70, 80, 90-100), indicating the age ranges 45-55, 55-65, 65-75, 75-85, 85-90 and 

95-105.  Patient_General_state has values Bad (B), Medium (M), and Good (G). The other 

variables are Boolean. The histogram shown at each tree node represents the number of vectors 

in the tree node that were labeled with a specific label. 



       

4.4 Identifying context groups 

Once we have built the decision tree, we define the context groups' logical conditions 

using the following steps. First, we label the tree's leaf nodes by walking through the 

tree from its root, collecting state variables and variable values used to split nodes. 

For example, tree node #23 is labeled as "55 <age < 65 AND (General_state = 

Medium or General_state = Good) AND Beta Blockers= Y". In this way we label the 

other 14 leaf nodes (1, 6, 7, 8, 10, 12, 13, 15-23).  

Then, we examine the population of labels for each node; the different colors given 

for a single tree node represent the five PIC labels that were used to train the tree. The 

histogram shown at each tree node represents the number of vectors in the tree node 

that were labeled with a specific label. For example, the PIs in tree node #23 are all 

labeled with PIC #3, whereas the PIs in tree node #6 are labeled mostly with PIC #1. 

Of the 15 tree nodes, 9 are predominantly labeled by a single PIC. We use them to 

determine the logical condition that defines the PIC. The results are shown in Table 3. 

As a measure of sensitivity [‎14], we calculated how many (percentage) of PIs that 

belonged to a given PIC also belonged to the tree nodes in the CG from which the 

semantic label for the CG was derived. As a measure of specificity [‎14], or 

"cleanness" of the semantic label, we calculated the number (percentage) of PIs in a 

tree node that received the predominant label for the node. We noticed that we had 3 

categories (CGs 3, 4, and 5) that had specificity above 95%. These groups included 

47.5% of the sample. 

5  Discussion and Conclusions  

In this paper we addressed the identification of context groups of a clinical process. A 

clinical process would be executed differently for different context groups. Hence, the 

identification of context groups helps in defining decision-support for clinical 

processes. In the medical informatics literature, ideas similar to context have been 

used for decision-support for clinical processes. Tu et al. [‎7] proposed the 

consideration of usage scenarios in order to identify opportunities for providing 

decision support, the roles and information needs of care providers, events that may 

activate the guideline system, and guideline knowledge relevant in these scenarios.  

The usage scenarios are derived by mapping of generic guidelines to specific medical 

institutions and drive the whole process of clinical process design by providing the 

process‎with‎all‎necessary‎ inputs:‎ “who‎ is‎doing‎what,‎where‎and‎when”.‎A‎similar‎

idea of context is also used in the definition of Act classes in Health Level 7's 

Reference Information Model (RIM) [‎8]. Taking an action-centered view, Act classes 

identify the kind of action (what happens), the actors who accomplish the action, the 

objects or targets whom the action influences. Adverbs of location (where), time 

(when), manner (how), and other information about circumstances, such as reasons 

(why) or motives (what for) are additional pieces of information that may be required 

or optional in given situations.  

Process mining has been applied to healthcare processes [‎9]. The objective of process 

mining is to discover out of the process data the process model that has been 



       

followed. In our work we depart from the assumption that the current business 

process model is known, or has been discovered though process mining, and we apply 

our framework to discover out of the process path and events the context of each 

instances. We consider that our context learning framework can be used by process 

mining algorithms in order to first establish groups of instances which are similar at 

the path and outcomes level and then discover the associated paths. This would 

provide process mining frameworks with two main capabilities: first, taking process 

outcomes into account when discovering the path, which, as we show, is an essential 

element for distinguishing between similar and non-similar instances; second, 

focusing the discovery on groups instead of mining all instances, which should 

improve notoriously the performance and the quality of the mining results.  

Table 3. Resulting context groups for the UTI management process. The logical criteria are 

given for each relevant tree node. When a context group contains more than one tree node, the 

logical conditions of the nodes are combined with an OR to obtain the context group 

definition. 

