
 

Reusability of Conceptual Models: 

The Problem of Model Variations 

 
Pnina Soffer  

Department of Management Information Systems 
Faculty of Social Sciences 

Haifa University  
Haifa 31905, Israel 

Phone: +972-4-8288506 
Fax: +972-4-8288522 

Email: spnina@is.haifa.ac.il 
 

Irit Hadar  
Department of Education in Technology and Science 

Technion – Israel Institute of Technology 
Haifa 32000, Israel 

Phone: +972-4-8293101 
Fax: +972-4-8213495 

Email: hadari@tx.tecnion.ac.il 
 

 
The total number of words in the paper: 3004 

Submission Category: Research-In-Progress



 

Reusability of Conceptual Models: 

The Problem of Model Variations 

 

 

 

Abstract 
Conceptual models are aimed at providing a formal representation of a domain in the real world. 

However, it is commonly known that different people construct different models of a given domain. 

While prior research dealt mainly with modeling errors, this paper explores variations among 

correct models. Model variations, though frequently harmless, may have severe consequences 

when similarity of models is to be assessed for purposes of reuse.  

This paper presents the problem of model variations and its effect on reusability. In particular, it 

suggests that in order to increase reusability the variations among models should be anticipated 

in advance. This could be achieved either theoretically or empirically. Corrective actions may 

include conclusive modeling rules and proper reuse mechanism design. 

The paper suggests a theoretical framework for understanding the sources of variations and 

demonstrates an empirical investigation of variations and their reusability impacts when applied 

to a reuse application.  

 

Keywords:  
Empirical Software Engineering, Requirements Engineering, Conceptual Modeling, Reusability 

 

1. Introduction 
Conceptual modeling, defined as “the activity of formally describing some aspects of the physical and 

social world around us for purposes of understanding and communication” [11], is applied in the early 

phases of IS analysis and design. A conceptual model reflects the real world independently of 

implementation technology and constraints [19]. Nevertheless, it is commonly known that different people 

usually present different models given the same domain. Two research areas have indirectly addressed 

these differences: the effect of the differences on database design is an issue addressed by schema 

integration research [4, 12, 13], and specific modeling decisions that may cause specific variation types are 

addressed by conceptual modeling research (e. g. [3, 6]).  

Variations among “correct” models apparently seem to be harmless. However, in certain situations, such as 

model reuse, these differences might have severe implications on the outcome. In this paper we explore the 

phenomenon of model variations and its impact on model reusability.  

Related empirical studies have evaluated the quality of models, identified types of modeling errors and 

discussed their possible sources [1, 2, 7, 14]. In general, various error types were observed and classified to 

errors related to the mapping of reality into modeling concepts, and syntax errors related to modeling 



 

language grammar. Note, that the judgment of the models in these studies was based on a comparison of 

the models to one predefined “correct” model produced by an expert. No information was available as to 

whether all differences were considered as errors.  

We believe that different models may still be considered correct, both semantically and syntactically. In 

what follows we relate to the reusability impacts of variations among correct models, and stress that they 

must be explicitly understood and considered in this context. We outline a theoretical framework 

explaining the sources of variations. Our approach is illustrated by a pilot study, demonstrating an 

empirical investigation of model variations and their impact in a reuse environment, and indicating possible 

corrective actions. We conclude by outlining directions for future research, based on our findings. 

 

2. Reusability Implications 
It may seem that variations among models, which are considered “correct” models, bear no practical 

consequences. However, their implications might be crucial when the similarity of conceptual models is 

assessed.  

Similarity assessment of conceptual models serves for various purposes, such as identifying common 

characteristics of different information systems, reengineering and integrating them [4, 12, 13]. Its most 

common application is for reuse of conceptual models applied for assistance in obtaining requirement 

specifications or new conceptual models [8, 9, 18], for application development by relating the conceptual 

models to actual software components [15], and for analysis of the match between a given system and 

stated organizational needs [17].   

In model similarity-based reuse, similarity assessment serves for retrieving existing reusable models from a 

repository, so they can be assembled, refined or customized to the needs of the current user. If modeling 

variations exist between a query model, which represents the user requirement, and the reusable model, 

they might prevent the identification of a suitable model to be retrieved. While reuse applications have been 

developed, employing various retrieval mechanisms, the variations expected among input models have not 

been, to the best of our knowledge, considered or investigated, and no effort has explicitly been done to 

overcome them.  

