
1

Conceptualizing Routing Decisions in Business
Processes: Theoretical Analysis and Empirical
Testing

Abstract
Business process models are widely used for purposes such as
information systems analysis, improving operational efficiency,
modeling supply-chains, and business process reengineering. A
critical aspect of process representation involves a choice among
alternative or parallel routes. Such choices are usually represented in
process models by routing structures that appear as “split” and
“merge” nodes. However, evidence indicates that modelers face
difficulties representing routing options correctly. Clearly, errors in
representing routing options might negatively affect the effective use
of business process models.
We suggest that this difficulty can be mitigated by providing process
modelers with a catalog of routing possibilities described in terms
that are meaningful to analysts. Based on theoretical considerations,
we develop such a catalog and demonstrate that its entries have
business meaning and that it is complete with respect to a defined
scope of process behaviors that do not depend on resources or on
software features. The catalog includes some routing cases not
previously recognized. We tested experimentally the catalog in
helping subjects understand process behavior. The findings
demonstrate that the catalog helps modelers understand and
conceptualize process behavior and that the likely reasons are its
completeness and the practical terms used to describe its entries. .

Key words:
Business Process Modeling, Routing structures, Cognitive aspects of modeling

Introduction

Business process models play a key role in analyzing and designing business

processes, implementing workflow systems, and analyzing information systems.

Such models comprise two main types of elements; activities, and routing or control

flow structures. Different flows can occur depending on conditions that arise during

process execution. Routing components that appear as “split” and “merge” nodes in

process models, indicate possible execution routes but not the actual routes that will

be determined only when the process is executed. Hence, these elements are

abstractions of possible business process flow decisions. In a split, process

execution can take at least one of several routes. A merge node represents a point

where the process continues in the same way for all routes possible at a previous

2

split point. Routing structures are included in most process modeling notations1.

They endow process models with their richness in terms of execution possibilities

and hence contribute substantially to the expressiveness of process modeling

techniques. It is not surprising therefore that much work has explored routing

aspects of process models. This includes developing techniques to represent

process behavior, analyzing characteristics of process behavior (e.g. soundness,

which is the ability to reach a definitive final state (Aalst 1997)), and conducting

empirical studies on how routing structures affect the creation and use of process

models (Mendling et al. 2006, 2007, 2008). A well-known project is the Workflow

Patterns Initiative, which has sought to identify and define “patterns describing the

control-flow perspective of workflow systems” (Russell et al. 2006).

 Process routing elements pose both theoretical and practical challenges. First, it

is unclear what constitutes a “good” set of routing behaviors. Most process modeling

languages employ the basic constructs of XOR and AND, which can be used to

model complex situations (Aalst et al., 2003). However, some languages have

constructs to model more complex situations such as OR (EPC (Aalst 1999), YAWL

(Aalst and Hofstede, 2005), and BPMN (OMG, 2006)), and Complex Gateway

(BPMN). The Workflow Patterns collection (Russell et al., 2006) includes other

complex behaviors (e.g., Discriminator).

Second, practical difficulties exist in modeling routing situations in realistic

business settings. Some practical situations cannot be readily modeled. For

example, assume that a component is urgently needed. The component is both

ordered from a supplier and assembled locally. If the order arrives first, local

assembly can be stopped. If local assembly is completed first, the process continues

but the order will still arrive. In most modeling languages, this behavior, although

plausible, might require a significant combination of constructs to be represented. In

contrast, model fragments that do not clearly map to practical situations can be

constructed.

Third, empirical research indicates that routing decisions cause difficulties in

creating and understanding process models. For example, Mendling et al. (2006,

2008) found a positive correlation between the number of control nodes and the

number of errors in a process model. Other studies (e.g., Mendling et al. 2007)

1 An exception is the domain-specific language Picture (Becker et al., 2010). Picture uses building blocks where

decisions are embedded in activities (without splits). This is aimed at avoiding multiple conflicting

representations of a situation, and to facilitate automated model analysis.

3

found a negative correlation between the number and degree (number of related

paths) of control nodes and the understandability of models.

 A likely cause of difficulty in creating and understanding models is the need to

conceptualize complex business process behavior. Routing points reflect

abstractions of many possible process executions. Thus, creating a process model

requires abstracting actual situations. Understanding process models requires

translating model constructs to abstract concepts reflecting alternative behaviors.

 In this work we propose that conceptualizing process behavior can be facilitated

by using a classification scheme of routing phenomena, defined in terms that reflect

what an analyst can observe and recognize in a business domain. We develop such

a classification in a catalog of fundamental process routing situations (‘split’ and

‘merge’ types). In the catalog, each item is assigned a clear business meaning,

implementing a specific and unique business rule. We limit the phenomena we

classify to those that reflect fundamental business process routing decisions, and

exclude their implementation aspects (such as resources available and software

mechanisms). We show that for binary split and merge cases our catalog is

complete and non-redundant.

 We propose that when identifying a situation as an instance of a specific class,

the analyst can better understand and explore it by inferring additional information

about the situation (Parsons and Wand, 2008). This understanding can help an

analyst choose the correct representation in business process models.

 In terms of design science (Hevner et al., 2004), we develop an artifact–the

specific catalog–by applying a theoretical view of a process as state changes in the

(business) domain. We then evaluate the catalog in three ways. First, we show by

theoretical analysis that it is complete (for its intended scope) and non-redundant.

Second, we demonstrate via business examples that the entries (categories) are

meaningful and have business relevance. Third, we conduct two experimental

studies that provide evidence to the usability and usefulness of the catalog in

conceptualizing business behavior.

In the following, we first apply a cognitive problem-solving perspective to the

difficulties encountered in process modeling. We then use a formal view of business

processes as state changes to analyze process routing decisions and develop the

catalog of split and merge possibilities. Following the analysis, we evaluate the

catalog and describe two studies to test how well it can support conceptualization of

4

process behavior. We then discuss the significance of the results, summarize the

work, and suggest further research.

Cognitive Aspects of Process Modeling

Empirical observations (Pinggera et al., 2012) have indicated that process modeling

involves three phases. The first is comprehension, in which the modeler develops an

understanding of the represented domain. The second, modeling, occurs when this

understanding is transformed into modeling constructs. Thirdly, reconciliation occurs

when model elements are reconciled, moved, and renamed, to improve appearance

and clarity. These three phases are repeated, each iteration relating to a chunk of

the model. Iterative chunking has been addressed by cognitive problem-solving

theories (Newell and Simon, 1972), which suggest that tasks are typically addressed

in smaller parts (chunks) due to limitations in working memory (Miller, 1956).

We consider the construction of a process model to represent a given domain

behavior as a problem-solving task, and the model as the solution. We focus on the

comprehension phase, when the modeler develops a domain understanding. The

domain understanding will be mapped into constructs of a modeling language.

According to Newell and Simon (1972), the problem-solver formulates a mental

model of the problem, and uses it to reason about the solution and to apply solution

procedures. The importance of the mental model has been widely recognized. For

example, Jonassen (2000) claims that it is the mental construction of the problem

space that is the most critical for problem solving. Simon (1981, p. 153) claims that

“solving a problem simply means representing it so as to make the solution

transparent.” Savelsbergh et al. (1998) discuss possible functions served by the

mental model in understanding and solving problems.

In process modeling, solution procedures (in the sense of Newell and Simon

(1972)) entail mapping the mental model of the process domain behavior into a

particular modeling language. According to Newell and Simon (1972), the mental

model is affected by the characteristics of the task, and the methods used to

achieve it. For example, if the intended model is a Petri net, the mental model would

most likely relate to tokens and their dynamics. Similarly, Larkin (1985) considers

that a mental problem representation means classifying its description into a

schema of concepts to which solution procedures can be applied.

5

In the cognitive schema theory (Derry, 1996), mental models are cognitive

schemas that help to understand a specific situation and solve the related current

problem. Mental models are constructed by using lower-level cognitive schemas,

called memory objects, as building blocks. Memory objects are components of

human knowledge stored in long-term memory. The simplest objects are basic

concepts, called p-prims. Above them are integrated objects that enable people to

recognize and classify patterns in the external world, so they can respond with

appropriate mental or physical actions. A mental model is constructed by mapping

memory objects onto components of a real and currently faced phenomenon,

reorganizing them, and connecting them to form a model of the whole situation.

Construction of the mental model is highly affected by the availability of memory

objects. According to the cognitive load theory (Chandler and Sweller, 1991), the

burden on the limited capacity of working memory can be reduced by using

schemas that allow categorizing multiple elements as a single element (Paas et al.,

2003).2 When the cognitive schemas used are low level and require further

integration to construct a mental model, cognitive load is increased. This might

reduce efficiency in performing the task (Paas et al., 2004).

Consider the use of process modeling constructs as memory objects to

construct mental models of process phenomena. Actors and activities are concrete

and observable elements. However, routing elements are abstractions of multiple

possible occurrences of the process. Hence, recognizing and classifying these

elements is more difficult than it is for concrete aspects such as actors or activities.

The abstract nature of routing elements is manifested in attempts to analyze

process modeling languages in ontological terms. Rosemann et al. (2006) used

Bunge’s ontology, while Santos et al. (2010) applied the UFO ontology. Neither

found a direct mapping of split and merge constructs to ontological concepts (an

indirect link was suggested by Santos et al. (2010)). These outcomes indicate

difficulties in relating routing elements to “real world” phenomena.

The constructs of process modeling languages might serve as memory objects

in the mental model of a modeler3. However, the meaning of such constructs is often

inaccurately defined. For example, Dijkman et al. (2008) observe that BPMN 1.0

notation has ambiguities. They claim that syntactic rules are comprehensively

2
 For cognitive load considerations in process modeling, see, for example, Figl et al. (2010).

3
 Even when using process modeling constructs, a mental representation is not a complete

and ready process model, as it does not include syntactic and layout aspects.

6

documented throughout the BPMN standard specification, but the actual semantics

are described in only a narrative form whose terminology is occasionally

inconsistent. Rittgen (1999) argues that an OR-join in EPC may have different

possible interpretations4. Several other studies observed and attempted to solve

problems that may arise in EPC due to the lack of clear semantics of OR merge

(Aalst, 1999; Kindler, 2006; Mendling and Aalst, 2007). In summary, the meaning of

routing-related modeling constructs is often ambiguous. This can hinder the use of

language constructs as memory objects to support recognition and classification of

domain phenomena. Furthermore, modeling languages offer a limited set of

concepts (typically AND, XOR, OR split and merge nodes) that might require still

more integration to represent the full variety of routing behaviors.

To overcome the imprecise meaning of process modeling language constructs,

attempts were made to use Petri net concepts (e.g., Mendling and Aalst, 2007;

Dijkman et al., 2008). Petri nets describe dynamics in terms of creation and

destruction of tokens (Petri, 1962). Token-based representation complements

process models by enabling precise reasoning about dynamics. However, as tokens

are primitive concepts they would need to be integrated with other modeling

constructs, possibly leading to increased cognitive load. Moreover, more than one

translation of a token-based representation into a process model might exist

(Vanderfeesten et al., 2008) leading to further translation problems.

To summarize, the concepts of process modeling languages do not appear to

provide an appropriate set of memory objects in mental models of process behavior.

This motivates us to develop a catalog of routing behaviors to fill this gap. To

provide the required support, the catalog should (a) use terms that can be readily

related to domain (“real world”) behavior, (b) use precisely defined concepts, and (c)

include a complete set of possible routing behaviors, to avoid or minimize a need for

integration. To reduce cognitive effort, it would also be desirable to reduce

redundancies in the catalog.

Defining Business Processes

We analyze routing elements in process models in terms of observable behavior of

the domain in which the process takes place. We focus on the semantics of process

models, not on formalization in terms of modeling constructs. Specifically, we seek

4
 Wait for all to activate, activate on the first that comes, and activate every time.

7

all generic cases of possible process routing. Such choices typically appear as split

points and– following splits–merge points in process models.

We analyze cases where actual domain behavior might take more than one

course of action as perceived by process stakeholders. We do not include workflow

software mechanisms (e.g. interrupt features), resource considerations (where

process execution is affected by resource availability), or whether or not several

activity instances can be executed concurrently (also related to resources). We

consider multiple concurrent occurrences of the same case type as one generic

behavior, and will seek completeness with respect to this scope.

 We employ the Generic Process Model (GPM) (Soffer and Wand, 2004; 2007),

which employs ontological concepts. GPM defines an enacted process as a set of

state transitions in the process domain. Transitions result either from

transformations within the domain (internal domain dynamics), or from effects of the

domain environment (external events). A process ends when the domain reaches a

state in a goal – a set of states desirable to stakeholders where no more changes

can occur due to internal domain dynamics.

 The ontological concepts underlying GPM are taken from Bunge’s work (Bunge,

1977; 1979) and its adaptations to information systems (Wand and Weber, 1990;

1995) and business process modeling (Soffer and Wand, 2004; 2007). For our

purpose, representing a process this way has three advantages. First, it is linked to

domain phenomena by its ontological roots. Second, it is not confounded by process

modeling notation. Third, it has been used for analyzing process behavior,

especially whether the process can meet its goals (Soffer and Wand, 2005).

 Empirical evidence exists to show that Bunge’s ontology is applicable when

evaluating business process techniques. Recker et al. (2011) found that ontology-

based predictions about BPMN deficiencies were corroborated by practitioners.

However, whether or not the use of GPM concepts can provide a useful catalog of

process behaviors requires empirical corroboration. We therefore include in this

work two empirical studies that test whether our analysis has useful outcomes.

 We start by introducing the GPM view of process. We then use this view to

identify generic routing situations (for both split and merge possibilities).

8

Ontological Concepts

The ontological framework considers a world made of things that possess

properties. A property can be intrinsic to a thing (e.g. assets of a company) or

mutual to several things (e.g. salary paid to an employee by a company). Things can

combine to form composites that have emergent properties that arise due to

interactions among the components and are not properties of the individual

components (e.g. the processing power of a computer). Properties are perceived by

humans as attributes whose values are functions of time. A functional schema is a

set of attribute functions that represent a view of similar things. This view reflects the

purpose of an observer. The state of a thing at a given time is the set of values of

the attribute functions. We refer to these functions as state variables.5

 In our analysis, we model the process domain or parts of it (sub-domains). It is

particularly important that the choice of state variables reflects the stakeholder’s6

view of the domain and sub-domains. Specifically, observers may vary in the

granularity (level of detail) they use when defining the state. Different states for one

observer might be considered as one state by another observer. For example, when

a product has been manufactured, one observer may differentiate several states,

depending on how many components are still available. Another observer may only

have one end state, i.e., the product has been assembled.

 When the properties of a thing change, the change of state is an event. States

are considered discrete in time, and thus events occur at well-defined points in time.

Events can occur either due to internal transformations (internal events) in the thing,

or due to its interactions with other things (external events). Since the event concept

is based on a chosen functional schema, one observer may perceive an event, while

another observer does not. Events that appear different to one observer may also

be considered as one event by another observer. For example, one observer may

perceive arrival of any order as one type of event, while another observer will

consider orders from different types of customers as different types of events.

5
 Formally: A functional schema is a model of a thing x: xm = (M, F), where F is a set of

functions from a domain M to a set of co-domains: F =<F1,…,Fn>: M  V1…Vn . Fi, 1≤ i≤n,
represents a property of X and is called the i-th state function (variable) of x. S(X) =

{<x1,…,xn>}  {V1…Vn | xi=Fi(M) } is the possible state space of X. [Wand & Weber 1990]

6
 We recognize that there may be several stakeholders whose view may matter for a

process. Here we assume that the model reflects the view of a single “process owner”.

