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ABSTRACT 

Process flexibility and adaptability is essential in environments where the processes are prompt to changes and 
variations. Process learning is a possible approach for automatically discovering from process log data those process 
paths that yielded good outcomes and suggesting appropriate process model modifications to enhance future process 
performance in such environments. We discuss and establish the data requirements for process learning, applicable 
to clinical process management. Our discussion extends a previously established learning process model (LPM) by 
providing a formal set of data requirements which enables us to accomplish effective learning. Learning data 
requirements are illustrated by walking through the application of the LPM framework to a clinical process.             
Keywords: Process learning, learning requirements, context, path, outcomes, soft-goals. 
 



 

INTRODUCTION 

Modern medicine, in its tendency towards evidence-
based formalization of clinical knowledge and 
procedures, uses clinical guidelines in order to 
standardize health-care processes and use the most 
updated evidence based clinical knowledge. Many 
illnesses still have no guidelines at all, and whenever 
guidelines exist, for practical reasons, they  do not 
refer to all possible patient case variations (e.g., the 
patient's clinical condition, past diagnoses, current 
medications, etc.) – just the most frequent and 
important ones. Since guidelines address a limited set 
of patient groups, it is possible that process support is 
not optimized for some variants that are not 
addressed. Our research concerns identification of 
important groups of patient cases and 
recommendation of the best process paths for them 
that would yield best outcomes. 
In a previous work we have established the 
fundamentals for a process learning framework, the 
Learning Process Model (LPM) (Ghattas, Soffer & 
Peleg, 2008; Ghattas, Soffer & Peleg, 2010; Ghattas, 
Peleg, Soffer & Denekamp, 2010). A major 
component of LPM addresses context learning 
(Ghattas, Soffer & Peleg, 2008; Ghattas, Soffer & 
Peleg, 2010; Ghattas, Peleg, Soffer & Denekamp, 
2010). Context refers to the set of inputs provided by 
the environment to the process (e.g., the patient's 
initial conditions, sudden changes to the patient's 
state). Particularly, we have developed a lifecycle 
approach to process learning from historical 
experience, based upon the premise that it is possible 
to group the variations in the execution of patient 
cases into groups – which we refer to as context 
groups. Each context group should be homogenous in 
the outcomes achieved for a clinical process 
execution. We demonstrated (Ghattas, Peleg, Soffer 
& Denekamp, 2010) how through grouping process 
instances into context groups, we can predict for each 
context group a process path resulting in good 
outcomes. This prediction would lead the execution 
of similar process instances to the best known 
outcomes. Repeating this learning cycle, we should 
obtain a better specified process model, with 
improved performance for each context group. 
As our approach is based on learning from past 
experience, we need to establish the data 
requirements for the process learning to be effective. 
These data requirements need to provide a methodic 
way for answering the following questions: When 
should data be collected? How should it be formatted 
and coded? What should be the frequency of data 
collection? How do we rank each data item’s 
importance for each context? Finally, given a case 

study, how can we evaluate a priori the feasibility of 
the required learning task?  
In this paper, we provide insights to these questions 
by extending the LPM framework through the 
establishment of process learning data requirements.  
The paper is structured as follows. We start by briefly 
describing the LPM framework. Next, we use the 
clinical urinary tract infection (UTI) disease 
management process to walk through LPM data 
requirements for the different components of the 
model. Later on, we discuss feasibility assessment of 
a specific learning task. Next, we review the 
literature and compare our model requirements to 
previous works. We conclude by summarizing the 
results of our research and presenting possible future 
lines of research. 

THE LEARNING PROCESS MODEL (LPM) 

Let us consider a clinical process; while diagnosing a 
patient, the clinical expert needs to consider the 
available data about the patient, including his current 
state, medical history, and any inputs that may be 
important for making decisions throughout the 
clinical process, including diagnosis and treatment. 
The data required for the clinical expert to 
accomplish this task is provided in two different time 
periods: (a) initially available data from the patient 
records and from the initial examination of the 
patient; (b) data generated by external events during 
process execution, such as sudden changes in the 
state of the patient. External events, which are out of 
the clinical team’s control , may provide additional 
inputs, which may require some change to the patient 
treatment decided up to that moment. Together, the 
initial inputs and the external events data determine 
the overall path to be adopted and constitute what we 
call the process context.  
We assume that patients who have similar values of 
contextual data (i.e., belong to the same context 
group) should go through similar treatment paths, and 
in principal would be expected to reach similar 
outcomes. In contrast, patients with different values 
of contextual data may be treated similarly but the 
treatment would not necessarily attain the same 
outcomes.  There might be a certain grade of 
variation between different executions in a context 
group. When different process paths are followed 
they might lead to different levels of performance. 
We may learn from historical executions the different 
possible paths, and adopt for each context group the 
path that potentially provides the best outcomes for 
that group.  
Based on this intuitive discussion, a generic LPM 
would basically include three major steps, 
schematized in Figure 1: (1) Context learning stage, 



 

whose objective is to identify ranges of contextual 
data items that would predict the outcomes of an 
applied process path; (2) Path learning stage: Once 
we identify the context groups, we learn the different 
variations of the paths in our historical database and 
select for each context group the path that provides 
best outcomes; (3) Process model adaptation based 
on the learned context groups and associated best 
paths. Once the process model has been adapted, 
another cycle of learning begins, gathering more 
process instances and once again adapting the process 
model based on LPM stages.   
 
