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Abstract. Declarative process models support process fléyibilvhose importance has been widely
recognized, particularly for organizations that efafrequent changes and variable stimuli from their
environment. However, the currently dominant dextlae approaches lack expressiveness for addregsing
process context (namely, environment effects) aadihg its execution towards a goal. The paperqzepa
declarative model which addresses activities a$ agebtates, external events, and goals. The nmdalsed

on the Generic Process Model (GPM), extended bygtiamof activity, which includes a state changpeas
and an intentional aspect. The achievement of iitenfion of an activity may depend on events in the
environment and is hence not certain. The papevigge a formalization of the model and describes an
execution mechanism. It emphasizes the usefulrfegseaifying the intentional aspect of activitiby, using

it as a basis for semantic validation of the matetiesign time and for a planning module that caidey

execution at runtime. These are illustrated byxamgle from the medical domain.

Keywords: Declarative process model, Goal, Intention, Gereracess Model

I ntroduction

The importance of flexibility in process aware infation systems has been widely acknowledged
in the past few years. Flexibility is the ability thake changes in adaptation to a need, while
keeping the essence unchanged O(Regev et. al).ZD@sidering business processes, flexibility is
the ability to deal with both foreseen and unfoeesehanges, by varying or adapting specific parts
of the business process, while retaining the essehthe parts that should not be impacted by the
variations (Schonenberg et. al., 2008).

Flexibility is particularly important in organizats that face frequent changes and variable stimuli
from their environment. For processes that openata relatively stable environment, where
unpredictable situations are not frequent, fleXipils not essential, as responses to all predietab
situations can be defined. However, in the predaisiness environment, where changes occur

frequently and organizations have to cope withg lnange of diversity, full predictability is rare.



Facing this reality, approaches have been propfiseeinabling flexibility in business processes,
as reviewed and classified in (Schonenberg et.2808). These include mechanisms of late
binding and modeling, where the actual realizatbma specific action is only decided at runtime
as implemented in YAWL 0(Aalst and Hofstede, 2Q@B)d changes that can be made at runtime
to a running process instance or to all instandgkeoprocess, enabled in ADEPT O(Reichert et.
al., 2003).

One of the promising approaches is declarative gg®anodels (e.g., Declare O(Pesic et. al.,
2007)), which have received significant attentiomgcent years.

While “traditional” process models are imperative.g(, BPMN), explicitly specifying the
execution order of activities through control flogonstructs, a declarative process model
implicitly specifies the execution procedure by meaf constraints: any execution that does not
violate constraints is possible. Using such moidhel ,user can respond to each situation that arises,
executing an activity chosen from all the oneslab$e in compliance to the specified constraints.
Currently, the most common approach to declargineeess specification (although not the only
one existing) is based on Linear Temporal Logic L(J,Twhich sets constraints on temporal
relations among activities 0(Pesic et. al., 200%yhile allowing a high level of freedom, the
approach has the following limitations.

First, while the human decision about which actiortake is made based on the state at that
specific moment, the existing models do not empeastates. Rather, the leading concept to be
modeled and monitored in the model is an activitgd constraints can be specified on the
execution of a single activity or on relationshiptween activity executions. The process state is
monitored, mainly as a trace of the activities thave been executed up to a given moment.
Constraints can also relate to values of data aditions for activity execution. However, there is
no fundamental view and monitoring of state fodieg process execution and decision making.
Second, to respond to changes and events in theoement, these need to be addressed in the
model. Generally speaking, the model should beextraware, where context is the set of inputs a
process instance receives from its environmenifefBer et. al.,, 2009). This is particularly
important when bearing in mind that flexibility iequired in the first place in processes that face
frequent changes in the environment.

Finally, an effective selection of action by thentan operator of the process should relate to the
desired outcomes to be achieved, namely, to a gaatently, goals are usually not an integral

part of process definitions.