9

 We denote the conceivable states (conceivable combinations of state variables)

of a thing x by S(x). Not all conceivable states can materialize. The constraints

defining allowed states are termed state laws and the states that conform to these

laws are termed the lawful states of a thing x, denoted by SL(x)S(x). Similarly, not

all conceivable internal events (transformations in the thing) can occur. We term the

mappings that determine the possible events that can occur in a given state due to

transformations in the thing the transition law. Formally:

L: SL  P(SL) (where P(SL) is the power set of SL).  sSL L(s)P(SL).

 We distinguish three possibilities:

(1) s  L(s). An internal transformation will occur and we term s an unstable state.

(2) s  L(s). An internal transformation may or may not occur.

(3) s  L(s) and L(s) is a singleton: |L(s)|=1. L(s)={s} means that no internal

transformation can change it. We term such a state stable.

 A stable state of a thing can only be changed by actions of other things. Such

changes are termed external events. Conversely, the occurrence of a state change

without an action by another thing indicates that the state prior was not stable.

 An internal event is represented by <s,L(s))>. An external event is represented

by <s,es> where es is the state resulting from an external occurrence, e, at s.

 The purpose of observing a process state is to decide on actions. We consider

states as equivalent if they lead to the same choice of action by a stakeholder. For

example, it might be sufficient to know that when inventory drops below a certain

threshold, a given action (e.g. replenishment) must be taken, while the (more

detailed) state information includes the actual inventory level. Accordingly:

Definition 1 (equivalent states): A set of states, S’P(SL) will be termed equivalent

for a stakeholder if this stakeholder chooses the same action for each of these

states.

Formally: Let A={a} be a possible set of state-changing actions a: SL
 P(SL)

(namely: aA sSL, a(s)SL) and D a decision function: D:SL
A. S’P(SL) is

an equivalence set (with respect to A and D) iff D(s1)=D(s2) s1 ,s2S’.

 Definition 1 interprets the abstract ontological notion of a transition law in terms

of decisions about actions available to a stakeholder: sSL if D(s)=a, then

a(s)=L(s). For equivalent states, the same action will take place. We note that:

10

(1) In our formalization, the role of a stakeholder is abstracted to the decisions

about actions. The notion of equivalence set of states reflects a stakeholder’s view

that these states are indistinguishable for deciding on the next action.

(2) Following (1), a repeating behavior is actually re-entering a set of equivalent

states. There are two possible decisions: repeat the behavior or stop repeating.

States in which the same decision is taken constitute an “equivalence set,” although

they may differ in additional state variables, and thus appear to be different.

(3) This view does not imply that the decision maker actually takes the actions.

(4) The actions A may include “no action.”

 To decide on actions, stakeholders need an assurance that the outcome will not

be random. Hence, we introduce the idea of predictable behavior:

Definition 2 (predictable behavior): A process domain (or sub-domain) has a

predictable behavior for a subset of states S’SL iff for each sS’ L(s) is an

equivalent set of states.

Formally: Given A and D, sS’ s1,s2L(s) D(s1)=D(s2). This formal form is

implied by the condition (see Definition 1) that sSL if D(s)=a, then a(s)=L(s).

 Definition 2 specifies that for predictable behaviors of each state in S’, the

decision will lead to equivalent outcomes. For the stakeholder, they will be

indistinguishable regarding further actions that may be taken.

 The above definitions lead to the following conclusion:

Corollary: Let sL(s) where L(s) are equivalent states for the stakeholder (but not a

singleton). From a stakeholder’s point of view, the states will be considered stable.

 Equivalence and hence stability depend on the stakeholder. This enables us to

model cases where one stakeholder might take an action while another will not.

Process Domain and Sub-domains

The properties and dynamics of the process domain reflect the properties, internal

transformations, and interactions of its components. The composition of the domain

determines which changes will be considered internal and hence governed by the

process (reflecting stakeholder’s decisions) and which changes will be considered

external (and not controlled within the process). As explained above, we abstract the

domain and its dynamics in terms of relevant state variables and the changes that

can occur to their values. We assume that choosing state variables reflects the

business semantics and the information relevant to stakeholders.

11

 Process activities cause state transformations in the domain and typically might

impact only parts of the process domain (such as organizational actors or units). We

formalize such parts using the notion of sub-domain – a part of the domain

represented by a subset of the state variables of the domain:

Definition 3 (domain, sub-domain model): A model of domain D is a set of state

variables XD. A sub-domain Z is a part of the domain modeled by a subset of the

domain state variables XZ
XD.7

 Consider, for example, a business that assembles products based on

customers’ orders and then ships the products to customers. The domain D will

represent the whole business. Examples for sub-domains are assembly (where

state variables may represent status of work stations) and shipping (where state

variables may represent orders ready to ship). The model of the domain D can also

include emerging state variables, such as the overall status of a customer order.

 The idea of sub-domain is similar to workflow boundaries used in Product-

Based Workflow Design (Reijers et al. 2003), and to artifacts used in analyzing work

processes. For example, Limonad et al. (2012) use “…Business Entities (BE) (a.k.a.

Business Artifacts)… to conceptualize the organizational domain.”

 It is possible that for some domain states the internal transitions of a sub-

domain depend only on its own state, and not on the rest of the domain. In such

cases, the sub-domain behavior will be predictable. To explore such possibilities we

first define the relationships between domain states and sub-domain states:

Definition 4 (state projection, projecting set): The projection of domain state, s,

on sub-domain Z (denoted s/Z), is the set of values of XZ
XD in s. The projecting set

for a sub-domain state t (denoted SD(t)) is the set of all domain (D) states that

project to the sub-domain (Z) state t.8

A domain state projects onto a single sub-domain state. In contrast, more than

one domain state will usually project onto a given sub-domain state. For example,

7
 Formally: A domain model is a set of state functions D={f1(t)…fn(t)} and the state of the

domain at a given time t is xk,={fk(t), k=1,…n}. The domain is modelled by X
D
={xk; k=1…n}

where the state of the domain at a given time is s(D)=<x1,…xn> (or simply s). A sub-domain

is a part of the domain described by a subset of the domain state variables X
Z
X

D
.

8
 Formally: Let s(D)=<x1,…xn> be the state of D and the state of domain Z such that X

Z
X

D

be {y1,…,ym) (m<n). The projection s/Z on a state of Z is such that yk=xj, where k=1,…,m and

j{1…n} and each j is counted at most once. The projecting set in S(D) for state v in sub-

domain Z is the set S
D
(v)={sS(D) | s/Z=v}.

12

“materials arrived from a supplier” and “materials arrived for processing from a

customer,” will project to one warehouse state, “materials available for storage.”

 Consider how a sub-domain changes its state when the domain changes its

state. The domain states before and after the change project onto sub-domain

states. If these projections are not equivalent states of the sub-domain for a

stakeholder, the stakeholder will observe an internal event of the sub-domain:

Definition 5 (event projection): The projection of an event in domain D on sub-

domain Z is the event e/Z defined by the projections of states of D before and after

the event on Z.

Formally: Let e=<s1,s2>, s1,s2S(D). e/Z =<s1/Z,s2/Z>.

In the product assembly case, when the domain changes from “order arrived” to

“order sent to assembly,” the assembly sub-domain changes from “idle” to “busy.”

 Since several states of a domain may project to a given state of a sub-domain,

several domain events might project to the same sub-domain event. For example,

all material arrivals might project to a warehouse “storage” event.

 Domain transitions, governed by the transition law, may be manifested as

events in sub-domains. Thus, the domain law is projected on sub-domains:

Definition 6 (law projection): The projection of transition law LD of domain D on

sub-domain Z (denoted L
D

/Z) is the mapping defined by the events projected on Z

when the state of D changes according to LD.9

The following example demonstrates a projected law. It shows that even when a

domain behaves predictably, its sub-domains do not necessarily behave predictably.

Assume that materials arriving from a supplier are stored differently than those

arriving from a customer. In either case the projection of the initial state on the

warehouse sub-domain (prior to storing) is “materials arrived.” If storage actions

differ by case, the warehouse will appear to behave unpredictably to someone

observing only the warehouse and not the origins of the materials that arrive.

 In general, predictable domain behavior does not imply predictable behavior in

sub-domains. However, for some domain states, a sub-domain might behave

predictably. For example, if a sub-domain represents the actions of an agent (e.g. a

business unit, or a product cell) that operates independently under some conditions:

9
 Formally: Let the state of sub-domain Z be u. Let the set of states in D which projects into u

be SD(u). The law on D maps every sSD(u) to LD
(s)=S'. The projection of L

D
 on Z will be

the projection of S' on Z, L
D

/Z(u)S'/Z.

13

Definition 7 (predictable behavior): A sub-domain Z behaves predictably for a

subset of domain states S’ iff the projection of the transition law LD on Z maps

equivalent sub-domain states (projected from the set S’) into equivalent sets.

Formally: For S’S(D), each sS’, LD(s)//Z maps into equivalent states in S(Z).

In words, for states in S’ LD
/Z fully describes the behavior of Z, independently of the

values of state variables not in the sub-domain (XD-XZ).

 For example, assume that the warehouse always stores and records

materials in the same way, independent of the source. The warehouse sub-domain

will then behave predictably for all states that trigger storage actions. When a sub-

domain Z behaves predictably, the internal transitions in Z depend only on XZ (and

not on the state variables outside the sub-domain (XD-XZ)). Hence, we will also say

that the sub-domain Z behaves independently. Predictable behavior and

independent behavior of a sub-domain have the same meaning.

Process Models and Process Paths

We define an abstract view of a process, independent of actual implementation, as

state changes in the process domain. In the following, we assume that the process

stakeholder’s view of the process domain D is represented by a set of state

variables – XD. This view is reflected in a lawful state space of the process domain–

SL. The actions A and decisions D available to the stakeholder are related by:

D: SL
A. The mapping D induces a partition of SL into equivalence sets,

{Sk; k=i…N} such that sSk D(s) is the same. The stakeholder is aware of a set of

external events E that can affect the process.

We first define an enacted (actual) process in the domain D:

Definition 8 (process): An enacted process is a sequence of state changes in a

given domain beginning with an unstable state and leading to a stable state.

Corollary: In an enacted process, unstable states change according to the domain

transition law, and stable states (except the last) are changed by external events.

Formally: A process is a sequence of states <s1, s2, s3, … sm, sm+1 … > such that sk,

sk+1 for k1 are not equivalent and that either internal or external events exist from sk

to sk+1: sk+1=L(sk) or e (external event) such that sk+1=esk.

 Definition 8 is generic and shows an enacted process as modeled in GPM

without using an activity construct. In practice, the word "process" is used for the

abstract notion of a process, referring to a process class – a set of possible process

occurrences considered similar by a stakeholder. A process class is described by a

14

process specification. We formalize such specification in four elements (all

considered "classes"):

Definition 9 (process specification): A specification of a process in a given

domain is a quadruple:

I: the set of possible initial states – a subset of unstable states of the domain.

G: the goal set – a subset of the stable states reflecting stakeholders’ objectives.

L: the transition law that specifies the domain behavior.

E: a set of relevant external events that can or need to occur during the process.

 A process specification includes two types of state changes: internal transitions,

reflecting the domain dynamics (abstracted as a transition law), and effects of the

environment, abstracted as external events. The law (L) is an abstraction that, in

practice, will usually be specified in terms of pre- and post- conditions for process

activities, and the rules determining the choices among routing possibilities.

 As an example, consider a business that assembles products according to

customer orders. A process specification may include:

I: all states that reflect arriving customer orders.

G: the states where an order has been shipped (which requires that it will be first

approved, then assembled, delivery shipment arranged, and the order shipped).

L: the business rules determining: (1) whether an order will be approved or not, and

(2) the rules that determine the actions required for assembling the product, the

order of these actions, and their assignment to workstations.

E: arrival of orders, arrival of components from suppliers, and machine breakdowns.

 To assure that every process in the domain can terminate, we posit:

Assumption 1 (Stability): Every unstable state of the domain can be transformed

by a sequence of internal and (possibly) external events into a stable state.

 Termination might not necessarily assure that the process completed

successfully (namely, reached a state in the goal set). To complete successfully, a

sequence of states must lead via internal and (possibly) external events to a state in

the goal set.

 We also assume that every process must be triggered by interactions with the

environment (manifested as events external to the process domain but affecting it):

Assumption 2: Before the process begins, the domain is in a stable state.

 Example: the assembly line is idle prior to a work order arriving.

 According to the abstract definition of a process model (Definition 9), process

design can be viewed as defining the domain law – L – such that, for a given set of

15

external events, at least one possible trajectory of states will connect each initial

state to a goal state. This abstract view can be linked to concepts such as activities,

actors and resources (Soffer and Wand, 2004) that are typically used in process

models. Process implementation can be viewed as choosing the actual actors,

actions, and resources that will be involved in enacting the specification of the law.

 As explained, a process specification defines a class of processes where each

process is an enactment (an instance of the class). Recall that, for practical purposes,

a process stakeholder may consider different states as equivalent. Therefore, the

stakeholder may not distinguish between two process class instances that proceed

through different, but equivalent states. A special case is when two sequences of

activities are performed concurrently and independently (or “in parallel”). For example,

in order processing: checking inventory availability, and checking customer’s credit.

Such activities may be executed in various orders but these differences might not

matter to the stakeholder. We formalize this idea using the notion of a path:

Definition 10 (process path): Given a process specification, a process path px is a

set of possible enactments, where each proceeds through the same sequence of

equivalent sets of states (each reachable by a transition or an external event from a

previous equivalent set). The first state of each enactment is in the initial set (of

unstable states – I) and the last is in the goal set (of stable states – G).10

In this definition X can be the whole process domain (D) or any sub-domain (ZD).

We will denote the set of states comprising a path pX by {pX}.

 It is important to clarify the differences between the three definitions above.

Definition 8 (a process) refers to an actual enacted process (process instance).

Definition 9 (a process specification) refers to an abstract process class (that can have

many enactments). Definition 10 (path) refers to the different possible enactments that

appear the same to the process stakeholder.

Finally, the notion of thread is important for the discussion that follows. In GPM

terms, a thread is a sequence of state changes through equivalence sets of any

domain (the whole domain or any sub-domain). In the following, we will discuss

10

 Formally, let X be a domain. Let PR
X
=<I,G,L

X
,E> be a process specification over this

domain (I,GS
L
(X); sI, sL

X
(s); sG, sL

X
(s)). Let {Sm; m=1…N} be a partition of S

L
(X)

to equivalence sets with respect to the transition law L
X
. A process path in X is a sequence of

equivalent sets of states p
X
=<S1,…SN> SkS(X) such that: S1I, SNG, and k=1…N-1:

SkL(Sk) Sk+1L(Sk) or SkL(Sk)  eE, Sk+1=eSk (assuming the event transitions
equivalent states in the same way).

16

domains that are decomposable to independently behaving components, i.e. sub-

domains. For these cases, a thread will refer to state changes in the lowest level

independent components. A complete thread of the whole domain (possibly

manifested as concurrent threads of sub-domains), is a process path (Definition 10).

Analyzing process routing situations

We now apply the GPM view of processes to the analysis of routing behaviors

(typically manifested in process models via split and merge nodes). We seek a

complete catalog of non-redundant sets of possibilities that are independent of

resource constraints or software-related mechanisms. We provide additional formal

analysis regarding the completeness and non-redundancy of the catalog in

Appendix 1.

Analyzing Split Structures

We identify the phenomena included under the term “split” based on three split

cases in the workflow pattern initiative (Aalst et al. 2003). These cases fall into two

categories. First, “a single thread of control splits into multiple threads of control

which can be executed in parallel, thus allowing activities to be executed

simultaneously or in any order” (AND-split). Second, “when based on a decision or

workflow control data,” “either one of several branches is chosen” (XOR-split) or “a

number of branches are chosen” (OR-split) (Aalst et al. 2003, pp.10-13). In the AND

case all branches must execute. In the XOR and OR cases at least one must

execute. The choice depends on the status of the process at the split point.