 
 
 
 
 
 
 
 
 

FIGURE 1 TO BE PLACED HERE 
Figure 1. Proposed LPM architecture. Legend:  
I=initial context data, X=external event data 
received during runtime, G=goal-state data, 
SG=soft-goal data, P=path data. 
 
As an example for the application of LPM, consider 
the case of urinary tract infection disease 
management process. As a first step, the context 
learning should yield context categories such as 
“young women without recurring UTI” or “elder men 
with catheter who live in nursing homes”. For the 
context category “young women without recurring 
UTI”, stage 2 of LPM (path learning) would identify 
the paths used for this category and would 
recommend a path where the patient is administered a 
specific kind of antibiotics with a high probability of 
good outcome (patient is released with no further 
complications). For the context category “elder men 
with catheter”, the path learning stage would learn 
and recommend a path where the patient is 
administered a more costly antibiotic in order to 
target antibiotic resistant bacteria and increase the 
probability of achieving a good outcome. 
We have established a formal process model 
supporting the different concepts needed for LPM 
and we proposed an overall architecture for process 
learning (Ghattas, Soffer & Peleg, 2008; Ghattas, 
Soffer & Peleg, 2010; Ghattas, Peleg, Soffer & 
Denekamp, 2010). The established process model is 
built upon a formal state-based process framework, 
the Generic Process Model (GPM) (Soffer & Wand, 
2004; Soffer & Wand, 2005), which was extended 
with the necessary concepts to support the process 

runtime view and context modeling. The main 
concepts of LPM are summarized in Table 1. 
A detailed analysis and formulation of these concepts 
are provided in (Ghattas, Soffer & Peleg, 2008). 
 
Table 1. Main Concepts of LPM 
LPM 
concept 

Definition 

Context (C) The set of all inputs provided to the process by the 
external environment. These can be of two types: (1) 
Initial input (I) provided to the process at t= 0; (2) 
External events (X), events providing the process 
with new data generated during its execution.  

Process 
state (S) 

The vector of state variable values at a given moment 
of the process execution. 

Termination 
state (t) 

The end state of the process instance. It can be either 
a goal state (G) or exception (E). 

Goal (G) The set of end states of the process, in which the 
process is assumed to already comply with its 
objective. The process goal is represented as a set of 
states as it may have different variations, all of which 
are assumed to comply with the process objectives. 
Different goal states are differentiated by how well 
they accomplish the process objectives. This may 
depend on several soft-goals (SG’s) such as 
performance and quality measures. 

Exception 
(E) 

A process instance may terminate in an unexpected 
state that is not one of the goal states. We call such 
state an exception (E). 

Process 
path (P) 

The sequence of states which the process goes 
through during its execution. A process state change 
may be caused either by an internal event (i.e., an 
activity) or by an external event, triggered by the 
environment and not controlled by the process. 

Process 
instance 
(PI) 

A PI is modeled as a tuple <P, C, t>, that is the 
instance path, context, and termination state. Hence, 
process instances are characterized basically by their 
behavior (defined by their path and termination 
state), and their context, which is imposed by the 
process environment and constrains the process 
behaviors that can be adopted for any given process 
instance. 

Context 
Group (CG) 

A group of instances that share similar paths, 
outcomes, and contexts.  

 
Illustration of Process Learning Data Requirements 
through UTI Case Study    
In this section, we illustrate LPM data requirements 
by walking through the LPM application to the 
urinary tract infection (UTI) clinical process. We 
start by providing a brief overview of the UTI clinical 
process.  Although we illustrate the data requirements 
using a specific case study, the presented 
requirements were derived from our experience with 
several case studies from different domains, such as 
the medical domain, specifically, ear infection 
diagnosis and treatment (Peleg, Soffer & Ghattas, 
2007) and UTI infection process (Ghattas, Peleg, 
Soffer &  Denekamp, 2010), manufacturing 
processes (Soffer, Ghattas & Peleg, 2010), service 
provisioning processes (Ghattas, Soffer & Peleg, 
2010), “daily morning preparation” process (Ghattas, 
Soffer & Peleg, 2008), Customer care processes, 



 

among others.  Within this paper, we provide data 
requirements that were validated through all the case 
studies examined during our research. 
UTI Overview 
We consider the implementation of the UTI 
management process based on available clinical 
guidelines and medical literature (NGC, 2010; Wein, 
2007). We focus on patients that reach the hospital's 
emergency room (Figure 2-activity: “Receive Patient 
at emergency Room”). The clinical expert interviews 
the patient and reviews his electronic medical record 
(EMR) (Figure 2-“EMR review”), his medical 
history, medication listings (Figure 2-“Current drugs 
listing & review”), and performs a physical 
examination (Figure 2-“Physical and vital signs 
check”). In addition, the clinical expert may require 
the patient to undergo several tests (mainly blood and 
urine tests, CT, etc.) (Figure 2-“Urine tests”, “Blood 
tests”, “Other procedures & tests”).  
Following the initial diagnosis (Figure 2-“First 
Diagnosis (UTI Y/N/Inconclusive)”), the patient may 
be provided with an initial antibiotic, and other 
medications (e.g. fever/pain reduction medications, 