In order to increase reusability one should (a) anticipate the expected variations in a given environment, (b) 

minimize them, and (c) minimize their effect. 

The first step towards anticipating and minimizing the variations is to understand their sources. Minimizing 

their effect can be achieved through the design of reuse mechanism that takes into account the potential 

variations. 

 

3. Sources of Variations Among Models 
In this section we propose a framework for understanding the sources of model variations, based on 

theoretical foundations and on our observations. Variations among models generally appear due to the 

creative nature of the modeling activity, as well as other factors such as the richness of the spoken language 

[10], the ambiguities of modeling grammars, and others. Figure 1, which is our modification of the model 



 

presented by [19], presents the factors that influence the model produced by an individual, and their 

interactions.  

 

 

 

 

 

 

Figure 1: Factors that affect a conceptual model 

Human: Human factors that may influence the model include individual perception and interpretation of 

reality, experience, and perception of model quality. These human factors influence the use of the modeling 

language through the modeling process, and, consequently, the resulting model. 

Perception of reality – A model can only represent the way the modeler perceives the domain. Variations 

that belong to this category range from names assigned to entities, through differences in inheritance 

hierarchies, and to different interpretations of the role of certain entities in the domain. While these 

interpretations may be arguable, they reflect the way the modeler sees and understands the domain. 

Experience – The effect of prior experience of the modeler on modeling errors has been studied by [1, 7]. 

Clearly, previous experience influences the way a modeling task is performed. Specifically, four aspects of 

the experience are of importance: amount of experience (expert vs. novice), experience in using the specific 

modeling language, experience in performing the specific task, and programming experience. While the 

influence of the total modeling experience and the experience gained in specific modeling languages is 

straightforward, the task and the programming experience need further clarification. Modelers whose 

experience is mainly in design tasks are likely to perform differently than modelers that mostly deal with 

conceptual modeling, even if both tasks are carried out using the same modeling language. Designers may 

find it hard to avoid design and implementation considerations, and their model is likely to be oriented 

towards implementation. While applying design considerations, programming experience may also affect 

the model, given certain design possibilities and constraints in the programming language the modeler is 

accustomed to.  

Perception of model quality – Different modelers may have different opinions on the desired properties of a 

model. For example, some modelers may prefer simplicity in a model, while others perceive a very detailed 

model as being of a high quality. 

Modeling language: Different modeling languages may incur different modeling variations, due to 

differences in their expressive power and set of constructs involved. According to [20], expressive power 

means completeness and clarity. Completeness means that a modeling language has all the constructs 

required for representing the domain. Its absence may drive different modelers to “invent” their own 

solutions in order to capture more information about the real world in the model. Clarity is the lack of three 

types of deficiencies: construct redundancy, construct excess, and construct overload. Construct 

redundancy, i.e., several ways of representing a single real-life phenomenon, definitely causes variations. 

Human 

Modeling language 

Modeling process

Model 



 

Construct excess, when a modeling construct stands for something which does not exist in reality, may also 

cause variations, by allowing the modeler to determine whether to use a construct or not. Construct 

overload, when the same construct represents more than one real-world phenomenon, affects model 

understanding rather than model variations. 

Modeling process: Two important aspects of the modeling process, which are related to the modeling 

language but not dependent on it, are the chronological order of the modeling activities and the rules 

applied for mapping real life entities and phenomena into modeling constructs. 

The importance of the order of modeling activities increases with the number of views in the modeling 

language. The modeling process involves iterations among the different views. The order in which these 

iterations are performed may yield differences in the focus of the model.  

When using modeling languages that allow various levels of detail, refinement decisions are usually made 

by the modeler, who applies individual judgment rather than precise rules.  

Most importantly, modeling grammars do not entail precise rules that conclusively define how to map real 

world phenomena into the modeling constructs. Hence, different mapping approaches may be taken. 

 

4. Increasing Reusability: a Pilot Study 
As discussed in Section 2, we propose that model variations should be considered when reuse applications 

are designed and applied. They should be anticipated and minimized by clear modeling rules and guidance 

regarding the modeling task and quality criteria. Their effect can be reduced by designing a robust reuse 

mechanism with respect to the anticipated variations. 