These descriptions clearly refer to two different phenomena:

(1) Concurrency: several threads may proceed concurrently and in any order.

(2) Choice: at least one thread of several possible ones must be chosen.

 Concurrency and choice can occur separately or in combination. In

concurrency, several threads can execute simultaneously. This may occur

independently of the process state at the split. In choice, several threads are

available, but the state of the process when the choice is made will determine which

ones are executed. Often, two phenomena will be combined, and then choice can

cause several threads to execute concurrently. In other words, threads exist that can

act concurrently, but not all must be activated. There will be no choice if all threads

must become active.

17

 We note that concurrent execution can refer to two types of phenomena. First,

relevant to our analysis, several sub-domains can be active concurrently

(independently) in the same process instance. Second, it is possible that several

instances of a process or of a sub-process may be executed concurrently (e.g.,

processing several customer orders concurrently). Since this possibility depends on

available resources, we do not include it in our analysis. Following the above, we

categorize split phenomena based on choice and concurrency. A choice can be

made only when several paths are available for the domain to undergo changes. For

example, when a product can be either purchased or manufactured, the process

definition should enable two paths, for purchasing and for manufacturing. Such

situations require that a given set of states reached in the process can be partitioned

into several subsets, each transforming to a different set of (equivalent) states. The

choice of path will depend on the values of some state variables, creating a partition

of the states at the split. In summary, a choice split is characterized by the existence

of a number of paths that might be taken when the process reaches a given set of

states of the domain.

 Concurrency is enabled through decomposition of the domain to independently-

behaving sub-domains. For example, in customer order processing, preparing the

goods and coordinating delivery can occur concurrently in two independently

operating units, the warehouse and transportation.

 We formalize this observation in the following Lemma:

Lemma 1: Two sub-domains can transform concurrently (or one transforms and the

other remain stable) if and only if they are independent of each other.

Proof: Concurrently operating sub-domains can transform through their sequences

of states in any relative order. Considering X, LD
/X transforming a state within X does

not depend on the other concurrent sub-domains. Conversely, when sub-domains

behave independently, each can change depending only on its own state. Thus their

sequences of states can transform in any relative order, i.e., concurrently.

 We term a domain as decomposable if it can be decomposed into sub-domains

that have independent and concurrent behaviors.

 Based on the above analysis, we define a split point in a process model:

Definition 11 (split): Let S be a subset of domain states on a process path

reachable by the same transition or external event. S is a split point iff at least one of

the following can happen:

18

(a) The domain becomes decomposable (into independently behaving sub-

domains) for every transition possible from every state sS; or

(b) The set S can be partitioned into at least two subsets such that each leads to a

different process path. Formally, at least two states, s1,s2S exist such that

L(s1)L(s2)= and L(s1), L(s2) are not subsets of a set of equivalent states.

The definition is independent of constructs used in process models and refers to

the two different “split” phenomena: first – concurrency, second – choice. The

definition implies that either or both cases can occur.

We aim at identifying a full set of split types by considering all possible

combinations of the two phenomena. While our general considerations will apply to

splits of any dimension, we focus on the binary case to accomplish completeness.

Multiple process paths can exist whether the domain is decomposable or not. A non-

decomposable domain can proceed through one of several alternative paths.

Conversely, for a decomposable domain, when all sub-domains can proceed

independently and concurrently, there is one path with no selection to be made.

The two phenomena, alternative paths and decomposition, can be combined

where different paths entail different combinations of activated (and independently

behaving) sub-domains. All split possibilities can be determined by examining

combinations of the two dimensions, multiple paths and decomposability, as

described in Table 1.

Table 1: Domain decomposability and multiple paths
 Multiple alternative paths (decision)

No Yes

Domain
decomposability

No No split (sequence). Exactly one path must be selected
for the domain to traverse.

Yes All sub-domains must be
active (concurrently).

At least one sub-domain must be
active.

 We summarize all possibilities for the binary case in Lemma 2 below. Some of

these possibilities have not been identified as distinct cases so far. We consider

each possibility in Table 1. First, when only one path exists for a non-decomposable

domain, no split can occur. Second, if multiple alternative paths exist for a non-

decomposable domain, exactly one path can be chosen. For example, a person

standing at a crossroads can go either right or left, but not both at once. This is an

exclusive choice, or a split of “XOR” type, where exactly one path can be selected

from several available. Since the domain is not decomposable we term this case a

single domain split. For a decomposable domain, if no alternative paths exist, all

19

(independent) sub-domains must become active concurrently. Thus, no choice is

involved. This is the “AND,” referring to several sub-domains that become active

concurrently.11

 Finally, the combination “multiple paths” and “decomposability” indicates a

situation where different paths may involve different active sub-domains. Choosing a

path in this case implies specifying which sub-domains to activate. A specific case is

when exactly one sub-domain can be active. This is a special case of the exclusive

choice among domain paths, where the paths differ according to which sub-domain

is activated.

In Figure 1 we depict all possibilities for a domain that can be decomposed into two

sub-domains. Three possibilities exist. One sub-domain becomes active, or the

other sub-domain becomes active, or both become active. In practice, specifying

which of the three occurs reflects business rules.

 Depending on possible constraints, we obtain the following possibilities:

(1) No constraint. All paths are possible (the “OR” type). Any combination of sub-

domains may be activated, but at least one must be.

(2) A constraint implies a choice of only one path. Since a path where only one

sub-domain is active does not imply a split, this possibility refers only to the

case where all sub-domains must be active (the “AND” type).

(3) A constraint implies a choice between several paths. For two domains (A,B)

three possibilities exist for such choices:

a. {A or B}; b. {A or A+B}; c. {B or A+B}

 In possibility (3) above, case (a) is a “XOR” split, reflecting domain

decomposability where the choice between two paths of activation is a choice

between two sub-domains (“two activity sequences”). Cases (b) and (c) represent a

choice between activating a specific sub-domain and activating both sub-domains.

This case can be generalized to a decomposition to N sub-domains D={Dk|

k=1,…,N} when a given subset D*D of must always be activated. We define this

possibility formally.

Definition 12 (COR): Let S be a set of states where the domain becomes

decomposable to two sub-domains (A, B). S is termed a Constrained OR (denoted

11

 In process models, “AND” indicates parallel activity sequences, which mean many
execution possibilities for interleaving activity sequences. Our point is that decomposability
implies that the sequences are independent, and the outcome would be the same for the
stakeholder, independent of the relative order of execution.

20

“COR”) split point if for every sS a specific sub-domain (A or B) becomes active,

and for some states sS’S the other sub-domain also becomes active.

Figure 1. Possible Paths in a Decomposable Domain (upper part) and their
Possible Combinations (lower part)
(shaded rectangles indicate active sub-domains; the circle reflects a choice among
alternatives)

We term the sub-domain that is always activated “Mandatory,” and the other

“Optional.” The mandatory sub-domains (e.g. A) can be specified as COR(A). To the

best of our knowledge the COR split type has not been recognized as a distinct

type. It is possible to specify the COR behavior with logical operators available in

process modeling languages (e.g., a combination of AND and XOR, or through

conditional flows available in BPMN), and using general specifications such as

Causal Nets (Aalst et al, 2011). However, COR is not included as a distinct

construct in extant process modeling languages, or in the Workflow Patterns list

(Russell et al. 2006). Yet, the behavior described by COR is quite common in

practical situations where one action (or several) must always be taken, while other

actions might or might not be taken (concurrently with the others). For example,

21

consider customer order processing where, for most orders, both item availability

and customer credit worthiness will be checked, but for some (“preferred”)

customers, credit need not be checked. Checking item availability is mandatory,

while credit checking is optional.

Table 2 summarizes the decomposability-related split types for the binary case.

Table 2: A Catalog of Decomposability-related split types

Constraint Active domain Possibilities Split type

A B A+B

No constraint + + + OR

One path
possible

+ No split

 + No split

 + AND

Two paths
possible

+ + XOR

+ + COR(A)

 + + COR(B)

A “+” indicates the possible activations at the split point.

 Our analysis scanned all possible combinations of the two dimensions in the

common definition of split (multiple paths and decomposability) for a binary split.

Hence, it assures completeness for binary split types:

Lemma 2: Let S be a binary split point. If the domain is not decomposable in S then

only a single domain split is possible (the process may follow alternative paths, each

potentially involving the whole domain). If the process domain becomes

decomposable into two sub-domains in S, then the possible split types are OR (any

combination), AND (both), XOR (one exactly), and COR (one is always activated).

 Finally, we point out extensions to split of any order:

Definition 12a (multi-dimension COR): Let S be a set of states where the domain

becomes decomposable to N sub-domains: D={Dk| k=1,…,n}. Let P(D) be the power

set of D and D* P(D) a collection of sets. S is termed a Constrained OR split point

if for every sS all sub-domains in at least one element of D* become active, and for

some states sS’S additional sub-domains become active.

 In this definition, the mandatory sub-domain is replaced by a mandatory choice

of a subset of sub-domains. Thus, while an “OR” allows any possible combination of

sub-domains to become active, COR specifies constraints on the allowed

combinations of active sub-domains.

 We identify several combinations of interest of the general definition of COR:

(1) The collection D* contains only one set of sub-domains, which is DA:

1.1 All sub-domains in DA must be always activated.

22

1.2 Exactly one sub-domain in DA must be activated.

(2) D* contains only single-element subsets. At least one of several sub-domains

must be activated.

(3) D*={DR} and DR={A}. This is a Constrained OR with one necessary sub-domain

that can be denoted as COR (A). The binary split is a special case where N=2.

Analyzing “merge” structures

Defining a merge

A merge implies that a split occurred earlier in the process (or immediately prior to

the initial states of the process)12. As shown above, at the split, the process domain

may be non-decomposable (alternative paths exist for the entire domain) or

decomposable (to independently behaving sub-domains). For a non-decomposable

domain in which several paths exist, only one path can be enacted at a time. In this

case a merge means that the different paths reach the same state (or a set of states

that meets some predefined conditions). Thus, merge for a non-decomposable

domain can be formalized in terms of sets of domain states:

Definition 13 (single-domain merge): Let {Sk, k=1…N}, N>1, be non-empty sets of

states of domain D, such that SiSj= i,j=1…N, i≠j. M is a single-domain merge if

and only if every Sk includes a state that is mapped by the law into the same set of

states in M.13

Formally: k, k=1,…,N, skSk , L(s1)=L(s2)=…= L(sN)M.

 For a decomposable domain, a variety of merge possibilities can arise. For

simplicity and clarity we address only binary decomposition. We will indicate at the

end of the analysis how it can be extended in principle to multi-domain cases.

 After a split has occurred, the domain is traversing a set of states where each

sub-domain can operate independently. We first define a set of states for which

independently behaving sub-domains exist:

12 In many process modeling notations, merge points might be related to loop structures,
whereas a continuation might include a repeating set of activities. This has the visual
appearance of a merge node located before the split node. Consider how the process
actually happens (the sequence of states followed); the merge occurs only after the split.

13

 Every two subsets of states in the definition are disjoint. Hence, at least one subset must
include an unstable state. This links a single-domain merge to domain dynamics.

23

Definition 14 (decomposition set): Let D={Dk, k=1…N} be sub-domains of D.

SdecS(D) is a decomposition set of states (with respect to D), iff sSdec each sub-

domain Dk (k=1…N) behaves independently of the other sub-domains.

Formally, let L/Dk(s) be the projection of the domain law L on sub-domain Dk

(Definition 4). For each sub-domain Dk, k=1…N, L/Dk defines predictable behavior

(Definition 2) for all states of Dk that are projections of states sSdec.

 For example, assume that after a product is manufactured, two sub-domains A

and B operate independently. In A the product is moved into finished goods

inventory. In B, a shipment to the customer is arranged. The domain behavior

projects changes in the warehouse, and defines the transition law of the inventory

sub-domain that is independent of the state of the shipment sub-domain.

 Note: in Definition 14 we do not require DiDj= for i≠j. Two sub-domains can

share state variables, but changes in one do not necessarily affect the other.

 When a split to two or more independent sub-domains occurs, each sub-domain

traverses a path independent of the other. We propose that the meaning of a merge

in a process model is a domain state where at least one of the sub-domains cannot

further transform independently. To formalize this notion, we consider the final

states of each of the independent paths traversed by the sub-domains. All sub-

domain states for each path, except the last state, are projections of domain states

that are in a decomposition set. The last states cannot be in the previous

decomposition set, because at least one of the sub-domains stops transforming

independently of the other. The decomposition set is valid now only with respect to

the sub-domains that remained independent. A merge, therefore, is a set of domain

states such that each maps into a state on at least one of the sub-domains in which

the sub-domain ceases to be independent.

 For example, assume that fulfilling an order involves two independent types of

operations, taking place in two independent sub-domains. Order preparation

includes assembling, packaging, and preparing goods for loading. Transportation

arrangement includes obtaining a truck. The merge comprises all states where the

order can be loaded on the truck, namely, “order assembled and truck is ready and

awaiting loading.” Once the two sub-domains have completed their tasks, the

delivery sub-domain (in which the order is loaded, transported and delivered)

becomes active.

 We formally define merge following a multiple domain split:

24

Definition 15 (decomposition-related merge): Let pDk be paths of sub-domains Dk,

k=1,…,N where at least in the first state of pDk Dk behaves independently. A

decomposition-related merge is a set of domain states (M) where at least one of the

sub-domains reaches a state in its path where it is no longer independent (other

sub-domains might still traverse an independent path).14

 According to the definition, a decomposition-related merge set (M) can be

specified when at least one of the concurrent sub-domain paths reaches states that

do not transform independently. In practice, M has some meaning for the

stakeholder (e.g. “order can be shipped” or “production can start”).

 In the following analysis we refer to decomposition-related merges simply as

“merge.” The merge definition does not prescribe what happens after at least one of

the sub-domains reaches M. For the process to continue, the domain should be

unstable for some states in M; at least one new sub-domain will become unstable. In

the example above, this will be the shipping and delivery sub-domain.

 Consider another sub-domain C, different than Dk, k=1,…,N, the previously

active independent sub-domains. For C to become unstable when at least one of the

sub-domains Dk reaches the merge, it must share state variables with Dk as

otherwise it will not be affected. However, C should not be part of an independent

sub-domain that is still active when others reach the merge.

Definition 16 (continuation sub-domain): Let M be a decomposition-related

merge of sub-domains Dk, k=1,…,N. A continuation sub-domain is a sub-domain C

for which: (1) C Dk, k=1,…,N, and (2) C is unstable for at least one state in M.

Formally: XC-(XC
Xk)≠, M is a merge of {Dk} and sM such that s/C is unstable.

Corollary: to assure that the process can continue we require that C shares state

variables with at least one of Dk, k=1,...,N. Formally: k1,...,N, XC
XDk≠.

 In the shipping example, M comprises states where the assembled order can be

loaded on the truck. The domain C refers to loading, transportation and delivery, and

is activated when the order can be loaded.

14

 Formally: Let p
Dk

= s
k
1…s

k
Mk, k=1,…,N , such that for s

k
1 Dk has predictable behavior. A

decomposition-related merge is a set of domain states, M, where k{1,…N} sM such

that: s/Dkp
Dk

, and L/Dk(s/Dk)) is not in a decomposition set.