fluids, etc.) (Figure 2-“ER treatments”). The clinical 
team decides whether the patient needs to be 
hospitalized or sent to home care (Figure 2-“Decide 
Hospitalization”), based on the overall clinical 
evaluation. During the entire process, if unexpected 
complications occur (e.g., hematuria, kidney failure, 
heart failure, etc.), the patient may be submitted to 
emergency treatment and procedures (Figure 2-
“Emergency procedures and treatments”).  Once 
hospitalization is decided, the patient may undergo 
additional tests to further diagnose his condition; tests 
may include ultrasound, CT, etc. (Figure 2-activity: 
“Further lab and other tests”). Some test results, 
mainly urine and blood cultures, may arrive several 
days later; based on these test results, the treatment, 
such as antibiotic type may be changed (Figure  2-
“Further/Change treatments & drugs”) and additional 
tests may be ordered (Figure 2-“Further lab and other 
tests”). In addition, in some cases such as urinary 
obstruction, patients may go major procedures 
(Figure 2-“Procedures (minor/major procedures)”). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 TO BE PLACED HERE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  2. Overall UTI process modeled using BPMN notation. 



 

 
LPM Data Requirements 
In order to illustrate the LPM requirements, we will 
go through the data specification for each building 
block of the model (context, path, and outcome data), 
highlighting issues we faced and requirements we 
needed to impose on the data for the learning task to 
be effective. In our requirements presentation we will 
use a well known framework for data requirements, 
provided by Wang, Strong & Guarascio (1996). 
Wang, Strong & Guarascio (1996) established four 
categories for data quality requirements: (1) intrinsic 
data requirements, which are requirements related to 
creating correct and true data values; (2) contextual 
data requirements, whose objective is to ensure the 
data collected is pertinent to the task to be 
accomplished; (3) representational data requirements 
which relate to supplying intelligible and clear data; 
(4) accessibility data requirements which relate to 
providing readily available and obtainable data. Each 
category is further detailed in dimensions (Table 2). 
For each LPM data requirement that we present, we 
will highlight the relevant Wang category(ies) and 
associated dimensions. 
 
Table 2. Data quality categories and dimensions 
following Wang, Strong & Guarascio (1996).  

ID Category type Category meaning  Dimensions  

W1 Intrinsic Creating correct 
and true data values  

Accuracy, Objectivity, 
Believability, 
Reputation 

W2 Contextual Data pertinent to 
the tasks of the user 

Value addition, 
Relevance, Timeliness, 
Completeness, 
Appropriate Amount  

W3 Representational Supplying 
intelligible and 
clear data 

Interpretability, Ease 
of Understanding, 
Representational 
Consistency, Concise 
Representation 

W4 Accessibility Providing readily 
available and 
obtainable data 

Accessibility, 
Security 

  
Identification of the initial context data (I).  
Some of the initial context data is known from the 
medical record of the patient (either electronic 
(EMR) or paper-based); further data is collected 
during the patient interview  by the medical expert 
(anamnesis), during which the physician questions 
the patient to identify chronic illnesses, active 
prescriptions, symptoms, UTI recurrence, UTI related 
historical illnesses (e.g., calculi, reflux problems, 
kidney problems, etc.), general test results 
(urinalysis); physical examination and general tests 
provide additional context data. We relied on the 
clinical expert and on clinical guidelines’ review to 

identify relevant context data. A partial list of context 
data is provided in Table 3. 
A basic validation of data completeness was done by 
verifying that we had all data necessary for 
determining the branching points (XOR joins in 
Figure 2) in the clinical process execution. 
Requirement 1: Data completeness (W1/Accuracy, 
W2/Completeness,W3/Interpretability): Once the 
process model is specified, the availability, accuracy 
and interpretability of all necessary data items need 
to be assessed. This can be accomplish by (1) 
checking the data required at each branching point of 
the process; (2) checking inputs required by each 
activity; (3) using domain knowledge and looking for 
domain expert advice. 
 
Table 3. Context data (partial list). 
Context Item  Context Item 

Demographics  Chronic illnesses 

Age  Diabetes mellitus  

Gender  Hypertension  

Vital Signs  Coronary arterial disease  

Temperature  Congestive heart failure 

Blood pressure  Cancer 

Heart Rate  Chronic pulmonary disease  

Symptoms  Chronic renal failure  

Physical examination   Cerebro-vascular disease  

UTI history  Medications 

Permanent catheter  Hospital acquired UTI 

Mental state  Residence Type 

Functional state  Past tests results 

 
The context data (Table 3) presented several issues 
we needed to address, before being able to use it for 
our learning purposes. 
First, some of the process instances were missing 
essential context data such as active prescriptions or 
essential path data (initial and/or final treatment types 
mainly related to antibiotics type). When the 
instances could not be completed with the help of the 
clinical expert, they had to be ignored.  
Requirement 2: Context data missing data handling 
(W1/Accuracy,W2/Completeness,W3/Interpretability
): It is necessary to decide whether an instance with 
partial data is to be ignored or completed using 
estimation, depending on how accurately the missing 
data can be filled in. Several methods of automatic 
data completion have been proposed in (Bowerman, 
O’Connell & Hand, 2001): fill with a constant value 
(e.g., "Unknown") or statistic value derived from 
similar instances.  
Chronic illnesses data (Table 3) are accompanied by 
a history of patient’s events, treatments, and 
procedures; however without the severity assessment 
of the illness, this data is meaningless for clinical 