Some proposals of state-based declarative modets dlao been made (e.g., Hull et. al., 2011).
However, these are either missing the concept af @tull et. al., 2011) or of environment effects

0 et. al., 2008). This paper proposes a declargrocess model to overcome the three discussed
limitations. To develop a consistent and completeleh we rely on the Generic Process Model
(GPM) (Soffer and Wand, 2007), which is an ontolbgged theoretical process analysis
framework. GPM uses states as a leading elementoicess representation; it has been used for
analyzing the context of processes (Ghattas e2@09)0, and it includes goals as basic building
blocks of processes. Since GPM emphasizes stateabatracts from activities in process models,
in this paper it is amended to cater for activitesswell. We model activities by the state change
they cause and by the intention that drives thera. 08k the intentional element of activities to
drive validation at process design and as a basiadtion selection at runtime.

In what follows, we start by a motivating exampléemonstrating the limitations of a
representative LTL-based declarative model. We thegsent the concepts required for our
declarative model, first by informally deriving thefrom GPM, and then as formal definitions that
set the basis for an execution mechanism. Thenysheof our concepts at process design and at
runtime is presented and demonstrated through cgtigh to the running example. This is
followed by a discussion, review of related workdaconclusions, also outlining future research

directions.

Motivating Example

This section presents a motivating example of a (C®mputed Tomography) virtual cardiac
catheterization process, which will be used thraughthe paper as a running example. We use
Condec (used in Declai@(Pesic et. al., 2007)@s a representative LTL-based specification,
since models of this kind are currently dominanthe declarative model research. A Condec
model of the process is given in Figure 1. The esscstarts with a pre CT evaluation of the
patient (marked in the model as “init”). This ewation may find the patient not fit for the scan, so
the patient is released and the process endselpétient is fit and is not regularly on beta
blockers, he will be administered beta blockerpr@paration for the scan. Following this, either
obesity (for overweight patients) or regular cacd@T scan is performed once. The scan uses a

low level of radiation, serving as a first indicati of arteriosclerosis. If an evidence of



calcification is obtained, the patient is releadéthe first scanning does not discover an evidenc
of calcification, a second scanning is performezhriing can be performed up to twice (marked
in the model as “0..2” for the scan activities)dafthe second scan fails, the patient is releaksed
case the second scan is successful, its resultdeaiphered and interpreted. Deciphering can be
successful or unsuccessful; if it is unsuccesshdre might still be a possibility to get better
results, so it can be tried again. When deciphegimds (successfully or not) the patient is released
At any point in the process, some acute healthasitn might be identified, so the patient is
immediately sent to an emergency room (ER) and giecess ends. In the model this is
represented as ER intervention, with an exclush@ae relation with Release patient (both end
the process under different circumstances). Thematight also feel bad during the process (due
to allergy, irregular heart rate, etc.). In suckesathe procedure may be paused for a while and
resumed when the patient feels better. The alterpatcedence relation between these two
activities denotes that each execution of Resumestnme after an occurrence of Pause
examination. Additionally, at any point in time etipatient may be released so the process ends,

but unsuccessfully.
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Figure 1. The example process: a Condec model



The Condec model specifies the ordering of the g@®cactivities by a precedence relation,
denoting that the second activity is only possidfier the first one has taken place (but it is not
mandatory after the first one). The not-successatations from Cardiac and Obesity CT scan to
Beta blockers reception denote that Beta blockensiat be administered after the scan (hence if it
should be performed, it should be before the scahg activities of ER intervention, Release
patient and Pause examination may (or may not) pédee at any point in the process, and are not
preceded by other activities. The existence coimsrabove activities specify the number of times
an activity must or can be performed (e.g., 0.Agtivities whose existence is not explicitly
constrained, can be performed any number of timeadne).

The Condec representation supports the flexibiétyuired for the process, catering for unforeseen
situations and providing an immediate responsedasehuman decision making. Note that the
process could also be specified using an imperativdeling language (e.g., BPMN). However,
this would require a very complex model to speaifythe possible variations.