25

Identifying Merge Cases

Using the above formalization we now analyze possible types of behavior. To

simplify the discussion and to accomplish completeness, we focus on a binary

merge. We will show that, for this case, the analysis provides a full set of behavior

types. Some are recognized Workflow Patterns (Russell et al., 2006) while others

have not been previously defined.

 We assume that what matters to a stakeholder are the points in time when an

organizational actor (such as a person, unit, system or machine) begins taking an

(independent) action, or completes an action. We represent such actors as sub-

domains. Our analysis of merge will classify each process behavior type in terms of

stability and instability of the sub-domains that have become active at the split (A,

B), and of the continuation sub-domain (C) that may become active at the merge.

 To illustrate, consider an example. Two teams (A and B) are independently

engaged in a product design process. The next step in the process will be executed

by a third team (C). We illustrate different merge types by the following scenarios.

 Scenario 1: When the first team completes the task, C can begin the next

development. The work of the other team becomes redundant so it is stopped.

 Scenario 2: similar to scenario 1, but the second team is allowed to complete its

work and generate an alternative solution that will not be used in the continuation of

the process (but might be used in the future).

 Scenario 3: regardless of which team completes first, C will start only when both

teams complete their tasks, to enable selection of the best solution. This is termed

synchronization, waiting for two independent threads of activities to end.

 Scenario 4: Team A includes experienced experts, while team B is being

trained. If team A completes first, its solution will be immediately used for the next

task. If team B completes first, they will wait until team A completes so the solutions

can be compared before the process continues. This behavior is termed an

asymmetric synchronization (Soffer et al., 2007) as the need to wait depends on

which team completes its task first.

 Scenario 5: the two teams perform complementary tasks. The solution of the

first to complete is immediately given to the other so they can use it. In this case, the

second team does not continue its independent path after the first team reaches its

objective. Rather, it takes a different path based on the first team's results. This path

can be considered to occur in the continuation sub-domain (C), since it is not

independent as before.

26

 The five scenarios demonstrate possible merge behaviors. Each behavior can

be specified in terms of the sub-domain that completes its task first, and what

happens then to the second and to the continuation sub-domains. Using this

specification, we can enumerate all possibilities of merge behavior in terms of two

possible events. The first event occurs when at least one sub-domain reaches the

merge, namely, ceases to transform independently. It either stops or is no longer

independent, and is then part of a continuation sub-domain. A second event will

occur if the first event has not stopped the second sub-domain or caused it to

change its course (and hence become part of the continuation sub-domain). The

analysis allows also for asymmetric cases with respect to the sub-domains. It is

possible that when sub-domain A reaches the merge first, what happens to the

continuation sub-domain (C) or to sub-domain B is different than what happens to C

and A, if B reaches the merge first.

 To illustrate, in Scenarios 1 and 2 of the product design example, the process

continues when either team provides a solution. The other team is stopped or

allowed to complete its task, but the outcome is not used. Thus, only the first event

counts. In contrast, in Scenario 3, when one team completes the design (first event),

the process continues only when the second event happens. Note that these three

types of scenario are symmetric with respect to whether A or B completes first.

 Using the two events, we now characterize the domain behavior:

(1) For the first event, by specifying:

a. Whether the continuation sub-domain is activated (becomes unstable) or not; and

b. Whether the other sub-domain proceeds independently or is stopped. If it

proceeds, but not independently, it becomes part of the continuation sub-domain.

(2) For the second event, if it is relevant, by specifying whether the continuation

sub-domain is activated or not. If not, the process may completely stop.

The second event will occur if and only if:

(1) The continuation sub-domain has not been activated on the first event, and

(2) The other sub-domain was active upon the first event and was “allowed” to

proceed independently.

 In the product design example, when one team reaches a solution, the next

step can either begin or not. The second team may proceed independently, stop, or

change their approach. If the second team proceeds but not independently, this is a

new (part of the continuing) development phase. If the second team proceeds

independently, then a second event will happen. This second event will be relevant

27

to the continuation of the development process only if the process has not

progressed into the next phase when the first team completed its assignment.

 We identify all possible merge behaviors as combinations of domain states after

the first and second events. Examples are provided in Table 3, where the possible

options in the first event are: domain A arrives at the merge, domain B arrives at the

merge, or both arrive together at the merge. The second event, when relevant, can

only be the arrival of the other domain at the merge. The state after the first event is

defined by the states of the continuing domain and of the domain that was still

progressing when the event occurred. The state after the second event is defined by

whether the continuation sub-domain proceeds or not. Design decisions about these

states determine the behavior at the merge point. We designate these decisions by

indicating whether the continuing domain remains stable (S) or is activated and

becomes unstable (U), and whether the other domain proceeds independently (P) or

is stopped (S). When the other sub-domain proceeds but not independently, this is

considered part of the activation of the continuation domain.

Table 3: Some merge combinations
 First event:

domain arrives at merge
Second event:

arrival of

A B Both
together

A B

State of domain

Case

B C A C C C C

1 P U P U U

2 P U P U S

3 P U P S U U

4 P U P S U S

11 P S P U U U

12 P S P U U S

19 P S P S S U U

20 P S P S S S U

38 S S S S S

39 S S S U U

40 S S S U S

U: unstable; S: stable; P: proceed
Case numbers refer to Table A1 (Appendix 1).

 The analysis involves identifying all possible cases and combining all similar

cases. Hence, it generates a complete and non-redundant set of behaviors. The full

set of cases and a proof of completeness are included in Appendix 1.

 As noted, the behaviors are not necessarily symmetric for the two sub-domains.

For example, in case 3 in Table 3 (shaded) if A arrives first at the merge, B

continues (P) and C is activated (U). If both sub-domains arrive at the merge

28

together, C is activated (U). If B arrives first at the merge, A continues independently

(P) and C is not activated (S). In the latter case a second event occurs when A

arrives at the merge. In this pattern of behavior, the difference in outcomes is

dependent on which sub-domain arrives first. Further, C is always activated when A

arrives (whether first or second), but not when B arrives first. We call this case

asymmetric synchronization where A dominates (it corresponds to scenario 4 in the

product design example above). Case 11 is similar, but the roles of A and B are

reversed.

 The full list of merge behaviors (Table A1 of Appendix 1) can be simplified in

two ways. First, some behaviors are symmetric with respect to sub-domains A and B

(e.g., case 3 and case 11 in Table 3). Second, we consider only cases where

process completion is assured (no situation can arise that will stop the process). In

some cases it is possible that the continuation sub-domain will never be activated

(e.g., case 38 in Table 3). In other cases, for every possible split enactment, the

process is or might be stopped. For example, in case 19 in Table 3, the process

cannot be guaranteed to continue for any enactment. If only one sub-domain is

activated at the split, the process will not continue. If both are activated and each

one arrives at the merge separately, the process continues on synchronization, but if

they arrive at the merge together the process is stopped.

 The detailed analysis (Appendix 1) leads to eight generic merge behaviors

(Table 4). To demonstrate that all these cases are plausible in practice (namely,

have business meaning), we provide examples for each case in Table 4. The

“Applicability” column indicates the split enactments for which the merge case can

assure process continuation. For example, synchronization is possible only when

both sub-domains become active at the split preceding the merge. Similarly,

Immediate Continuation with Mutual Blocking is applicable only when one sub-

domain is activated at the split. If otherwise, the process might be blocked if both

sub-domains become active and reach the merge simultaneously.

 The final catalog of eight generic merge types is listed in Table 4 and can be

grouped into three categories, each with a different business meaning.

Group 1 (1-3): the process continues unconditionally (on the first merge event).

Group 2 (4-6): specific conditions exist for continuation, indicating that a process has

reached the merge through two parallel branches that need to be synchronized.

Such synchronization reflects some business requirements.

29

Group 3 (7-8): situations where certain actions cannot be taken (e.g. blocking may

reflect limited capacity at the merge). These cases reflect business constraints that

might stop the process. Such constraints may be overcome if the enactment is

known before the arrival of a branch at the merge, and the merge type can be

dynamically adjusted. These cases may require an appropriate information system.

 The last two cases lead to an interesting conclusion. The list of cases is

complete with respect to split and merge, when they are considered separately.

However, dependency on the actual split enactment may require dynamic merge

adjustments, combining different behaviors. Since we have not analyzed possible

combinations, they do not appear as cases in our list.

 Table 4: A Catalog of Generic Merge Types

 Description and applicability Applicability Example

 Group 1

1 Immediate continuation

The process continues when the
merge is reached. When both
domains are active and one
reaches the merge, the other
proceeds independently.

All enactments

Two engineers concurrently try to
solve a problem. When the first
succeeds, the next activity – fixing the
problem – begins. The other engineer
continues to work on a solution.

2 Immediate continuation with
cancellation

The process continues when the
merge is reached. When both
domains are active and one
reaches the merge, the other is
stopped.

All enactments

Two engineers try concurrently to
solve a problem. When the first one
succeeds, the next activity – fixing the
problem – begins. The other engineer
stops working on the problem.

3 Immediate continuation with
asymmetric cancellation

The process continues when the
merge is reached. If a particular
domain arrives first, the other is
stopped. If the other domain arrives
first, the original domain proceeds.
In other words, if both domains are
active, one will always complete but
the other will complete only if it
arrives first.

All enactments

Production planning depends on either
demand forecasts or on actual
customer orders. Forecasts can be
prepared while customer orders are
sought. Planning can start when the
forecast is ready, but orders will still be
sought. If orders are available before
forecast is completed, planning
begins, and forecasting is stopped.

 Group 2

4 Synchronization

The process can continue when
both sub-domains have arrived at
the merge. After one sub-domain
arrives, continuation awaits
completion of the other (that has
been continuing).

When the two
sub-domains
are active

To process a customer order, both
inventory and the credit worthiness of
customer must be checked. The order
will be processed only when both
actions have been completed.

30

 Table 4: A Catalog of Generic Merge Types

 Description and applicability Applicability Example

5 Asymmetric synchronization

The process can continue only
when a specific (“necessary”) sub-
domain arrives at the merge. If the
other sub-domain arrives first, the
necessary sub-domain must be
allowed to proceed independently
since continuation requires it. If the
necessary sub-domain arrives first,
the other sub-domain is allowed to
proceed.

When the
necessary sub-
domain is
activated
(the other may
or may not be
activated).

Before production can begin,
production planning must be
completed. Sometimes, production
cost estimates must be done in
parallel with planning. However,
completion of this activity is not
necessary for production to begin.

6 Asymmetric synchronization with
cancellation

The process continues only when a
specific (“necessary”) sub-domain
arrives at the merge. If the other
sub-domain arrives first, the
necessary sub-domain must be
allowed to proceed since
continuation requires it. If the
necessary sub-domain arrives first,
the other sub-domain is stopped.

When the
necessary sub-
domain is
activated
(the other may
or may not be
activated).

Buyers always seek quotations from a
preferred supplier and sometimes also
from an alternate. In the latter case, if
the quotation from the preferred
supplier arrives first, the buyer
proceeds to order, and cancels the
alternate request. If the quotation from
the alternate arrives first, the buyer
waits for the quotation from the
preferred supplier, then decides from
whom to order.

 Group 3

7 Immediate continuation with
mutual blocking

The process can continue when
either domain arrives at merge but
not when both arrive together.
Hence, for two-domain enactments,
continuation of the process cannot
be assured.

Only for single
domain
enactments.
No decision
needed about
the other
domain.

Two production lines transfer
completed products immediately to the
packaging work center, which can
handle only one product at a time. If
products from the two lines arrive
together, they may be damaged.

8 Single-sided continuation

The process can continue only upon
arrival at merge of a specific sub-
domain. Otherwise, it cannot
continue.

Only when the
specific sub-
domain has
been activated.

Some products require refrigeration. A
refrigeration truck can move all
products. A regular truck cannot be
used for refrigerated items. If there are
such items, and only regular trucks are
available, the process will not
continue.

 Finally we note that, as in the analysis of split types that yielded cases not

previously recognized, the analysis of merge also yielded unrecognized cases.

These include cases of both asymmetric and mutual blocking.

Extending the Analysis to N Sub-Domains

 We demonstrate briefly how the merge analysis can be extended to any number

of sub-domains. Assume that at a split set of states SSp the domain D can be

partitioned into N independently behaving sub-domains D={Dk, k=1,…,N} and that a

continuation sub-domain C exists that is inactive at the split.

 Assume that KN sub-domains became active at the split. Generalizing the

31

binary case, we consider a stream of possible events, comprising sub-domains

“arriving” at the merge. The arrivals (at most K) will continue until (1) all active sub-

domains have reached the merge, or (2) all active sub-domains have been stopped,

or (3) the continuation sub-domain has been activated. Each arrival may lead to

these decisions:

(1) Whether or not to activate the continuation sub-domain C, and

(2) For each active sub-domain, whether or not to stop it (it becomes inactive).

 If an active sub-domain Dk reaches the merge and the continuation is not

activated, Dk becomes inactive. If an active sub-domain is proceeding, but not

independently, this results in activation of the continuation sub-domain. If the

continuation sub-domain has not been activated, the sub-domains that remain active

determine the future stream of possible arrival events.

 Because the sub-domains behave independently at the split, the state of the

domain at each event is described so as to indicate which individual sub-domains

are still active and which have reached the merge. Denote this state D=<σ1… σN;

sC>, σk=‘P’ if Dk proceeds independently and σk= ‘S’ if Dk is inactive (either Dk was

not activated at the split or reached the end state of an independent path). The

continuation sub-domain may be stable (sC=‘S’) or activated (sC=‘U’).

Let the state vectors before and after the event be <σb
1… σb

N; sb
C>, and <σa

1… σa
N;

sa
C> respectively. The decision for each event is:

(1) For every Dk such that σb
k=’P’: whether σa

j=’P’ or σa
j=’S’

(2) Whether or not Sa
C is changed from ‘S’ to ‘U’.

 Different cases can be now defined by the possible decisions. We mention only

three examples to demonstrate possible combinations of interest:

(1) If C becomes active at each arrival, this will be immediate continuation.

(2) If immediate continuation occurs and some sub-domains are stopped, the result

is immediate continuation with selective cancellation.

(3) If a certain set of domains all need to reach the merge for the continuation to be

activated, the result will be selective synchronization.

Repeating Behavior (“Loops”) and Multiple Instances

A common process behavior happens when a sequence of activities re-executes

until a certain condition is met, indicating that the process can proceed through new

acitivites. In the product development example assume that a team is assigned to

solve a problem. If the solution is acceptable upon completion, the process

32

proceeds. Otherwise, the team is instructed to seek a solution again.

 We describe a repeating behavior using the idea of a process path, i.e. a

sequence of sets of equivalent states. For a behavior to repeat, two sets of states,

S1 and S2, should exist where (1) The first entry of the domain to S1 occurs before

the first entry to S2; (2) A sequence of transitions exists from S1 to S2, and (3) S2 can

transition into at least two paths, one from S2 to S1 and the other to states in sets

that were not visited earlier in the path.

 Since there are at least two possible paths from S2, and only one occurs in a

given enactment, it is a “choice” (XOR) split (Definition 11 case b). As well, S1 is

entered the first time before S2 occurs, and can be entered again after the domain

passes through S2. This is a single-domain merge according to Definition 13. In

graphical process models, S1 appears as a merge point and S2 as a split point.

 Two types of case exist when parts of a process (a sub-process) need to be

repeated as multiple instances of the sub-process. An example for the first type is

the periodic processing of accumulated bank transactions. In this case, the order of

processing transactions is critical (e.g. for daily interest calculations), and hence the

transactions will be processed in a loop. This can be modeled as described above.

An example of the second type is processing an order for several items. In this case,

the sub-process instances can occur concurrently. However, the number of

instances that can be handled in parallel depends on the resources available (e.g.

number of clerks available to process an order), and such considerations are

beyond the scope of our analysis. Still, each repeating sub-process can be modeled

using our basic constructs. In summary, the basic cases in our catalog are sufficient

for modeling repeating sub-processes.