 

decision-making that determines process paths 
selected and outcome reached; hence we had to code 
each chronic illness based on its severity, with the 
help of the clinical expert.  
Requirement 3: Data item meaning (W1/Accuracy 
and believability,W2/Completeness): Data items 
coding needs to take into account complementary 
data taken from domain knowledge and/or other data 
items to ensure the data is meaningful and represents 
faithfully the necessary facts it is meant to convey. 
In some cases, we added new data variables, derived 
from other variables. Such was the case of the pulse 
pressure, derived as the difference between the 
systolic and diastolic heartbeat rates, an important 
variable which may indicate shock, low stroke 
volume, or low cardiac output (Simon & Boring, 
1990).  In addition, medications (Table 3) are 
sometimes associated with the patient's chronic 
illnesses, e.g., insulin is mostly associated with 
diabetes mellitus, etc. In some cases, we could infer 
missing chronic illnesses from the medications given 
to the patient.  As a result, we added a new iron 
deficiency anemia field.  
Requirement 4: Data derivation (W2/Value 
Addition): Data items need to be derived from 
existing data. Derivation may use simple 
mathematical expressions, a procedure involving 
multiple variables as independent variables, or rely 
on more complex methods involving feature 
extraction from exiting data (Dasu & Johnson, 2003). 
Some medications (Table 3) are associated with the 
patient chronic illnesses, while others (e.g., 
antibiotics) are given to treat UTI – the acute 
condition that is the main focus of the process 
studied. As long as a medication is not treating the 
main medical problem addressed (UTI), we can 
select whether to keep the medication or the chronic 
illness specification, as both data items are not 
needed. In most cases we decided to keep the chronic 
illness as we need to know in addition to the illness 
presence, its severity and history, as they are 
important for path selection and outcomes reached. 
Requirement 5:  Data redundancy reduction 
(W2/Value Addition and relevance): Data item 
dependencies need to be assessed; data items that are 
already represented by other items should be filtered 
out. 
The patient's medical record is rich in data, part of 
which is irrelevant for UTI. Such was the case of 
historical data and chronic illnesses we filtered out, 
leaving only UTI relevant complications. 
Requirement 6:  Data item relevance assessment 
(W2/Relevance): Context data relevant for each 
context group need to be identified out of the 
available data for each specific learning task. This 
may be done through domain knowledge and/or using 

feature selection methods (Akaike, 1974), as we did 
in (Ghattas, Peleg, Soffer & Denekamp, 2010). 
One major problem in UTI cases is the appearance of 
“extended-spectrum beta lactamase” (ESBL) bacteria 
types, which exhibit resistance to different kinds of 
antibiotics (Wein, 2007). Knowing whether ESBL is 
present influences the process path (i.e., the selection 
of appropriate antibiotic treatment). The issue we 
faced wass that ESBL existence or inexistence cannot 
be determined when the patient is admitted to the 
hospital; Due to its importance, we used a decision 
tree to learn and predict the existence of ESBL based 
on existing initial context data (e.g., partial results of 
blood and urine test, patient state, medical history, 
catheter presence, an indication whether it was a 
hospital acquired infection).  
Requirement 7: Hidden context variables prediction 
(W2/Value addition and relevance):  Predicting 
variables through other context data by inference 
should be considered when such variables are known 
a-priori to affect the process path and outcomes 
and/or render the learning task easier to accomplish. 
The variables “Past test results” (set of different test 
results including blood, urine, blood pressure, 
heartbeat rate, cholesterol, etc.) and "UTI History" 
(set of treatments, events and procedures the patient 
has gone through in the past) contained sets of 
unrelated and different types of data. In order to 
simplify the learning task, the UTI Past test results 
variable was replaced by a set of single-type 
variables, such as “iron deficiency anemia” and 
“Cholesterol”, which reports trends of aggravation of 
anemia and Cholesterol levels,.  
Requirement 8:  Reducing sets of multiple data 
types into sets of single-type data (W2/Value 
Addition, W3/Interpretability and Concise 
representation): Complex data items containing 
multiple types of data should be reduced into sets of 
single data type variables. 
Considering the continuous variable “age”, the exact 
age of the person is not important; hence we 
discretized it in ranges of ten years, assigning each 
instance the midst value of the range (e.g. value 60 
represented the age range [55-65]).  
Requirement 9: Continuous data discretization 
(W2/Relevance, W3/Ease of understandability and 
representational Consistency):  Continuous Data 
items should be discretized to simplify processing. 
This can be done by dividing the range of values of 
the variable into sub-intervals that can be either of 
equal length, equal depth, or equal frequency ranges 
(Dasu & Johnson, 2003). 
Patients with chronic illnesses such as diabetes are 
required to measure their blood glucose level several 
times a day. These sequences of time-stamped 
measures are mainly used for monitoring the 