To demonstrate our approach, we present a pilot study that was conducted in a reuse environment. The 

study included two phases: (a) obtain models of a given domain from different modelers and analyze their 

differences, and (b) apply the models to a reuse application and analyze the resulting differences in the 

retrieved output. The results indicate potential variation types in the given environment and their effect on 

reusability. These may lead to the design of the appropriate corrective actions. 

4.1 Setting 

The modeling language used in the study is Object-Process Methodology (OPM), described in detail in [5]. 

OPM employs two equally important classes of entities, objects and processes, which are connected by 

procedural links and structural relations. It uses a single graphic tool, the Object-Process Diagram (OPD) 

set, to model the major system’s aspects, structure and dynamics.  

OPM allows refinement of a model by zooming into entities (objects and processes) to enable a top-down 

analysis. The resulting model is a hierarchical OPD set, which specifies the structure and behavior of the 

system at a spectrum of detail levels.  

The reuse application applied in the study is aimed at developing a model when aligning an ERP system to 

the needs of an enterprise. The input query includes a set of OPDs, each representing a requirement posed 

by an enterprise. These are matched against a model that represents all the alternative solutions available by 

the software package as a large OPD set. The reuse mechanism retrieves single OPDs, which are parts of 

the ERP model that best match the input requirements, providing matching scores to measure similarity 



 

between the requirements and the retrieved OPDs.  

The participants in the study were four PhD students, who are OPM experts. However, only one of them 

had experience in applying OPM for conceptual modeling in the ERP domain, while the other three were 

software design oriented, and their domain knowledge was limited. The participants received a textual 

description of requirements defined by a real organization regarding purchasing and inventory management 

modules, and were instructed to represent them as OPDs. The requirements addressed business processes as 

well as involved entities and their required relations and attributes. The resulting requirement models 

included 25-30 OPDs for each modeler. 

4.2 Results 

The variations among the models produced in the study were explored and categorized. In this section we 

present several examples of typical model variations that were found, discuss their sources and the effect 

they had on reusability, and indicate possible ways of preventing them. We focus on variation types not 

related to domain knowledge, some of which are specific to OPM models and some are more universal and 

may be related to other modeling languages as well. 

Refinement decisions  – OPM, similarly to other modeling languages (e.g., DFD, UML Use Case and 

Statecharts), allows refinement of an entity in a lower-level diagram, as a decision made by the modeler 

based on her individual judgment. For example, closing a Purchase Order, which includes closing the order 

lines and closing the order header, was refined into a lower level OPD by only one of the four modelers in 

our study, while the others included it in an upper-level OPD. The retrieval mechanism in the applied reuse 

application is designed to overcome these variations by aggregating lower-level details into upper-level 

diagrams when no other match is found. Hence, refinement decisions do not cause retrieval failure, but at 

the cost of significant additional processing time.  

Entity naming – There are no defined, standard, globally accepted ontologies that conclusively name 

domain entities. Hence, the spoken language allows the modeler many choices of possible names. Although 

most objects have known, agreed names within a given organization, in many cases processes are not that 

accurately referred to (e.g. Enter Inventory Transaction vs. Register Inventory Transaction). Since this is a 

very common and well-recognized phenomenon [10], most reuse applications are designed to handle it by 

employing affinity or semantic similarity identification, and partly overcome the problem. 

Abstract entities – Modelers may or may not use abstract entities, as illustrated in Figure 2. The Supplier 

object in Figure 2(a) is abstract, i.e., it has no instances besides the instances of its specializations, as 

opposed to the Supplier object in Figure 2(b), which has instances of its own. Abstract entities, when used, 

can take various forms and sizes of inheritance hierarchies, that again increase variations. The reuse 

application in our study takes the assumption that the query models are generally less detailed than the 

reusable models to be retrieved. Hence, abstract entities included in the reusable model and not in the query 

model do not harm retrieval success, but not vice versa. Such variations can be avoided by modeling rules 

to be employed when creating query models. 