Evaluation strategy

The purpose of the catalog (presented in Table 2 for splits and Table 4 for merges)

is to provide a list of business situations that involve routing decisions. We suggest

that the catalog can be used to help analysts conceptualize such situations. As

discussed above, we limited the scope of the phenomena we analyzed. Specifically,

we did not include variations of process flows that reflect features of workflow

systems (e.g. exception handling and interrupts) or which depend on resources

33

available, coordination mechanisms, and software capabilities (notably, multiple

instances).15

 We evaluate the catalog on (1) completeness and non-redundancy with respect

to its defined scope, (2) being meaningful in business terms, and (3) being useful in

supporting conceptualization of routing situations.

 Our evaluations can be described in terms of the first three levels proposed by

Sonnenberg and von Brocke (2012). At the highest level we justify the problem

statement; the need to support conceptualization of process behavior. At the next

level we support the specification of the artifact; the catalog of behavior types by a

formal analysis (including a proof of completeness). At the third level we evaluate

the artifact in an “artificial setting” using examples and by experiments. We have not

pursued the fourth level; testing in realistic settings. The methods of evaluation we

applied are of two types, ex ante and ex post (Venable et al., 2012).

 Our ex ante evaluation included:

(1) Showing through “Mathematical and Logical Proof”, by construction, that the

catalog is complete and non-redundant given its scope (Appendix 1). The

identification of behaviors that are not included in the Workflow Patterns (COR splits

and asymmetric, blocking, and single-sided continuation merges) indicates the

usefulness of the theoretical analysis.

(2) Showing for all non-standard cases that each behavior in the catalog can be

exemplified by a simple but plausible business case (see the examples for the COR

split, and the merge examples in Table 4).

 Our ex post evaluation comprised two experiments to test whether or not the

artifact is both usable (with short training) and useful in helping subjects understand

routing situations in business processes. These studies are described in the next

section.

Empirical studies

Objectives of the studies

Most previous empirical research on process modeling addressed the quality of the

final model (Mendling et al., 2006) or the interaction with a modeling tool (Pinggera

15

 Such mechanisms relate to throughput (“can we serve two customers at once?”) and
resource loading (“can we process two orders without overloading the same workstation?”).
However, they still represent the same fundamental routing decisions we analyze.

34

et al., 2012). In contrast, our experiments focus on conceptualizing the domain

behavior before the actual construction of a process model. We posit that the

catalog can support conceptualization by providing potential integrated memory

objects. As explained in the section “Cognitive Aspects of Process Modeling,” such

objects can help recognize and classify a situation. We defined our classification

similarly to how analysts conceive of domain behavior. We propose that, based on

this classification, the analyst can infer additional information about the situation.

These can help to identify additional questions that can lead to better understanding

(Savelsbergh et al., 1998). We designed two studies to test this idea.

Study 1

The first study addressed the impact of using the catalog on the quality of domain

conceptualization and on the level of understanding gained by an analyst.

Comparing the outcomes of using the catalog to those of using no list at all would

have led to two issues: the use of a classification scheme (any scheme) for process

conceptualization, and the scheme itself. Therefore, we sought a basis for

comparison and used a comparable subset of Workflow Patterns.

 The specific research question was, “How well will subjects using the catalog

perform a task related to understanding process behavior, compared to subjects

using a Workflow Patterns list?” We used two measures. The first reflected success

in classifying domain situations that involve process routing decisions. The second

measure reflected the inferences drawn about the domain situation after it has been

identified as an instance of a specific class of domain behavior.

Experimental Setting

A laboratory experiment was conducted with 54 Information Systems students of a

course on Enterprise Resource Planning (ERP) systems and business process

design. All participants had taken two modeling-related courses: (1) A systems

analysis course where students studied and practiced business process modeling

using Event-driven Process Chains (EPC) and Petri nets. In that course students

engaged in realistic business process modeling projects using EPC. (2) A systems

design course that involved substantial use of graphic modeling techniques.

 With respect to the subject population, we note that in an experiment on

process model understanding (Reijers & Mendling 2011), professionals could not be

distinguished from students. Students with a strong theoretical foundation (notably,

in Petri nets) performed better than professionals.

35

 The students worked in two laboratory groups using ERP software. One group

(the “Catalog” group of 30 students) used the new catalog. The other (“Workflow,”

with 24 students) used a list of Workflow Patterns. The allocation into groups in

terms of the students’ modeling ability was random. However, we also tested this

statistically (see below).

Task

The task comprised two assignments, “Rules” and “Understanding,” for five short

situations (example in Figure 2). The Rules assignment had to be done first for each

situation (case). Each case included a textual description (Figure 2 (b) and Appendix

3) and an EPC-like diagram, where the logical connectors were left blank (Figure 2

(a)). We used the EPC notation as it was familiar to the participants and therefore

there was no need for special experiment-related notation training. We believe the

results did not depend on the choice of notation, for two main reasons. First, the

task focused on the routing elements that were left blank and hence not affected by

the EPC notation (moreover, the behavior was too complicated to be directly

expressed with EPC connector types). Second, the purpose was to examine the

understanding gained by participants when engaging with the problem, and not to

interpret or create a model. Thus, the diagrams served only as illustrations to reduce

ambiguities that might have existed in the text.

 In the first assignment (“Rules”) the students were asked to assign the correct

logical rule to each connector in the diagrams, using one of two methods:

(1) Identifying the specific case (depending on the group, either from the catalog or

from a list of Workflow Patterns);

(2) Providing a logical expression specifying the behavior of the process at the

specific node in a process model fragment (for example, see Figure 2 (d)).

36

Figure 2. A situation example (Situation 1) including: (a) Diagram, (b) Case
description, (c) Understanding questions (expected answers in italics), (d)
Logical rules that can be specified using the Workflow Patterns list.

 The second assignment (“Understanding”) referred to the same textual

descriptions and included five “true/false” questions relating to the possible process

behavior (when enacted). For example, see Figure 2 (c). In this part, the students

were also asked to explain their answers.

 The Rules assignment preceded the Understanding assignment for two

reasons. First, it compelled the students to engage with the models. Second, it

served for using the catalog or the Workflow Patterns list as a classification scheme.

The Understanding assignment could then reflect students’ inferences based on the

classification, as an indication of the quality of the mental model they had formed.

Procedure

Each group received one hour of training on all cases in the catalog (“Catalog”

group) or Workflow Patterns list (“Workflow” group). The training comprised:

(1) An explanation of behavior for each case in the catalog or workflow list. The

explanation used the same terms to address the cases in each collection.

(2) Animation (where available) of the process behavior for the cases (based on the

Workflow Patterns website (www.workflowpatterns.com)). For the cases in the

catalog, behavior was animated when an equivalent workflow pattern was available.

(3) An example was described by the instructor. For the cases that appear in both

lists, the examples used for the Workflow and Catalog groups were the same.

37

(4) A graphic example of the type used in the experimental task was discussed in

class. To avoid any effect of differences of training materials (except differences in

contents) as provided to the subjects16, an effort was made to maximize the

similarity and appearance of the examples in the Workflow Patterns list to those in

the Catalog.

 The task was performed immediately after the training session. A printout of the

training materials was handed to the participants so they could use it as reference

material when performing the task. No time limit was set. To increase participants’

motivation, they were promised a quality performance bonus of up to 10 points in

the lab component (30%) of the course grade.

Task Materials

The task materials comprised five cases (Appendix 3). Given the purpose of the

experiment, we chose cases that enabled comparing our framework to a subset of

the Workflow Patterns. This subset represented domain behaviors (split and merge)

in process models, but not features dependent on software or implementation. Since

the Workflow Patterns collection does not make this distinction, we have analyzed

each pattern and identified a subset suitable for this purpose (Appendix 2).

 As indicated above, the catalog included cases of split and merge behavior not

formally defined previously. Hence, the emphasis in selecting situations for the

experimental task was on routing cases that were available in the catalog but not

directly in the Workflow Pattern list. These cases could be described by combining

patterns from the Workflow Patterns list. However, we wanted to test if any

consequences were due only to the added complexity (when a case needs to be

combined from other cases), or due to some other issues of the situation described

in the task. Therefore, we included two additional test cases. One was directly

available in the Workflow list but not in the catalog, and one was directly available in

both the Workflow list and in the catalog.

 Accordingly, the five situations were:

1. Directly available in the catalog only (situations 1, 2, 5);

2. Directly available in the workflow list only17 (situation 3);

16

The full set of training materials is available upon request from the authors.

17 This case includes a combination of merge behaviors that should be activated based on
information about the actual runtime enactment at the split. As explained (see Table 4), the
catalog's completeness relates to either split or merge behaviors, each considered
separately. However, a choice of cases from the catalog can enable a choice of merge
behavior combinations that are based on split enactment information.

38

3. Available in both (situation 4).

 Table 5 summarizes the cases. A situation example is shown in Figure 2, and

all the other situations are provided in Appendix 3.

Table 5: Experimental design

Situa
-tion

Workflow Patterns
(direct match, or logical expression if

match not found): Control Group

The catalog
(direct match, or logical expression if
match not found): Treatment Group

Split Merge Split Merge

1
A or
(A&B)

When A only: Simple merge.
When B arrives first: Structured
Discriminator.
When A arrives first: Cancelling
Discriminator.

COR
(mandatory
; A)

Immediate continuation with
asymmetric cancellation (if A
arrives first, B is cancelled).

2 AND
If A arrives first: Synchronization
If B arrives first: Structured
Discriminator.

AND
Asymmetric Synchronization (A
should wait for B).

3 OR
Structured synchronizing
merge.

OR

If A and B are active:
Synchronization (both teams)
If A only or B only: Immediate
continuation.

4 AND Cancelling discriminator. AND
Immediate continuation with
cancellation.

5 XOR

If activated branch is known and
prepared for. Simple merge.
If activated branch is not
prepared for. No continuation.

XOR

Single sided continuation (B
may not continue if not prepared
for).

The Workflow Patterns referred to in the Table are those listed in Appendix 2:
Simple merge: only one branch is active and the process continues when it is completed.
Structured discriminator: if both branches are active, process continues when the first arrives, and the
other branch continues to completion.
Cancelling discriminator: when both branches are active the process continues. When the first arrives,
the other branch stops.
Synchronization: when both branches are active, the first to arrive waits for the second to continue.
Structured synchronizing merge: when one is branch active, simple merge occurs. When both
branches are active, synchronization occurs.

Measurement

The dependent variables were performance scores on the Rules and on the

Understanding assignments. For the Rules assignment, a participant could receive

up to 5 points: 2 for correct split specification (1 for partial answers) and 3 for correct

merge specification. We assigned the merge specification a higher score because it

was more complex and allowed more possibilities for errors. For the Understanding

assignment, a student could receive up to 5 points, 1 for each correct answer.

 Grading was done by one of the researchers who had not been involved in

teaching the course or in the training phase. Since all questions had well-defined

answers, marking rules to determine the scores were clear so there was no need for

a second coder. Note, if the true/false answer for the Understanding assignment

39

contradicted the text explanation, the coder relied on the explanation to determine

the score (0/1). Examples of textual answers are shown in Figure 2 (c).

Controls

Assignment of students to groups: to test whether group assignment could have

affected tasks performance, we conducted a one-way analysis of variance (ANOVA)

on the average homework grades achieved in the course. For the hypothesis of no

difference between the groups, we received a p-value = 0.978 (also Levene’s p-

value for homogeneity equals 0.547). We therefore concluded that assignment to

groups was random with respect to students’ ability to perform the tasks.

Materials: we took several measures to ensure the materials for both groups were

as similar as possible. In particular, the cases in the training materials (that served

as catalogs or lists for the task) were described using the same terminology. In

addition to the three situations unique to the catalog, a further control was included

by choosing situations that were either available in both the workflow list and in the

catalog, or only in the workflow list.

Grading: As explained above, our grading scheme scored 2 points for a correct split

specification and 3 points for a correct merge specification. We believed this

reflected the relative difficulty of providing answers (in terms of possible errors).

However, to find whether this weighting decision might have affected the results, we

repeated the data analysis with equal weights given to split and merge. There was

no difference in the conclusions.

Analysis and Findings

All task situations appeared in either the catalog and/or the workflow list and can be

partitioned into two groups with respect to the Workflow Patterns list. Situations 1, 2

and 5 appeared in the catalog but not in the Workflow Patterns (but could be

constructed as a combination of existing patterns). Situations 3 and 4 appeared in

the Workflow patterns List. Situation 3 did not exist in the catalog (but could be

combined from catalog entries). Situation 4 existed in both collections.

Table 6: Performance means, standard deviations, p-values

Situation*

Rules assignment Understanding assignment

Workflow
group

Catalog
group

p-
value

Workflow
group

Catalog
group

p-
value

1
mean
(st.dev.)

2.000
(1.504)

4.567
(0.817)

0.000
4.420
(0.930)

4.800
(0.484)

0.05

40

2
mean
(st.dev.)

3.583
(1.586)

4.867
(0.434)

0.000
4.417
(0.717)

4.667
(0.479)

0.112

5
mean
(st.dev.)

1.917
(1.412)

3.900
(1.125)

0.000
4.208
(0.833)

4.600
(0.563)

0.041

1,2,5
mean
(st.dev.)

2.500
(1.121)

4.444
(0.505)

0.000
4.347
(0.586)

4.689
(0.289)

0.017

3
mean
(st.dev.)

4.625
(1.135)

4.667
(0.802)

0.555
4.583
(0.584)

4.767
(0.504)

0.17

4
mean
(st.dev.)

4.500
(1.022)

4.867
(0.571)

0.121
4.667
(0.482)

4.667
(0.547)

0.863

3,4 mean
(st.dev.)

4.563
(0.838)

4.767
(0.612) 0.435

4.625
(0.397)

4.717
(0.340) 0.416

* Situations 1, 2, and 5 appear in the catalog but not in the Workflow List. Situation 3
appears in the Workflow List but not in the catalog; Situation 4 appears in both.

 Table 6 compares the performance measures for all five cases. The table

provides the means and standard deviations for each situation and averages for

cases that appeared (1, 2, 5) and cases that did not appear (3, 4) in the Workflow

list.

 To test whether observed differences were statistically significant we used a

non-parametric Mann-Whitney test, as the grades were not normally distributed.

 For the Rules assignment and the three cases available only in the catalog, the

Catalog group performed considerably better than the Workflow group. This applies

to each individual case and to the average over the three cases (4.44 of 5 for the

Catalog group, 2.5 of 5 for the Workflow group). The one-sided non-parametric

Mann-Whitney test indicated high statistical significance (p-values of 0.000).

 For the two cases that were available in the Workflow list, the average

performance was similar in the two groups (4.56 for the Workflow group and 4.77 for

the Catalog group). The differences for each of the two individual cases and for their

average were not statistically significant (on a two sided test).

 For the Understanding assignment and the three cases available only in the

catalog, the Catalog group performed better than the Workflow group on the

individual cases and on their average (4.69 of 5 for the Catalog group and 4.35 of 5

for the Workflow group). In a one-sided non-parametric Mann-Whitney test the

differences for each case were found statistically significant at the 5% level for two

of the three cases (1,5) and at less than 2% for the average over the three cases.

 For the two cases that were available in the Workflow list the average

performance was similar in the two groups (4.625 for the Workflow group and 4.72

for the Catalog group) and the difference was not statistically significant.