 

evolution of the relevant vital signs of the patient, 
seeking for symptoms and/or trends. Sequences are 
harder to process than simple variables; hence we 
replaced them by their clinical interpretation (trend 
and/or relevant severity). 
Requirement 10: Sequence data processing 
(W2/Value addition, W3/Concise representation): 
Sequence data needs to be substituted by its domain 
interpretation (e.g., trends, average value, median 
value, etc). 
For most of the UTI context data, rather than the 
numerical values of measures, such as body 
temperature, heartbeat rate, blood and urine test 
results, we needed their clinical interpretation as 
abstractions (e.g., fever/hypothermia, 
hypotension/hypertension, anemia,  etc.). We recoded 
these values using clinically meaningful categories in 
order to highlight the clinical situation. 
Requirement 11:  Data coding (W3/Ease of 
understanding):  Data needs to be coded to reflect 
required domain knowledge. This may reduce 
considerably the complexity of the learning task. 
Identification of external events data (X). 
UTI external events are occurrences of unexpected 
complications (e.g., high fever, abdominal pain, 
hematuria, renal failure), which modifies the clinical 
path. For example, whether the fever continues to 
increase before or long after the antibiotic treatment 
is applied, may mean different things; if it occurs 
after the patient is administered with antibiotics this 
may require a change of the antibiotic type. 
Requirement 12: External events association with 
process state (W3/Interpretability): Each external 
event needs to be associated with the process state in 
which it occurs. One possible solution is time-
stamping external events and states. 
Identification of path data. 
An example of path data in the UTI management 
process path is provided in Table 4.  
In LPM, the process path is modeled as the evolution 
of the process state from one set of states to another. 
An example of the UTI sets of states is provided in 
Figure 3. 
Each specific state, which is represented by a vector 
of state variable values, should be assigned to a state 
set. Note that although timestamps may be used for 
sequencing, it is not always mandatory, as in some 
cases it would be sufficient to establish the order of 
the states.  
Much of the UTI process is spent on patient follow 
up, monitoring his current state (e.g., vital signs, 
fever, blood pressure, etc.) and  making therapy 
changes (treatments, medications, minor or major 
procedures) whenever necessary. Follow-ups collect 
a considerable amount of data, whose relevance we 
need to assess. Based on UTI guidelines review, we 

coded only those follow-up results that affected the 
clinical path, e.g., resulted in antibiotics 
modifications or major procedures.  
 
 
 
 
 
 
 
 
 

FIGURE 3 TO BE PLACED HERE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. An example of a UTI process state 
evolution. Legend: DGx= Diagnosis # x, TRx = 
Treatment #x; HTN= Hypertension, R= Tests 
Results, BP= Blood pressure, HR= Heartbeat-rate.  
 
Table 4. Path data structure. 
Data Item Name Data Item Value 
Process instance ID 253467 
Partial tests outcomes <blood tests partial results>, <Urine 

tests partial results> 
ER Initial Diagnosis <UTI>, <Estimate ESBL+ = N> 
ER Initial Treatment < Zinacef>, <Fluids> 
Hospitalization decision Y 
Follow ups  {Temperatures, Blood pressure, sugar 

levels, treatments, procedures.} 
Urine Culture test 
results 

<…>(1 field/measure), <ESBL+= Y> 

Blood test results <…> (1 field/measure) 
Additional tests: <ULTRASOUND Results>, <CT 

results> 
Modified treatment < INVANZ>, <Fluids>, <Inotropes> 
Procedures <Catheterization>, <surgery …> 
Final Patient status  < Released> 

 
Requirement 13: Relevant path data identification 
(W2/Relevance). For each activity of the process, 
relevant data needs to be identified, based on (1) 
domain knowledge and (2) whether this data serves 
to determine that the process has moved to a different 
set of states.  



 