 

Figure 2: Abstract entities example 

Applied design considerations – These may appear in different forms. For example, the effect link in 

Figure 3(a), although legitimate in design, is clearly an error in terms of conceptual modeling, since, as 

shown in Figure 3(b), an inventory transaction affects the inventory rather than the warehouse. However, 

the inventory data can be encapsulated in the warehouse object, in which case, from a design point of view, 

the model in Figure 3(a) is correct. Variations of this type caused retrieval failure, since the links between 

the entities are of different types. Clear modeling rules that regard encapsulation as design consideration to 

be avoided could prevent such variations and resulting retrieval failure. 

 
Figure 3: Design considerations example 

Another example of design considerations (Figure 4) shows two different ways of representing the 

relation between an Item and a Supplier. In Figure 4(a) the supplier code is an attribute of the Item, 

whereas Figure 4(b) represents two structurally related objects, Item and Supplier. Figure 4(a) 

corresponds to relational data design style, while Figure 4(b) simply represents the relation without 

implying the implementation directions. The reuse application used in this study was designed to 

overcome this type of variations, by considering possible confusion between structural relations and 

characterization. However, not all reuse applications are designed similarly, and may fail in such cases. 

Again, clear modeling rules could prevent such problems. 

   Figure 4: Attributes / relations example 



 

Independence of processes – Processes in OPM can appear independently of any object, or as features of 

an object. For example, Insert Purchase Order may be regarded as a feature of Purchase Order or as an 

independent process, involving other activities such as supplier selection. The choice depends on the 

modeler’s preference and interpretation of the domain, and can also reflect design considerations. This type 

of variation is clearly unique to OPM models. The effect on reuse was negligible, since perceiving a 

process as a feature of an object does not change its nature. 

Invocation link – this is a modeling construct in OPM, denoting an immediate triggering of a process by 

the completion of another process. What actually triggers the process is an event, which is not modeled 

explicitly. An ontological analysis has identified the invocation link as a case of construct excess [16], and 

indeed, there were cases where some modelers used an invocation link while others represented a process 

triggered by an event. As a result, the matching score computed was low, yet retrieval was successful. Here 

again, clear modeling rules can be drawn in order to minimize these variations. 

 

5. Discussion and Directions for Future Research 
This paper discusses the phenomenon of model variations, and its effect on reusability of models. We stress 

that in order to increase reusability model variations should be anticipated, minimized, and taken into 

account in the design of reuse mechanisms. 

The anticipation of model variations in a given environment can be achieved empirically, as demonstrated 

in the pilot study reported here, or through understanding the sources of variations that may occur in that 

environment, on the basis of the framework suggested in Section 3. More research is needed in order to 

establish a full understanding of the sources of variations. For example, in order to examine the quality 

perceptions of different modelers, a designated research can be conducted, including extracting such 

perceptions, finding their sources, inquiring their implications in different modeling languages and 

suggesting a strategy to achieve their uniformity. 

The anticipation of variation types may affect the selection of a modeling language. Once a language is 

selected, the human factors that lead to the anticipated variations are beyond our control. The controllable 

factor that can be addressed as a corrective action is the modeling process. Variations can be reduced by 

providing clear guidance to the modeling process and the employment of the various modeling grammar 

constructs. A good example of efforts in this direction are the modeling rules [6], which define precisely 

the mapping of real world phenomena into UML constructs for the purpose of conceptual modeling. 

Applying such rules should reduce the model variations significantly, while different rational is still valid 

when UML is applied for design purposes. 

Other rules that address the modeling process can contribute to the consistency among different views, 

uniformity in the use of modeling constructs and grammar, and well-defined refinement decisions. Naming 

standards and rules, which emerge in recent research efforts [10, 21], may reduce naming variations. 

Should these or futures suggestion of this kind be adopted, modeling languages will become more than a 

set of syntax rules, and will provide modeling methodology as well. 

Regarding reuse and retrieval mechanisms, it is possible to design these to be robust to expected variations. 



 

However, it is important to note that a robust retrieval mechanism is likely to be very complicated and its 

accuracy might be reduced. Therefore, reducing the variations in the models is preferable if possible. 

Further research is currently being conducted by the authors, using other modeling languages, mainly 

UML, in order to gain additional insights regarding possible types, characteristics and impacts of modeling 

variations and to validate and generalize a theoretical framework that addresses them. 