41

 Table 6 indicates that the mean grade achieved in the Understanding task for all

situations (in both groups) is higher than 4. This implies that the understanding of

domain behavior was good. Still, the Catalog group achieved higher grades. A

statistically significant difference was found for two of the cases available only in the

catalog (1 and 5), and for the average over the three cases.

 Finally, to find whether the ability to classify the behavior rules is indeed related

to better answers of the understanding questions, we analyzed the correlation

between the Rules and Understanding scores. We found a positive correlation with

R2=0.229 (significance: p=0.0003). This correlation can be considered as

approximately medium. Yet, given the generally high grades with low variance of the

Understanding assignment, it indicates that success in classifying a situation can

also imply understanding and inference about the detailed behavior in the situation.

Study 2

The first study provided evidence that the catalog had advantages over a Workflow

Patterns list, assuming each served to classify routing behavior. This study did not

provide evidence about the actual use of the catalog in classifying and

conceptualizing behavior. The second study was intended to obtain the actual

thinking process. We performed a think-aloud protocol study, in which subjects

verbalize their thoughts as they perform a task. The verbalization is then

qualitatively analyzed. To understand the impact of the catalog, we compared its

use to task performance based on the use of process modeling knowledge.

Specifically, we wanted to find if using the catalog as a classification scheme

required additional effort in comparison to using the basic building blocks of process

modeling languages.

Experimental Setting

Participants were seven Information Systems students attending an advanced

course on business process management. Such number is considered appropriate

for think-aloud studies, since a qualitative understanding is sought rather than

statistical significance (Nielsen, 1994). Participants had previously studied and

practiced business process modeling using Event-driven Process Chains (EPC),

Petri nets, and YAWL, and were introduced to Workflow Patterns. The task was

similar to that of the first study. We used the same five cases, and added a non-

binary split and merge case (see appendix 3) to test the ability of subjects to infer

from the binary catalog cases to more complicated situations.

42

 Three participants (the “Catalog” group) were trained similarly to the "catalog"

group of the first study and were asked to use the catalog. Four participants (the “No

Catalog” group) did not use any list. They were trained for performing the task using

the same examples as the other group, but without presenting these examples as a

reference list. The task was performed separately by each participant, with no time

limit. The verbalization was recorded and transcribed. To increase participants’

motivation, the grade of the assignments was 5% of the course grade.

Analysis and Findings

We have analyzed the transcribed text using open and axial coding (Strauss and

Corbin, 1998). The open coding involved breaking the text down to segments and

assigning each segment a category reflecting its use in solving the problem. The

axial coding involved grouping the categories into higher-level aspects of the

solution process. The resulting categories appear in Table 7Error! Reference

source not found.. We counted the occurrences of segments in each category and

averaged the counts (over the cases) for each of the groups. Error! Reference

source not found. Table 7 shows the results together with the average performance

score.

Table 7: Summary of the findings of Study 2

 Rules Understanding

Catalog No catalog Catalog No catalog

Performance score 4.67 4.29 4.83 4.25

Explicit difficulty expression 0.06 0.79 0.06 0.33

Use of "key words" 7.33 3.42 1.67 0.54

Evaluating alternatives 0.56 0.29 0.06 0.00

Revisiting text (per modeler) 1.67 2 0.33 3.25

Back out of previous answer
(per modeler)

0.33 0.50 1.00 2.00

 We now explain the categories and discuss the results for each.

Explicit difficulty expressions: These are explicit indications of difficulty, using

expressions such as "Oh, this is problematic… it is complicated.” The “No Catalog”

group expressed more difficulties than the Catalog group. On average the “No

Catalog” subjects expressed difficulty 0.79 times per case for the Rules assignment

and 0.33 times for the Understanding assignment. In comparison, the Catalog group

averages were 0.06 for both assignments. This supports our expectations.

Use of "key words": This is the use of concepts taken from the catalog (the Catalog

group) or from process modeling vocabulary (the “No Catalog” group). The use of

43

"key words" indicates classifying a situation into a known scheme. For example,

"…once the sales report is ready we have an immediate continuation with

cancellation and then…" For both assignments, the Catalog group used "key words"

much more frequently than the No Catalog group. This indicates that the catalog

was indeed used (and more than standard concepts) for classifying the given

situations.

Evaluating alternatives: these are situations where participants systematically

considered alternative solutions, evaluated them, and selected one. Alternatives

usually related to "key words," and indicated a systematic thinking process guided

by the catalog concepts or by standard constructs. For example, "… so we can have

immediate continuation… no, we need with cancellation…no, but this should be an

asymmetric cancellation…" Alternatives were evaluated mainly in the Rules

assignment (0.56 times per case by the Catalog group, 0.29 by the No Catalog

group). Notably, we counted the occurrences of alternatives evaluation, not the

number of alternatives considered.

Revisiting text: In these situations, participants returned to the case description while

attempting to answer a question. We interpreted this as indicating a lack of clear

understanding of the case, or a lack of a suitable model for it in working memory.

Because revisiting text did not occur often, we report in Table 7Error! Reference

source not found. the average occurrences per modeler (not per case). These

numbers were similar in both groups for the Rules assignment (where cases were

classified). However, a large difference existed for the Understanding assignment:

0.33 for the Catalog group vs. 3.25 times for the No Catalog group. We believe this

outcome reflects the advantage of the catalog as a classification scheme. When a

case is classified, it can be more easily stored in working memory without a need for

the case details.

Back out of previous answer: In these situations, the subject gave an answer, and

later realized that the answer needed correction. Due to the low numbers, these

situations are reported per modeler. They occurred more frequently in the No

Catalog group than in the Catalog group, especially in the Understanding

assignment (2 per modeler in the No Catalog group, 1 for the Catalog group).

 This study did not focus on performance. However, we also checked the score

of correct answers (similar to the first study). The scores of the Catalog group were

higher than those of the No Catalog group. Although it is not possible to check the

statistical significance of these results, we believe these findings are in line with the

44

findings of Study 1 that indicate that the catalog supports domain conceptualization.

This conclusion links (non-statistically) the qualitative findings to performance.

 Finally, considering Case 6 of the non-binary split and merge, we looked for

evidence of increased difficulty or for insights how the binary cases of the catalog

were used for understanding more general cases. We found no difference in the

performance score for this case compared to the binary cases (for both groups, both

assignments). However, there were more expressions of difficulty by the No Catalog

group than in the Catalog group, and a higher use of "key words" by both groups.

This provides an early indication that the catalog concepts, while defined for binary

cases, may not be difficult to extend and apply to more complicated situations.

Summary of the Empirical Results

The two studies complemented each other and addressed both the quantitative

performance aspect (where the catalog was compared to Workflow Patterns) and

the qualitative process aspect (where the catalog was compared to the use of

standard modeling constructs). Both studies included the Rules and Understanding

tasks (in that order). These tasks were intended to test our suggestion that the

catalog can serve as an effective classification scheme when forming a mental

model (Derry, 1996; Larkin, 1985). Classification, achieved through the Rules

assignment, related a situation to a general case (that can be considered an

integrated memory object). The Understanding assignment tested inferences,

namely the ability to understand or predict specific details based on an identified

class. For example, classifying the split at Situation 1 as COR helped subjects

understand (by inference) that a new part might or might not be ordered, but the old

one would always be fixed.

 Our findings indicate that the catalog can support conceptualization of domain

behavior with respect to routing phenomena. Via this classification and inferences,

the catalog can lead to better understanding and to recognizing the need for more

information about the case.

 In Study 1, the catalog performed better for cases that were not directly

available in the Workflow Patterns list, and at a comparable level for cases that

appear in both (or not directly in the catalog). Perhaps it was not surprising that the

classification was better supported by the scheme that includes cases not directly

included in the other. This is consistent with the need to minimize the cognitive load

caused by integration (Paas et al., 2004). However, the case that was directly

45

available as a workflow pattern and not in the catalog did not result in better

performance for the Workflow group. This might indicate that the concepts in the

catalog make classification easy enough to overcome additional integration effort.

 While the differences in performance results for the Understanding assignment

were statistically significant, the effect appeared rather small in magnitude (about

8% on average). However, one has to be careful in interpreting the practical

significance of such results. It can usually be assumed that a modeler has a good

understanding of the domain before constructing a model. Hence, it could be

expected that both groups would perform well on the Understanding questions. This

is likely demonstrated by the relatively high scores. Practically, however, it is

important to consider the number of errors, rather than only the correct answers.

Errors in the analysis might lead to costly outcomes (both in business results and in

efforts to correct existing processes and applications). The number of errors of

understanding is the difference between the maximal value of 5 and the score

obtained (Table 6). Based on this value, the Catalog group made an average of 50%

less errors than the Workflow group.

 The effectiveness of the catalog was further indicated by examining the

standard deviations of performance scores within each group. Those were

consistently lower for the Catalog group than for the Workflow group. This indicates

a higher convergence of understanding and more consistent analysis in the Catalog

group. We have not hypothesized about such differences, and did not test their

statistical significance. However, we believe that this further indicates that the

catalog allows better performance than the Workflow Patterns.

 Finally, the qualitative findings of the second study provide some insights about

the impact of using the catalog. These findings support our claim that: (1) The

catalog can be used as a classification scheme that supports inference when a

detailed understanding is needed; and (2) The catalog entries can help reduce the

cognitive effort of domain behavior analysis. The additional case, with a non-binary

split, indicates that catalog cases can be readily extended to more complicated

situations.

46

Discussion

We now present possible uses of the catalog, compare the approach we used for its

development to two possible alternatives, discuss limitations of the work, and briefly

describe the work in design science terms.

Using the Catalog

The catalog can be used to support process modeling in two ways. First, it can

help analysis and conceptualization of routing situations by providing a classification

of such situations. Once a situation is classified, the analyst can identify additional

questions related to it and explore it further. Second, given specific process

modeling constructs, a combination of constructs can be specified for each class of

behavior. Thus, the catalog can be used both for exploring and for mapping process

behavior. Classification can be done in two ways. First, each class can be defined

by intension as criteria to be sought about a situation. Second, a class can be

specified by extension, as a list of typical instances. The full details are beyond the

scope of this paper. However, we demonstrate this application in Table 8 using

examples, of a split case and of a merge case. The table also includes examples for

guiding model construction using BPMN notation (Wolf and Soffer, 2014).

Table 8: Examples demonstrating the application of the catalog

Type of Case
(Class of routing
behavior)

Definition by Criteria Additional
information
required

BPMN
Representation

“Split”

COR (M) (a) two independent sub-
domains exist.

(b) one sub-domain always
activates.

(c) cases exist where the
other is not activated.

Identify the sub-
domain that
always
activates.

Note: other
representations are
also possible.

“Merge”

Asymmetric
synch

(a) two independent sub-
domains exist.
(b) a continuation sub-
domain exists.
(c) the continuation sub-
domain activates only when
a specific sub-domain
reaches the merge.

Identify the sub-
domain that
activates the
continuation.

X+

Possible Alternatives for Theoretical Development

 We used the GPM view of processes, which represents the dynamics of

business domains in terms of states, events, and transition laws. This representation

47

enabled analyzing the dynamics of a business domain, in terms of activating sub-

domains and stopping active sub-domains. The analysis enabled us to identify

various types of routing behavior, including patterns not formerly defined

(manifested in asymmetries, cancellations, and blocking). It would be interesting to

consider whether or not alternative representations of process dynamics could have

been used for the same purpose. We refer here to Causal Nets and to Petri Nets, as

both enable representing aspects of domain dynamics, and to the CASU approach

that was used for developing a list of process instantiation possibilities in terms of

state conditions and events.

Causal Nets (C-Nets, Aalst et al, 2011) are graphs “where the nodes represent

activities and arcs represent causal dependencies” (p. 30). C-Nets can be used to

characterize how a given combination of activities starts another activity. This may in

turn engage in combinations of activities, leading to other activities. Thus, C-nets

can model the conditions governing the flow of activities in a process, and signify the

start and stop events of activities. However, for our purpose, C-nets lack two

aspects that were important: (1) A full set of possible actions (such as cancellation

of activities), and (2) The full definition of a state in terms of relative times at which

activities may complete. Using relative times enables the definition of

synchronization, selective (possibly asymmetric) continuation, or cancellation. Thus,

analysis based on C-nets would not provide the full set of behaviors that we

identified.

Petri Nets (PNs) and their specialization to Workflow Nets have been used to

model the dynamics of business processes (Aalst, 1997) and can in principle be

used to describe complex behavior. However, in contrast to GPM and to Causal

Nets, the elements of PNs (places and transitions) do not necessarily map to well-

defined aspects of business domains. Thus, to ensure that all the structures

addressed by a PN-based analysis represent meaningful behaviors, the PN

constructs would need to be mapped to domain concepts. This was done in a

previous work (Soffer et al. 2010). The mapping requires first a description of the

process domain in terms of sub-domains and their state variables. GPM provides

such a description directly. Thus, to use PNs for our analysis we would have needed

to “transition” via GPM. As well, an important aspect of our analysis of merge

included the possibility that an active sub-domain could be stopped. It is unclear

how this would be directly represented in a PN.

48

 Finally, we briefly note on the CASU model of process instantiation (Decker and

Mendling, 2009). CASU defines various types of initial conditions for a process to be

instantiated, and how events that occur at process instantiation are handled during

enactment. CASU provides a catalog of possibilities for modeling this instantiation in

terms of initial conditions and events. It might be possible to map some of the CASU

cases to our merge cases (or vice versa), where activating continuation can be

comparable to CASU instantiation. However, our catalog is intended to support

conceptualization of routing behaviors, while the purpose of CASU is to explore

mechanisms in process modeling languages that can reflect the actual instantiation

and “use” of events.

Possible Limitations of the catalog

The catalog addresses a specific, well-defined scope of domain phenomena. It

was shown to be complete with respect to this scope. However, the specific scope

has led to possible limitations. First, we did not address aspects that are resource or

implementation dependent. We claim, however, that for our purpose of supporting

conceptualization, this does not limit the applicability of the catalog. Second, while

most of the definitions in the paper are applicable to decomposition to N sub-

domains, we limited the detailed catalog to binary splits and merges, where the

domain can be decomposed into two independent sub-domains at most. We claim

that for several reasons, the results of the analysis are still useful in two main ways.

First, we have shown how the analysis can be extended to more complicated

situations by both combining basic behaviors in the catalog and by extending to

higher order cases. An example for combining cases is the structured synchronizing

merge available in the Workflow Patterns collection (if both sub-domains are active

synchronization is required, while if only one sub-domain is active the merge will be

of immediate continuation). This behavior was included as Situation 3 in the studies,

and in Study 1 exhibited no significant performance differences between the two

groups. Our Study 2 provided evidence that extensions to higher order can be done

by analysts while conceptualizing a business situation.

Second, even the binary analysis led to identification of cases not included in

the Workflow Patterns collection (e.g., COR for binary split, the asymmetric and

blocking cases for binary merge).

We note that some cases that appear directly in the Workflow Patterns can in

principle be addressed by our analysis (e.g., repeating behavior), but were not

49

tested in our empirical studies. Their conceptualization can be the subject of further

empirical studies.

In summary, both practice and theoretical considerations show that binary

cases are useful and provide a basis for more complex cases. The limited but well-

defined scope enabled us to prove the completeness of the catalog. From a

theoretical point of view, this is an important result that, to the best of our

knowledge, has not been previously achieved.

A Design Science Perspective

From a Design Science perspective, the catalog and its use can be considered as a

method artifact (March and Smith, 1995). We suggested that difficulties associated

with mapping routing behaviors arise from difficulties in conceptualizing domain

behavior when a process may take various paths or threads, or when paths or

threads merge. Accordingly, we proposed that the difficulties may be alleviated

using a classification of the phenomena in terms understandable to an analyst.