Some of the process' sets of states are hard to 
identify, e.g., how do we identify the process set of 
states “Patient state improved” and “Patient state 
worsened”? In Figure 3, process state “Patient state 
improved” is based on the criteria “BP decreased to 
normal value (135/95)” AND “Temperature is 
normal”; in other instances the same state may be 
based on different criteria depending on the specific 
initial context. 
Requirement 14: State identification criterion 
(W3/Interpretability and ease of understanding): Each 
possible set of states needs to be identifiable. 
Identifying the set of states per context group may 
reduce the state variability and thus reduce the 
complexity of this task. Accomplishing state 
identification may be automated by defining sets of 
predicates over state variables values. As an example, 
in Figure 3, we may establish that state “Patient 
diagnosed” occurs once variables “Treatment X” 
(See “TRx” in Figure 3) values are set, and state 
“Antibiotic change” occurs once state variable 
“Antibiotic Type” is changed. Finally, note that 
mapping the process model expressed in Figure  2 in 
BPMN to a state based model as expressed in Figure 
3 requires detailing the process model further (e.g. 
drilling down to tasks inputs and outputs variables) 
and is out of the scope of this paper. 
Vital signs values such as temperature and blood 
pressure are important inputs for supporting the 
clinical expert while assessing and diagnosing the 
patient's illness. In LPM we would like to 
recommend to the clinical expert the steps to be taken 
based on the values of such decision parameters.  For 
example, we should have at least 3 ranges for 
temperature measure – hypothermia (T<36.5oC), 
normal (36.5oC<T<38oC), fever (T> 38oC).  
Requirement 15: Path data granularity 
(W3/Interpretability, Representational consistency 
and Concise Representation).  Path data coding 
should take into account the needed level of detail of 
each data item involved with path decision making. 
Identification of termination state data (t). 
As a next step, we need to distinguish sets of UTI 
termination states, both goal states (G) or exceptions 
(E). We identified five termination states, including 
three goal states (G1-G3), one exception state (E1) and 
a generic exception state (E*) that would capture 
exceptions that are termination states that we did not 
identify as goal states. To do so, we first established a 
criterion for identifying each goal state {Gi}.  
Requirement 16: Goal state identification criterion 
(W3/Interpretability, ease of understanding): A clear 
goal state identification criterion must be established 
as a predicate over the relevant state variables.  
We need to identify the occurrence of undesired 
termination states (e.g., death of the patient, defined 

as E1 in Table 5). Each exception state needs also to 
be labeled in the same way as we do for goal states, 
using a logical expression over relevant state 
variable, as shown in Table 5.  
Requirement 17: Exception identification criterion 
(W3/Interpretability, ease of understanding): Desired 
and undesired termination states should be 
distinguished. Exceptions should be identified as any 
non goal state from which the process does not 
continue. This would be expressed as any state that 
has not been identified as one of the known 
termination states (either goal or exceptions known 
states). 
 
Table 5. Termination state identification criteria 
Termination state name Termination state identification 

criteria 
G1- Patient Cured <PatientCured==‘Y’> 
G2- Patient sent to Home Care <PatientSentToHomeCare =‘Y’> 
G3- Require other specialists 
examination 

<RequireOtherSpecialists= ‘Y’> 

E1- Patient death in Hospital <DeathInHospital=‘Y’> 
E*- Exception <Termination states != 

{G i}, i=1..3> 

 
Some of the UTI instances were of terminal cancer 
patients that were transferred to a different clinic. 
While this state is a legal one, we did not account for 
this as a termination state in our initial process 
model. This required a modification of our 
termination state criteria to include a fourth goal 
state.  
Requirement 18: Exception terminated instances 
analysis (W1/Accuracy,W2/Completeness): Process 
instances that get stuck in non-goal states need to be 
analyzed to assess whether they are unaccounted-for 
goal states. 
Evaluation of soft-goals (SG). 
Each goal state of the process may have associated 
soft-goals. We considered three major UTI soft-
goals: (1) the length of stay in the hospital (LOS); (2) 
patient state severity upon release (PRS); and (3) 
total cost of stay (TCS).  
Requirement 19: Support multiple soft-goals 
(W2/Value Addition and Relevance): Each goal state 
needs to be associated with at least one soft-goal. 
Soft-goals may exhibit negative, positive or unclear 
correlation with other soft-goals. For example, we 
note that LOS and PRS are negatively correlated; 
hence they cannot be simultaneously improved.  
Requirement 20: Assessment of soft-goals cross-
correlations (W3/Interpretability, ease of 
understanding):  Soft-goals cross-correlations need to 
be assessed in order to check the feasibility of 
simultaneously improving several soft-goals. 
Negatively correlated soft-goals cannot be optimized 
simultaneously. 



 

Learning task feasibility assessment. 
In addition to the challenges associated with coding 
the data for different LPM components, we need to 
assess the feasibility of the learning task we have at 
hand, considering the data which is available.  
For the UTI case study, we have been dealing with 
two different learning tasks: (1) Learning the context 
groups of UTI elderly patients reaching the 
emergency room; (2) Learning positive ESBL 
context groups for UTI elderly patients. 
In the first learning task, described in Ghattas, Peleg, 
Soffer & Denekamp (2010), we obtained satisfactory 
results. By clustering the paths and outcomes into 
five path instance categories (PIC’s) and building 
context groups using a decision tree algorithm, we 
could define predicates over patient data items and 
their values for each context group. These predicates 
predict with 92.2% specificity and 45.5% sensitivity 
the outcome achieved when a certain process path is 
followed.  
However, for the second task, we faced some issues 
that prevented us from reaching conclusive results.  
ESBL cases are currently identified through blood 
and urine cultures, whose results are obtained after 2-
3 days. The objective was to try to establish a way of 
identifying ESBL contexts with relatively high 
accuracy in much shorter time using LPM. The set of 
data instances we collected had 22% ESBL cases that 
where cured and 4% of ESBL cases which resulted in 
death, 
LPM builds on establishing the path similarity and 
outcome similarity and grouping cases that 
simultaneously have path and outcome similarities in 
what we call process instance categories (PIC). 
We distinguished 16 different PICs based on path 
data (different diagnosis, treatments type (antibiotics 
types, which were classified as either covering ESBL 
for specific bacteria types or not covering any ESBL 
case), procedures and outcome data). This 
partitioning of the data reduced the number of 
instances in some of the PICs obtained so 
unacceptable sensitivity and/or specificity values of 
the learning algorithm were obtained (Simon & 
Boring, 1990). For example PIC’s derived from the 
group of ESBL patients that died in the hospital (4%) 
had insufficient instances quantity for learning. 
Requirement 21: Appropriate number of instances 
(W2/Appropriate amount). Getting enough instances 
for each targeted context category is required in order 
to ensure our data sample is valid for learning. The 
number of required instances depends upon the total 
number of instances as well as on the distribution of 
instances over the context groups. In addition, we 
need to ensure that the set of instances really 
represents the different business scenarios and the 
relevant process paths. However, it may be hard to 