CG# Tree 

Node 

Logical Criterion Sensitivity Specificity % of 

total 

sample  

1 6 85 <age < 105 AND General state 

=Good 

53.1% 58.6 % 6.6% 

22 55 < age < 65 AND (General state = 

Medium or General_state = Good) 

AND Beta- Blockers=”N” 

46.9% 

 

66.7% 5.1% 

2 --     

3 23 55 <age < 65 AND General state = 

Medium or Good AND Beta 

Blockers= Y 

100% 

 

100% 6.9% 

4 13 45 <age <55 and Fever =Y 22.7% 100% 4.6% 

15 55 <age <65 AND General state = 

Bad 

25.6% 100% 5.1% 

17 75 <age <85 AND General state = 

Good AND Hyponatremia=Y 

23.9% 

 

95.8% 4.8% 

21 75 <age <85 AND General state = 

Bad AND Permanent Catheter=Y 

27.8% 

 

98.0% 5.6% 

5 12 45 <age < 55 AND Fever=N 33.3% 100% 13.7% 

19 75 <age <85 AND General state = 

Medium AND  hospital acquired UTI 

=Y 

66.7% 100% 6.9 % 

Total and weighted averages 45.5% 92% 59.2% 

 

We have demonstrated the context learning framework by applying it to a clinical 

process in order to automatically deduce context groups. We postulate that the 

process path and outcomes are highly dependent on the process context, which 

specifies the inputs of the external environment to the process and hence constrains 

the adopted path and the reached termination state. Our approach is based on 

clustering similar process instances and then using the cluster IDs as labels for a 



       

decision-tree learning algorithm from which semantic labels are extracted. The 

semantic labels are logical predicates over process state variables. This procedure 

renders the task of identification of contexts easier for a medical expert, enabling him 

to focus on analyzing the required paths for each context group without needing to 

deal with hundreds of samples. When a context group contains more than one tree 

node, we combined the logical conditions of the nodes with an or relation to obtain 

the context group definition. For each context group we will recommend one path. 

However, the different tree nodes that belong to the same context group are kept 

distinct, as they belong to different patient populations. It is important to keep them 

separated in this way so that the domain experts would relate to them clearly.  

The resulting decision tree not only provides semantic labels for context groups; it 

may also be used to identify the context group of future instances automatically. 

We note that our knowledge and definition of contexts is usually limited. 

Establishing a fully-accurate context definition would require having all the state 

variable data collected, which is impractical. We also need to expect some level of 

error in the provided data. All this, in addition to the inherent error of classification, 

which is in the nature of machine learning, implies that we always need to account for 

some level of classification error. Before applying our technique for deducing 

semantic labels from the clean nodes of the decision tree, the overall prediction level 

of the tree was 72% (Table 2) but it was not uniform.  For example, in our study, the 

prediction level for PIC #2 was low - we did not have enough PIs in PIC #2 to learn a 

semantic definition for it. On the other hand, the results that we obtained for PIC # 3 

were excellent – 100% specificity and sensitivity (Table 2 and Table 3). Comparing 

Table 2 and Table 3, we see that the method that we used for deducing the semantic 

labels produced high specificity (higher than the prediction rate observed in Table 2) 

because we used only clean nodes to provide the semantic labels but low sensitivity, 

because we dropped the PIs belonging to nodes that were not clean. These 

preliminary results, based on only 297 patients, are encouraging and show promise 

for our approach. We believe that when we collect more data, these results could be 

improved.  

Our algorithm is a first component of a process learning architecture [‎2] that we 

have started to develop. The purpose of that approach is to learn, based on an initial 

process model schema and the outcomes of PIs, the process paths that should best be 

adopted for a PI that is awaiting execution. It is our goal to modify the initial process 

model schema based on the learned knowledge and achieve a better process model 

schema. Our approach differs from case-based reasoning (CBR) [‎10], which uses a 

case-base of PIs to propose for a given PI awaiting execution a similar PI from the 

case-base that achieved good outcomes. CBR has been applied to the domain of 

business process management [‎11]. 

Since our approach is generic and is based on a formal conceptual model definition 

of the process model, process context, and process outcomes [‎12], it could potentially 

be applicable to other domains. Future research directions would examine this 

prospect.  
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