Based on cognitive theories we predicted that such a classification can help the

analyst identify, conceptualize, and understand a situation. Figure 3 depicts this idea

as a design science theory.

Figure 3: Predicting the impact of a high quality classification scheme

We map our work as a design theory using the components proposed by Gregor

and Jones (2007) in Table 9.

Table 9: Describing the Catalog in Terms of Design Science Theory

Design theory
component

Catalog development mapping

1. Purpose and scope Develop a classification of main situations modeled as
routing elements in business process models.

2. Constructs Domain, sub-domain, state, event, law, process thread,
path, split, merge, etc.

3. Principles of form and
function

A classification scheme of split and merge behaviors is
provided to enable an analyst to:
1. Ask questions to identify the situation as an instance of
a class,
2. Ask more questions based on the identified class to
fully understand the situation, and
3. If a modeling grammar is given, identify the pattern of
grammar constructs for mapping the situation to.

Availability of high quality
classification scheme

Ability to identify the type
of routing structure

Availability of high quality
classification scheme

50

4. Artifact mutability The original artifact is a set of descriptions of case types
in terms of domain behavior. The artifact can be mapped
into patterns in different modeling grammars. The artifact
can be embedded in modeling support tools.

5. Testable propositions 1. With the catalog, a business analyst can better identify
and understand a given domain behavior than otherwise.
2. All cases described a “pure” domain behavior in split
and join nodes of process models can be classified as
one of the cases in the catalog.

6. Justificatory knowledge The role of memory objects; cognitive aspects of
classification; ontological concepts of domains.

Conclusion

Process modeling is important for analyzing, designing and improving business

processes, and for developing information systems. Quite a few process modeling

languages have emerged and a considerable effort has been devoted to formal

analysis of process behavior. However, both practice and research have

demonstrated that analysts face difficulties in constructing business process models

in situations where decisions need to be made about routing structures, often

manifested as nodes of splits and merges.

 In this work we propose that major sources of the difficulties are the abstract

nature of process routing, and a lack of an appropriate set of concepts for

conceptualizing these abstract phenomena. These lead in turn to difficulties forming

an accurate mental model of these situations. To facilitate conceptualization, we

proposed using a catalog of generic behaviors described in terms readily

understandable to analysts. We developed such a catalog, proved its completeness

theoretically for the binary case, demonstrated its entries by practical examples, and

tested its use in two experimental studies. The studies provided evidence that the

catalog is usable and can support understanding of process behavior by modelers.

 The main practical use we propose for the catalog is to identify and classify

routing decisions in business processes. We believe that the findings that indicate a

better process understanding due to the ability to classify situations are important

and non-trivial. The questions in the Understanding assignment reflected the domain

understanding that should be achieved before constructing a process model.

Clearly, to construct a model that completely and accurately represents domain

behavior a modeler must understand this behavior. Our findings indicate that this

51

understanding cannot be taken for granted, and that a classification framework like

the catalog can support the required understanding.

 The contributions of the work are to theory, to methodology, and to practice.

From a theoretical point of view, the analysis provides both a method for identifying

and a proof of completeness for routing phenomena (in the binary case) when

implementation considerations, resource constraints, and software features are not

included. The analysis was done by considering process behavior in terms of state

transitions rather than activities that are usually the main construct of process

modeling languages. The use of activities in process models may lead to two

concerns. First, there is an issue of “granularity” in modeling. It is not always clear

where the “boundaries” of an activity lie. Should it be modelled as one activity, or

more? Second, while process models are often intended to provide abstractions,

activity definitions often reflect how an activity is actually performed rather than what

it is intended to accomplish. The abstract view of a process in terms of state

changes provides precise definitions, independent of implementation, but anchored

in an operationalization of a stakeholder’s view. Moreover, this view enables

integrating goals and effects of the environment into the abstract model.

 From a methodological point of view, the experimental studies show how process

conceptualization can be studied without engaging in actual modeling. The link to

process models might confound understanding with language-specific

considerations.

 From a practical point of view, the catalog can help improve education and

practice of process modeling. As well, the new cases discovered (both for split and

for merge) point to additional behavior patterns that can be supported by modeling

languages and process-aware information systems.

 We briefly note on the differences between our catalog and the Workflow

Patterns collection (Aalst et al., 2003; Russell et al., 2006). The Workflow Patterns

were identified in a “bottom-up” approach by “comprehensive evaluation of workflow

systems and process modeling formalisms” (Russell et al. 2006). While pragmatic,

practice-oriented, and useful, this approach cannot assure completeness. It might

lead to redundancy, and to inclusion of patterns that reflect software features rather

than process structure. Thus, using Workflow Patterns to understand domain

behavior might both confuse an analyst and confound the early stages of analysis

with implementation considerations. In comparison, the catalog was constructed

52

using theoretical considerations, and led to a complete and non-redundant

classification with respect to a well-defined but narrower scope,

 As discussed above, the work has several limitations that point at several

research directions. On a theoretical level, a more complete analysis can be done

for cases higher than binary. Such analysis might include more complicated

behavior patterns. As well, rules to guide the choice of combinations of split and

merge points would be particularly interesting.

 From an empirical point of view, it would be interesting to test how the catalog

could support the complete modeling process, including the actual mapping into

modeling constructs. A first attempt used BPMN routing patterns based on the

catalog and showed positive performance (Wolf and Soffer, 2014). It would also be

interesting to examine such outcomes in realistic case studies.

 At the practice level, future research could map the catalog to constructs

available in extant modeling languages, as well as make templates for applying it.

Some work in this direction has already developed a semantic interpretation of Petri

nets based on the notions of state changes of domains (Soffer et al. 2010).

Acknowledgement: Yair Wand is grateful to the Natural Sciences and Engineering

Research Council of Canada for supporting this research.

References

Aalst van der, W.M.P. (1997). Verification of Workflow Nets. in Application and
Theory of Petri Nets, P. Azéma and G. Balbo (eds.), LCNS 1248, Berlin: Springer-
Verlag, pp. 407-426.

Aalst van der, W.M.P. (1999). Formalization and Verification of Event-Driven
Process Chains, Information and Software Technology 41(10), pp. 639-650.

Aalst, van der, W.M.P., Adriansyah A., van Dongen B. (2011). Causal Nets: A
Modeling Language Tailored towards Process Discovery, Concurrency Theory
2011, LNCS 6901, Berlin: Springer-Verlag, pp. 28-42

Aalst van der, W.M.P., Hofstede, A. H. M., Kiepuszewski, B., and Barros, A.P.
(2003). Workflow Patterns, Distributed and Parallel Databases 14(1), pp. 5-51.

Aalst van der, W.M.P. & ter Hofstede, A.H.M., (2005). YAWL: Yet Another Workflow
Language, Information Systems 30(4), pp. 245-275.

Baskerville, Richard L. & Pries-Heje, Jan (2010). "Explanatory Design Theory,"
Business & Information Systems Engineering: Vol. 2: (5), pp. 271-282.

Bunge, M. (1977). Treatise on Basic Philosophy: Vol. 3, Ontology I: The Furniture of
the World, Boston: Reidel.

53

Bunge, M. (1979). Treatise on Basic Philosophy: Vol. 4, Ontology II: A World of
Systems, Boston: Reidel.

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of
instruction. Cognition and Instruction, 8, pp. 293-332.

Decker, G. & Mendling J., (2009). Process instantiation, Data & Knowledge
Engineering 68, pp. 777–792.

Derry S.D. (1996). Cognitive Schema Theory in the Constructivist Debate,
Educational Psychologist 31(3/4), pp. 163-174

Dijkman R. M., Dumas M., and Ouyang C. (2008). Semantics and Analysis of
Business Process Models in BPMN, Information and Software Technology, 50(12),
pp. 1281-1294.

Figl, K., Mendling J., Strembeck M., Recker, J. (2010). On the Cognitive
Effectiveness of Routing Symbols in Process Modeling Languages. Business
Information Systems (BIS), Berlin, Lecture Notes in Business Information
Processing.

Gregor S. & Jones D. (2007). The anatomy of a design theory. Journal of the
Association for Information Systems 8(5), pp. 312–335

Hevner, A.R., March, S.T., Park, J., and Ram, S. (2004). Design science in
information systems research, MIS Quarterly 28 (1), pp. 75-105.

Jonassen, D.H. (2000). Computers as Mindtools in schools: Engaging critical
thinking. Columbus, OH: Merrill/Prentice-Hall.

Kindler, E. (2006). “On the Semantics of EPCs: Resolving the Vicious Circle”, Data
and Knowledge Engineering (56), pp. 23-40.

Kuechler Jr., W. L. & Vaishnavi, V. K. (2012). Characterizing Design Science
Theories by Level of Constraint on Design Decisions. DESRIST 2012, pp. 345-353.

Larkin, J.H. (1985). Understanding, problem representation, and skill in physics. In
S.F. Chipman, J.W. Segal, & R. Glaser (Eds.), Thinking and learning skills (Vol. 2):
Research and open questions. Hillsdale, NJ: Erlbaum. Pp. 141-160

Limonad, L., Varshney, ., L. R., Oppenheim, D. V., Fein, E., Soffer, P., Wand, Y.,
Chee, Y.M., Gavish, M., Anaby-Tavor, A. (2012). The WaaSaBE model: Marrying
WaaS and Business-Entities to Support Cross-Organization Collaboration Using
Commitment-Centric Analysis, Proceedings of SRII Global Conference (“IT-Enabled
Services”), San Jose, California, July 2012. pp 303-312.

March, S. T., and Smith, G. F. (1995). Design and Natural Science Research on
Information Technology, Decision Support Systems (15), pp. 251-266.

Mendling, J., and Aalst van der, W. M. P, (2007). Formalization and Verification of
EPCs with OR-Joins Based on State and Context, in: J. Krogstie, A.L. Opdahl and
G. Sindre (eds.), Proceedings of the 19th International Conference on Advanced
Information Systems Engineering (CAiSE 2007), LCNS 4495, Berlin: Springer-
Verlag, pp. 439-453.

Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., Dongen van, B.F., and
Aalst van der, W.M.P. (2006). Faulty EPCs in the SAP Reference Model, in: S.
Dustdar, J.L. Fiadeiro and A. Sheth (eds.), Proceedings of the 4th International
Conference Business Process Management (BPM 2006), LCNS 4102, Berlin:
Springer-Verlag, pp. 451-457.

54

Mendling, J., Reijers, H.A., Cardoso, J. (2007). What Makes Process Models
Understandable? In: G. Alonso, P. Dadam and M. Rosemann (eds.), Proceedings of
the 5th International Conference Business Process Management (BPM 2007),
LNCS 4714, Berlin: Springer-Verlag, pp. 48–63.

Mendling, J., Verbeek, H.M.W., Dongen van, B.F., Aalst van der, W.M.P. ,
Neumann, G. (2008). Detection and Prediction of Errors in EPCs of the SAP
Reference Model, Data and Knowledge Engineering (64), pp. 312-329.

Miller G. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information. The Psychological Review, 63 pp. 81-97.

Newell A, Simon HA. (1972) Human Problem Solving. Englewood Cliffs, NJ:
Prentice Hall

Nielsen J. (1994) Estimating the number of subjects needed for a thinking aloud
test. International Journal of Human-Computer Studies, 41(3), pp. 385-397.

OMG (Ed.), (2006). Business Process Modeling Notation (BPMN) Specification,
Final Adopted Specification, dtc/06-02-01, Object Management Group.

F. Paas, J. E. Tuovinen, H. Tabbers, P. W. M. V. Gerven. (2003) Cognitive Load
Measurement as a Means to Advance Cognitive Load Theory. Educational
Psychologist, 38(1), pp. 63-71.

F. Paas, A. Renkl, J. Sweller, (2004) Cognitive Load Theory: Instructional
Implications of the Interaction between Information Structures and Cognitive
Architecture, Instructional Science 32, pp. 1–8.

Parsons J. & Wand, Y. (2008). Using Cognitive Principles to Guide Classification in
Information Systems Modeling, MIS-Quarterly, 32(4), pp. 839-868.

Petri, C.A. (1962). Kommunikation mit Automaten. Bonn:
InstitutfürInstrumentelleMathematik, Communication with Automata, English
translation in Technical Report RADC-TR-65--377, Vol.1, 1966, New York: Griffiss
Air Force Base.

J. Pinggera, P. Soffer, S. Zugal, B. Weber, M. Weidlich, D. Fahland, H. A. Reijers, J.
Mendling. (2012) Modeling styles in business process modeling. In Proc. BPMDS
'12, pp. 151-166.

Recker, J., Rosemann, M., Green, P., Indulska, M., (2011). Do ontological
deficiencies in modeling grammars matter? MIS Quarterly 35(1), 57-79.

Reijers H. A., Limam S., van der Aalst W.M.P., (2003). Product-Based Workflow
Design, Journal of Management Information Systems, 20(1), pp. 229-262.

Reijers H.A & Mendling J. (2011). A Study into the Factors that Influence the
Understandability of Business Process Models, IEEE Transactions On Systems,
Man, And Cybernetics – Part A, 41(3), pp. 449-462.

Rittgen, P. (1999). From Process Model to Electronic Business Process, European
Conference on Information Systems ECIS 1999, Copenhagen Business School,
Copenhagen, Denmark, pp. 616-626.

Rosemann, M., Recker, J., Indulska, M., Green, P. (2006). A study of the evolution
of the representational capabilities of process modeling grammars, in: E. Dubois, K.
Pohl (eds.). Proceedings of the 18th Conf. of Advanced Information Systems
Engineering - CAiSE 2006, LNCS 4001, Berlin: Springer-Verlag, pp. 447-461.

55

Russell, N. C., ter Hofstede, A.H.M., Aalst van der, W.M.P. , Mulyar, N. (2006).
Workflow Control-Flow Patterns: A Revised View, BPM Center Report BPM-06-22,
BPMcenter.org.

Santos S. P. Jr., Almeida J. P. A., Guizzardi G. (2010). An Ontology-Based
Semantic Foundation for ARIS EPCs, SAC’10, Sierre, Switzerland, pp. 124-130.

Savelsbergh, E.R., deJong, T., Ferguson-Hessler, M.G.M. (1998). Competence-
related differences in problem representations. In M. van Sommeren, P. Reimann,
T. deJong, & H. Boshuizen (Eds.), The role of multiple representations in learning
and problem solving, pp. 262-282. Amsterdam: Elsevier.

Simon, H. A. (1981) The Sciences of the Artificial, 2nd edition. MIT Press,
Cambridge, MA.

Soffer, P., Kaner, M., Wand, Y. (2010). Assigning Ontology-Based Semantics to
Workflow nets, Journal of Database Management, 21(3), pp. 1-35.

Soffer, P., and Wand, Y. (2004). Goal-driven Analysis of Process Model Validity, in:
A. Persson, J. Stirna (eds.), Advanced Information Systems Engineering
(CAiSE’04), LNCS 3084, Berlin: Springer-Verlag, 521-535.

Soffer, P., & Wand, Y. (2005). On the Notion of Soft Goals in Business Process
Modeling, Business Process Management Journal 11(6), pp. 663-679.

Soffer, P., and Wand, Y. (2007). Goal-driven multi-process analysis, Journal of the
Association of Information Systems 8(3), 175-203.

Soffer, P., Wand, Y., Kaner, M. (2007). Semantic analysis of flow patterns in
business process modeling, in: G. Alonso, P. Dadam and M. Rosemann (eds.),
Proceedings of the 5th International Conference Business Process Management
(BPM 2007), LNCS 4714, Berlin: Springer-Verlag, pp. 400-407.

Sonnenberg, C., & vom Brocke, J. (2012). Evaluations in the Science of the Artificial
- Reconsidering the Build-Evaluate Pattern in Design Science Research. DESRIST
2012, pp. 381-397.