get large enough sets of instances of infrequent 
context categories (Bowerman, O’Connell & Hand, 
2001). 
Clinical knowledge, processes, technology, 
procedures and treatments evolve constantly. Hence 
we need to choose data sample that reflect timely 
process instances, corresponding to current medical 
practice. As the learning process is continuous, we 
can ignore past process instances that reflect outdated 
practices by periodically identifying approved 
changes that were made in the processes and 
consulting with the business process experts to decide 
whether instances collected before these changes are 
still relevant.  
Requirement 22: Depth of relevant historical 
database (W2/Relevance, W3/timeliness): Learning 
requires considering the relevance of the instances 
based on their timeliness, as the process evolves 
based on technology, knowledge, standards, etc. 
We provide a requirement summary in Table 6, 
where in addition we prioritized each one of them in 
order to differentiate mandatory from optional ones 
(see column “Requirement priority”) . By “priority”, 
we refer to how much that requirement is essential 
for our learning approach. Critical requirements are 
those requirements which are key for the success of 
our learning task. Such are requirements 1, 2, 6, 12, 
14 and 16-20  which relate to correctly identifying 
and representing the components of LPM (context, 
path, goal, states, external events, exceptions and 
soft-goals);  We divided non-critical requirements 
into two sub-categories: (1) high priority 
requirements, and low priority requirements. While 
both categories do not affect the viability of the 
learning task, high priority requirements are those 
related to deriving data from the collected data, such 
as hidden context data (requirement 7), feature 
selection and redundant data items elimination 
(requirements 5, 13, 15) or adding domain knowledge 
to the data through coding or representation 
modification (requirement 11), all of which require 
business process domain specific knowledge. Low 
priority requirements (requirements 4, 8, 9 and 10) 
are more related to technical and statistical 
processing issues and depend exclusively on 
statistical knowledge.  

RELATED WORK 

Data Specification Requirements 
Data specification requirements have been largely 
discussed in the literature (Martin, 1976; Wang, 
Strong & Guarascio, 1996; Zmud, 1978), and in 
particular, Wang, Strong & Guarascio (1996) data 
quality framework which has been used throughout 
this paper. Our requirements cover three out of four 



 

Wang categories, as the accessibility category is less relevant for our objective. 
 
Table 6. Data requirements’ summary. Legend:  DS/CL/PL=Data specification/Context learning/Path learning. 
W1/W2/W3 are the Wang Data quality dimensions as provided in Table 2;M/H/L= Mandatory/High priority/ Low 
priority. 
# Requirement Wang Data Quality dimensions/Categories  

(see Table 2) 
Req. 
Priority 

Relevant LPM 
stage 
DS CL PL 

1 Data completeness W1/Accuracy,W2/Completeness,W3/Interpretability M √  √ 

2 Context data missing data handling W1/Accuracy,W2/Completeness,W3/Interpretability M √ √ √ 
3 Data item meaning W1/Accuracy and believability,W2/Completeness M  √ √ 
4 Data derivation W2/Value addition L  √ √ 
5 Data redundancy reduction W2/Value addition and relevance H  √ √ 
6 Data item relevance assessment W2/Relevance M  √ √ 
7 Hidden context variables prediction W2/Value addition and relevance H  √  
8 Reducing sets of multiple data types 

into sets of single-type data 
W2/Value Addition,W3/Interpretability and concise 
representation 

L  √ √ 

9 Continuous data discretization W2/Relevance,W3/Ease of understandability and 
representational consistency 

L  √ √ 

10 Sequence data processing W2/Value addition,W3/Concise representation L  √ √ 
11 Data coding W3/Ease of understanding H   √ 
12 External events association with 

process state 
W3/Interpretability M √   

13 Relevant path data identification W2/Relevance H √  √ 
14 State identification criterion W3/Interpretability and ease of understanding M √  √ 
15 Path data granularity W3/Interpretability, representational consistency and 

conciseness 
H √  √ 

16 Goal state identification criterion W3/Interpretability, ease of understanding M √   
17 Exception identification criterion W3/Interpretability, ease of understanding M √ √  
18 Exception terminated instances 

analysis 
W1/Accuracy,W2/Completeness M √ √  

19 Support multiple soft-goals W2/Value Addition and relevance M √ √  
20 Assessment of soft-goals cross-

correlations 
W3/Interpretability, ease of understanding M √ √  

21 Appropriate number of instances W2/Appropriate amount M √ √ √ 
22 Depth of relevant historical database W2/Relevance,W3/timeliness H √ √ √ 