 

References: 

[1] Agarwal, R. and Sinha, A. P., 1996, The Role of Prior Experience and Task Charasteristics in Object-

Oriented Modeling: An Empirical Study, Human-Computer Studies 45, pp. 639-667. 

[2] Batra D., 1993, A Framework for Studying Human Error Behavior in Conceptual Database Modeling, 

Information and Management, 25, pp. 121-131. 

[3] Bodart F., Patel A., Sim M., and Weber R., 2001, Should optional Properties be Used in Conceptual 

Modeling? A Theory and Three Empirical Tests, Information Systems Research 12 (4), pp. 384-405. 

[4] Castano S., De Antonellis V., Fogini M. G. and Pernici B., 1998, Conceptual Schema Analysis: 

Techniques and Applications, ACM Transactions on Database System 23(3), pp. 286-333. 

[5] Dori, D., 2002, Object Process Methodology – A Holistic Systems Paradigm, Springer Verlag, 

Heidelberg, New York. 

[6] Evermann J. and Wand Y., 2001, Towards Ontologically Based Semantics for UML Constructs, In: 

Proceedings of ER 2001 (LNCS 2224), Springer-Verlag Berlin, pp. 354-367. 

[7] Kim Y. and March S. T., 1995, Comparing Data Modeling Formalisms, Communications of the ACM, 

38 (6), pp. 103-115. 

[8] Lai L. F., Lee J. and Yang S. J., 1999, Fuzzy Logic as a Basis for Reusing Task-Based Specifications, 

International Journal of Intelligent Systems 14, pp. 331-357. 

[9] Massonet P. and Lamsweerde A.V., 1997, Analogical Reuse of Requirements Frameworks, In RE’97, 

Proc. of the Third IEEE Symposium on Requirements Engineering, IEEE Press Los Alamitos CA. pp. 26-

37. 

[10] Moriarty T., 2000, The Importance of Names, The Data Administration Newsletter 15. 

[11] Mylopoulos J., 1992, Conceptual Modeling and Telos.  Chapter 2 in: Loucopoulos and Zicari (eds). 

Conceptual Modeling, Databases, and CASE. Wiley, pp. 49-68. 

[12] Rahm E. and Bernstein P. A., 2001, A Survey of Approaches to Automatic Schema Matching, The 

VLDB Journal 10, pp. 334-350. 

[13] Palopoli L., Sacca D., Terracina G., Ursino D., Uniform Techniques for Deriving Similarities of 

Objects and Subschemes in Heterogeneous Databases. IEEE Transactions on Knowledge and Data 

Engineering (to appear) 

[14] Peleg M. and Dori D., 2000, The Model Multiplicity Problem: Experimenting with Real-Time 

Specification Methods, IEEE Transactions on Software Engineering 26 (8) pp. 742-759 

[15] Pernici B., Mecella M. and Batini C., Conceptual Modeling and Software Components Reuse: Towards 



 

the Unification, In: IS Engineering: State of the Art and Research Themes, Springer London, pp. 209-220. 

[16] Soffer P., Golany B., Dori D., and Wand Y., 2001, Modelling Off-the-Shelf Information Systems 

Requirements: An Ontological Approach, Requirements Engineering, 6, pp. 183-198 

[17] Soffer P., 2003, Aligning an Enterprise System with Enterprise Requirements: an Iterative Process, In: 

Proceedings of the 5th International Conference on Enterprise Information Systems (ICEIS ’03), (to 

appear). 

[18] Sutcliffe A. and Maiden N. A., 1998, The Domain Theory for Requirements Engineering. IEEE 

Transactions on Software Engineering 24(3), pp. 174-196. 

[19] Topi H. and Ramesh V., 2001, Human Factors Research on Data Modeling: Review of Prior Research 

and Suggestions for Future Directions, EMMSAD’01, Proc. of the Sixth CaiSE/IFIP8.1 Int. Workshop on 

Evaluation of Modeling Methods in Systems Analysis and design, pp. XV-1 – XV-14. 

[20] Wand Y. and Weber R., 1993, On the Ontological Expressiveness of Information Systems Analysis and 

Design Grammars, Journal of Information Systems 3 pp. 217-237. 

[21] http//:www.semanticweb.org 