Strauss A., &Corbin J. (1998) Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory, Sage Publications

Vanderfeesten I., Reijers H. A., Mendling J., van der Aalst W.M.P. and Cardoso J.
(2008). On a Quest for Good Process Models: The Cross-Connectivity Metric, in
Bellahsène Z. and Léonard M. (eds.) Advanced Information Systems Engineering
(CAiSE’08), LNCS 5074, Berlin: Springer-Verlag, pp. 480-494.

Venable, J. R., Pries-Heje, J., Baskerville, R. (2012). A Comprehensive Framework
for Evaluation in Design Science Research. DESRIST 2012, pp. 423-438.

Wand Y., & Weber R.,(1990) An Ontological Model of an Information System, IEEE
Transactions on Software Engineering, 16(11), 1282-1292.

Wand, Y., & Weber, R. (1993). On the Ontological Expressiveness of Information
Systems Analysis and Design Grammars, J. of Information Systems (3), 217-237.

Wand, Y., & Weber, R. (1995). Towards a theory of deep structure of information
systems, Journal of Information Systems (5:3), pp. 203-223.

Wolf, I., & Soffer, P. (2014, January). Supporting BPMN Model Creation with
Routing Patterns. In Advanced Information Systems Engineering Workshops(pp.
171-181). Springer International Publishing.

56

Appendix 1: Merge behaviors and their completeness

Table A1: All merge combinations

 First event: domain arrives at merge Second event: arrival of

A B Both together A B

State of domain
Case Number

B C A C C C C

1 P U P U U

2 P U P U S

3 P U P S U U

4 P U P S U S

5 P U P S S U

6 P U P S S S

7 P U S S U

8 P U S S S

9 P U S U U

10 P U S U S

11 P S P U U U

12 P S P U U S

13 P S P U S U

14 P S P U S S

15 P S P S U U U

16 P S P S U S U

17 P S P S U U S

18 P S P S U S S

19 P S P S S U U

20 P S P S S S U

21 P S P S S U S

22 P S P S S S S

23 P S S S U U

24 P S S S U S

25 P S S S S U

26 P S S S S S

27 P S S U U U

28 P S S U U S

29 P S S U S U

30 P S S U S S

31 S S P U U

32 S S P U S

33 S S P S U U

34 S S P S U S

35 S S P S S U

36 S S P S S S

37 S S S S U

38 S S S S S

39 S S S U U

40 S S S U S

41 S U P U U

42 S U P U S

43 S U P S U U

44 S U P S U S

45 S U P S S U

46 S U P S S S

47 S U S S U

48 S U S S S

49 S U S U U

50 S U S U S

U: unstable; S: stable; P: proceed

57

Lemma: Table A1 enumerates all possible merge behaviors in a binary-
decomposable domain.

Proof: We show by combinatorial considerations that all possibilities were listed.
1. If both sub-domains are active, three possibilities exist for a first merge event:
a. A arrives first. b. B arrives first. c. Both arrive at the same time.
Since the sub-domains behave independently prior to the first event, these three
possibilities are independent. Hence, we can calculate the total number of possible
decisions by multiplying the number available for each type of first event.
2. Consider one sub-main arriving first. There are four possible decisions:

a. C: not activated, the other sub-domain continues independently.
b. C: not activated, the other sub-domain stops being independent.
c. C: activated, the other sub-domain continues.
d. C: activated, the other sub-domain stops being independent.

3. Only in case 2a, a second relevant event will occur, with two possible decisions:
a. C: activated. b. C: not activated.

Hence, for each event where sub-domain arrives first, there are five cases.
4. Since we allow each sub-domain to arrive first, there are 25 combinations (5
when A is first x 5 when B is first).
For each combination, there exist two possibilities: ‘continue on both arriving’ or
‘stop on both arriving’. Hence, we obtain 50 combinations.

We now reduce the list of merge behaviors (Table A1) applying two
considerations.

First, symmetric cases with respect to sub-domains A and B are combined. The

sub-domains are named X1 and X2, where X1,X2{A,B}, X1X2. The newly organized
cases are shown in Table A2, still linked to their numbers of Table A1.

Next, we add the following requirement; the catalog will include only merge
behaviors where process continuation is assured. For a given merge behavior,
whether a process can continue or not might depend on which sub-domains are
active prior to the merge. For example, assume the chosen merge behavior is to
stop when both sub-domains reach the merge together. In such cases, process
continuation cannot be assured. This possibility can only materialize when both
domains are active. Hence, it is still possible to choose it when only one sub-domain
is active. However, for some behaviors the process cannot be guaranteed to
continue independently of which sub-domains are active prior to the merge. For
example, the process will stop on either A or B arriving first, and will continue if both
arrive together (case 18 in Table A1). Since co-arrival of both sub-domains cannot
be guaranteed, process continuation cannot be assured. We eliminate these cases.

The last three columns in Table A2 present an analysis of continuation certainty
for the merge cases listed in the table. Each case is related to three possibilities:
whether both sub-domains are active, whether only one is active, but not a specific
one, or whether only a specific one is active. Each case is marked as “+” for certain
continuation or “–” for continuation that cannot be assured. When continuation
cannot be assured, there is no process enactment prior to the merge that assures
continuation. The case is colored grey, and will be eliminated in the following step of
the analysis.

58

Table A2: Merge cases – continuation analysis

 First event: domain arrives at merge Second
event

Certain
continuation

X1 X2 Both
together

Both
domains

are
active

Only
one is
active

Only a
specific
one is
active

State of domain
Case number

X2 C X1 C C C

1 P U P U U + + +

2 P U P U S - + +

3, 11 P U P S U U + - +

4, 12 P U P S U S - - +

5, 13 P U P S S U - - +

6, 14 P U P S S S - - +

7, 31 P U S S U - - +

8, 32 P U S S S - - +

9, 41 P U S U U + + +

10, 42 P U S U S - + +

15 P S P S U U + - -

16,17 P S P S U S / U* - - -

18 P S P S U S - - -

19 P S P S S U - - -

20, 21 P S P S S S / U - - -

22 P S P S S S - - -

23, 33 P S S S U U - - -

24, 34 P S S S U S - - -

25, 35 P S S S S U - - -

26, 36 P S S S S S - - -

27, 43 P S S U U U + - +

28, 44 P S S U U S - - +

29, 45 P S S U S U - - +

30, 46 P S S U S S - - +

37 S S S S U - - -

38 S S S S S - - -

39, 47 S S S U U - - +

40, 48 S S S U S - - +

49 S U S U U + + +

50 S U S U S - + +

* The behavior in the second event depends on which sub-domain is involved. For one the

continuing domain will not be activated, and for the other it will be activated. See Table 3.

Finally, we identify the set of eight generic possible merge behaviors by the
following considerations. All cases where continuation can be assured (Table A2)
and the same decisions are made when either sub-domain arrives at the merge and
are combined into one generic merge behavior. For each possible behavior we
consider the process enactments (namely, what actually occurs prior to the merge)
for which it can guarantee process continuation. If, for example, process
continuation can only be assured when only one of the sub-domains is active, then
what might happen to the other sub-domain is irrelevant. The cases that differ only
on the decision regarding the irrelevant domain are combined. Examples are cases
where the other sub-domain is allowed to proceed, or is stopped under “immediate
continuation with mutual blocking,” since this behavior is guaranteed to continue
only when a single sub-domain is active. The eight generic cases obtained in this
way are listed in Table A3. Their detailed descriptions with examples are provided in
Table 4.

59

Table A3: Combining Merge Cases into Generic Types

1
st

 event: domain arrives
at merge

2
nd

event

Type Name

Cases

X1 X2 both

X2 C X1 C C C

P U P U U Immediate continuation 1

S U S U U Immediate continuation with cancellation 49

P U S U U Immediate continuation with asymmetric
cancellation

9,41

P S P S U U Synchronization 15

P U P S U U Asymmetric synchronization 3,11

S U P S U U Asymmetric synchronization with
cancellation

27,43

* U * U S Immediate continuation with mutual blocking 2,10,42,50

* U * S * Single-sided continuation

4, 12, 5, 13, 6,
14, 7, 31, 8, 32,
28, 44, 29, 45,
30, 46, 39, 47,
40, 48

U: unstable; S: stable; P: proceed; *: does not matter Case numbers
refer to Table A1

Appendix 2: List of Workflow Patterns used in Study 1

We used Workflow Patterns included in the following groups
(http://www.workflowpatterns.com/patterns/control/index.php):
1) Basic control flow patterns – simple merge and split structures; the sequence

pattern was excluded (not a split/merge structure).
2) Advanced branching and synchronization patterns – additional advanced split

and merge structures. We excluded patterns identified as combinations of several
basic control flow patterns, non-binary merges, and execution-related patterns.

3) Trigger patterns – Transient and Persistent. Both these patterns depend on a
signal from the external environment that we interpret as a sub-domain operating
independently (and hence consider these as merge patterns). However, based
on this interpretation a persistent trigger is simply a recurring case of
synchronization. Hence, we included the transient trigger pattern that is an
asymmetric merge depending on the trigger activation.

Other groups of patterns were excluded for one of the following reasons:
1) They address multiple instances or multiple cases;
2) They exhibit execution-related behaviors;
3) They include combinations of several splits and merges that are redundant
according to our interpretation.

The list of patterns used for our evaluation includes:

Splits
Parallel Split: both branches are active (AND-split).
Multi-Choice: each branch, and both combined, can be active (OR-split).
Exclusive Choice: only one branch can be active (XOR-split)

60

Merges
Synchronization. Both branches are active, and the first to arrive waits for the
second to continue.
Simple Merge. Only one branch is active and the process continues when it arrives.
Structured Synchronizing Merge. When both branches are active, the first to arrive
waits for the second to continue. When only one branch is active, the process
continues when it arrives.
Multi-Merge. When both branches are active, each of them activates the merge.
Structured Discriminator. When both branches are active, the process continues
when the first one arrives. The other branch continues to completion.
Cancelling Discriminator. When both branches are active, the process continues
when the first one arrives. The other branch stops.
Transient trigger. Branch A (task instance) waits for branch B (trigger) to continue. If
a trigger is given (branch B arrives) before branch A has arrived, the merge is not
activated.

Appendix 3: Situations in the experimental materials

Situation Descriptions:

 Situation 1: A process of handling machine failure. When failure in a machine part
is identified, in-house maintenance tries to fix it. If it is very urgent to have the
machine operational, a replacement part may be ordered from the supplier. If the
part is fixed before the ordered one arrives, the order is cancelled. If the ordered
part arrives before the part is fixed, it is installed, but fixing will be continued and
the fixed part may be saved for future needs.

 Situation 2: In a purchasing department. Buyers always seek quotations from a
preferred supplier, but they also seek quotations from alternative supplier/s for
possibly better quotes. If the preferred supplier’s quotation arrives first, the buyer
immediately prepares an order. The quotations from the alternative suppliers are
saved for the future suppliers’ ranking. If the first quotation to arrive is from the
alternative supplier, the buyer waits for the preferred supplier’s quotation before
deciding from whom to order.

 Situation 3: Product development problems. Two engineering teams deal with
resolving various product development problems. Sometimes a problem is
handled by one of two teams, and sometimes both teams work on the problem.
Fixing the problem should be based on integration of all solutions proposed by
the teams.

 Situation 4: Customer claim to an insurance company. To reduce waiting time, a
customer claim to an insurance company is handled by two different claim
representatives. They both use a standard procedure for documenting and
handling the claim. After one of them completes the procedure, the claim is
closed and the second representative stops. The customer is informed.

 Situation 5: A transportation company fulfills shipment orders. Some of the
shipments include products that require refrigeration. A refrigerating truck can
handle all kinds of shipment, but a regular truck cannot be used for the
refrigerated products. There are many regular trucks and only one refrigerating
truck. Shipment orders cannot be split to several trucks. If it is known in advance
that a shipment order for refrigerated products will arrive, then the refrigerating
truck should be reserved for it. If a refrigerating truck is not available when an
order for refrigerated products is due, the shipment cannot take place. (Note: the

61

students were asked to refer to both possibilities; whether the refrigerating truck
was reserved or not).

 Situation 6 (used in Study 2 only): Report of sales figures. A company that sells
both pharmaceutical and cosmetic products reviews its sales every quarter. In
this review each product manager prepares a report of sales figures. For
products that have been marketed for less than two years, a consumers'
evaluation report (for cosmetics) or physicians’ evaluation report (for
pharmaceuticals) is prepared in parallel to the sales report. If the sales report is
ready before the (relevant) evaluation report, a presentation is prepared based
only on this report, and the preparation of the evaluation report is abandoned.
Otherwise, if the (relevant) evaluation report is ready before the sales report, the
presentation is prepared when the sales report is ready too, and includes figures
from both.

62

Table A4: Understanding task questions and answers (cases 2-6)

Situation Statement (true or false) Expected answer

2

The preferred supplier’s quotation arrived yesterday but
still the decision (supplier selection) has not been made.

False. If the quotation arrives from the
preferred supplier, the buyer proceeds
to prepare an order.

The preferred supplier’s quotation arrived, and the
additional inquiry (alternative suppliers) is not needed so it
is not made.

False. Quotations are requested from
the preferred and additional suppliers.

If there are two quotations, two orders are made. False. One supplier is selected.

The order was placed although one of the quotations has
not arrived yet.

True, if the quotation from the preferred
supplier arrives first.

There is a possibility that the worse quotation (higher
price) will be accepted.

True, if the preferred supplier’s
quotation arrives first.

3

The problem was resolved through the solution proposed
by one of the teams.

True, if only one team worked on the
problem.

The problem was resolved through the solutions proposed
by both teams.

True, if two teams worked on the
problem.

The problem was resolved through the solution proposed
by one of the teams, and then solution of the second team
was proposed.

False. Solutions are integrated if two
teams are involved.

The solution proposed by one of the teams was rejected.
False. The overall solution is based on
the integration of all the solutions
proposed.

The solution was proposed by the team that finished the
work.

True, if one team worked on the
problem.

4

The claim was closed because one of the representatives
finished his work.

True. When the first one finishes the
procedure, the claim is closed.

The claim is open as only one of the representatives
finished his work.

False. When the first one finishes the
procedure, the claim is closed.

The customer is informed and one of the representatives
continues his work.

False. He stops.

Both representatives close the claim. True, if they finish together
18

.

The representative to be responsible for the claim
handling is selected from two possible representatives.

False. Both representatives deal with
each claim

5

The products are ready for shipment for several days but
the shipment cannot be performed as there is no regular
truck.

False. There are many regular trucks

The shipment cannot take place as refrigerating truck was
not reserved.

True. If the truck was not reserved, it
may not be available.

The shipment cannot take place as the refrigerating truck
is occupied by another shipment.

True. If the truck was not reserved,
another delivery can be transported by
it.

The shipment is transported by a regular truck. True. If it is a regular shipment.

Some of the products that require refrigerating are
shipped by the refrigerating truck, others by a regular one.

False. A shipment cannot be split.

6 The presentation is prepared based on the sales report
and the physicians' evaluation.

True. If physicians' evaluation was
completed first (for pharmaceuticals).

The presentation is prepared based on the consumers'
and the physicians' evaluation.

False. It can be either but not both.

The product is marketed over two years. The consumers'
evaluation is ready, but the sales report is still awaited.

False. If the product is marketed over
two years, consumers' evaluation is not
needed.

The product is marketed for less than two years. The
presentation is prepared based on the sales report only.

True, if the sales report was ready first.

18 If the answer given was “False,” explaining the probability for finishing at the same moment is zero, the answer

was also considered correct.