 
Approaches in Medical Informatics with Some 
Similarities to LPM Context Modeling 
In the medical informatics literature, Tu et al. (2007) 
considered usage scenarios in order to identify 
opportunities for providing decision support. Usage 
scenarios have some similarities to our context 
concept as they model all the necessary process 
inputs: “who is doing what, where and when”. 
Though in our UTI case study we focused more on 
what and when rather than on the actors (who) of the 
process,  
The definition of Act classes in Health Level 7's 
Reference Information Model (RIM) (Russler, 
Schadow, Mead, Snyder, Quade & McDonald, 1999) 
takes an action-centered view, where Act classes 
identify the kind of action, the actors, the objects or 
targets which the action influences, all of which may 
be considered as part of LPM path, although LPM 
does not provide for a specific concept for actors. 
RIM adverbs of location, time , manner, and other 
information about circumstances, such as reasons or 
motives, would be considered part of LPM context 
definition, though in LPM we do not model explicitly 
these adverbs; rather our approach advocates 

assessing the relevance of each data type (location, 
time, etc.), based on its impact on the process 
outcomes. 
Data Modeling in the Process Mining Research 
Van Dongen & van der Aalst (2005) proposed a meta 
model for process mining event logs (MXML) which 
describes process instance logs as a sequence of audit 
trails and data elements; each audit trail describes an 
activity and contains a workflow model element, an 
event type, a timestamp and originator elements. 
Though some similarities exist with LPM path data 
requirements, MXML does not provide for context 
and outcome data support, while LPM does not 
provide a specific element for describing actors.  
The IEEE taskforce on process mining proposed XES 
(Extensible Event Stream) for formatting generic 
event log data (Günther, 2010). Compared to LPM, 
XES focuses on providing a generic framework onto 
which all event log meta-models found in practice 
can be mapped with relative ease, with almost no 
requirements imposed on the data, while LPM goes 
further in establishing the semantics of the process 
runtime model. Finally, compared with both 
previously mentioned frameworks (MXML and 



 

XES), LPM requires a higher data granularity for the 
context and path learning stages to be feasible. 
Learning from process adaptations might also be 
fostered by approaches like process mining 
(Jagadeesh, Bose & van der Aalst, 2009; van der 
Aalst, Weijters & Maruster, 2004), whose objective 
is to analyze process event logs and path variants. . 
However, most of these approaches focus on mining 
the sequences of activities the process goes through, 
while the data flow perspective is not addressed. 
Learning from past experience has been addressed in 
ProCycle (Weber, Reichert, Rinderle & Wild, 2009), 
which allows reusimg process model adaptations in 
similar problem context by capturing contextual 
information and mapping relations of process 
instance changes to cases that can be retrieved later 
when faced with a similar problem context. 
Finally, other context‐aware frameworks have been 
suggested to facilitate the implementation of 
application services, which can somehow adapt their 
behavior to changing circumstances. Most of these 
frameworks (Mikalsen & Kofod-Petersen, 2004; 
Bikakis & Antoniou, 2010; Fahy & Clarke, 2004) 
provide support for gathering and processing context 
data from the real world. However, they leave the 
reaction to context changes to the application or use 
hard‐to‐maintain rule-based approaches for dealing 
with changes. 

CONCLUSIONS AND FUTURE WORK 

We established the data requirements necessary for 
effective process learning. Based on our previously 
formal learning process model (Ghattas, Soffer & 
Peleg, 2008; Ghattas, Soffer & Peleg , 2010; Ghattas, 
Peleg, Soffer & Denekamp, 2010), which includes a 
three stage learning algorithm, mainly context 
learning, path learning and process model adaptation, 
we established the set of requirements for each one of 
the three data components: the context, path and 
outcome data. To ensure that these requirements are 
generic and applicable to a wide variety of domains, 
we analyzed a variety of case studies, including 
processes from the clinical domain, the 
manufacturing domain, service provisioning, etc.  
Without reducing the generality of these 
requirements and their applicability to other case 
studies mentioned in the Introduction, we illustrated 
the requirements by walking through a clinical 
process case study. Finally, we discussed the priority 
of the requirements based on their impact on the 
feasibility of learning, as described in Table 6. 
We intend to use these requirements as a learning 
feasibility assessment framework, which would 
enable us (1) to assess whether a specific learning 
task is feasible or not and (2) to establish a formal 

approach for assessing and coding process data for 
new process learning tasks. Further work needs to be 
done in order to consider the necessity of introducing 
more extensive time handling techniques in learning 
tasks. Finally, in order to further explore the 
applicability of the presented requirements a process 
simulator has been designed to allow us to further 
experiment with different levels of complexity and 
variability of process models, the context relation to 
the paths and outcomes, and the capacity of our LPM 
to learn and improve the process logic. We also 
intend  to explore cases where interaction and 
synchronization exists between different process 
instances running in parallel and sharing resources, 
where we need to consider the dependence between 
the contexts, paths and outcomes of different 
instances.  
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