Despite all the discussed advantages, we claimthigtrepresentation is not expressive enough,
and it leaves parts of the flow logic to human jondgt, although this logic is clear and needs to be
specified and enforced. Examples include: (1) aséscan is performed only if a clear evidence
of calcification has not been obtained in the fasan; (2) Beta blockers reception is needed only
for patients who do not use them regularly; (3) d8aexamination and ER intervention are
performed when the patient has some irregularitywnen an acute problem is identified,
respectively. These are constraints on the prdtmgswhich cannot be expressed as relationships
between activities or existence constraints on gbtvities. Furthermore, the model does not
specify conditions for process termination. Implici the process cannot end before all the
existence constraints on its activities are satisfHowever, in our example the only mandatory
activity is Pre CT evaluation, while terminationtb& process should be under defined conditions.
Roughly speaking, we may conclude that Condec do¢support constraints that relate to the
context of the process and to its goal, where ebntefers to all environmental effects on a
specific execution of the process. These may bergtenvironment conditions (s€ePloesser
et. al., 20090or specific case properties (Ghattas et. al.9200 Condec they are assumed to be
addressed by human judgment when the process @utexk enabled by the flexibility of the
specification. Furthermore, without an explicit epecification, the achievement of a goal is

completely relying on the human operator.



In the following sections we present an approadiivéé from theory, which enables a process
specification that captures contextual constraamtd process goals, while supporting flexibility.
The theoretical basis provides for a set of counsdrihat are capable of fully expressing the

business logic of processes.

Ontological State-based View

This section introduces a declarative model basedhe Generic Process Model (Soffer and
Wand, 2005; 2007), which is a process analysisdraonk, building on Bunge’s ontology (Bunge,
1977). GPM emphasizes states, events, and goaish vwas shown above, are not well addressed
in current declarative process models.

The focus of attention in GPM is thkemainwhere the process takes place. The process dasnain
a composite thingrepresented by a set sthte variablesState variables can lrinsic to things
(e.g. height) omutualto several things (e.g. a person works for a cowyparhe values of the
domain state variables at a moment in time dertn&etateof the domain. A state can bastable

in which case it will transform according to thransition lawof the domainifternal eveny, or
stable namely, it will not change unless invoked by aerd in the environmengkternal event
Events in the environment affect the domain throogitual state variables of the environment and
the domain. GPM views an enacted process as af sate transitions in the process domain.
Transitions result either frotmansformationswithin the domain (reflecting its transition lavegy,
from actions of the environment on the domain. 8gaiss ends when the domain reaches a desired
(goal) state, which is stable and where no more chacge®ccur due to domain dynamics.

A process model is an abstract representationegptbcess, defined as follows.

Definition 1 (GPM process model): A process model in a givenailons a tuple <I, G, L, E>,
where

I: the set of possible initial states — a subsaimdtable states of the domain.

G: the goal set — a subset of the stable statdsatafg stakeholders’ objectives.

L: the transition law defined on the domain — sfiesi possible state transitions as mappings
between sets of states.

E: a set of relevant external events that can @dh® occur during the process.



Note that sets of states are usually specified @artgal assignment of values or as conditions that
should hold on the values of part of the domaitestariables.

As noted, the focus of attention in GPM is the psscdomain. The domain boundaries are set to
distinguish what is fully controlled by the proceasd its operators, and what is not. This
distinction enables defining the context of a pesc@as the set of environmental effects on the
process, which are twofold. First, the propertiethe specific case handled by a process instance
— these are assumed to exist at the initiationhef ¢ase, although not all their values are
necessarily known then. Second, actions of therenrient during process execution, manifested
as external events. External events are event® (séasitions) in the environment of the process
domain, which affect the state of the domain thtoogitual state variables. Taking place outside
the domain, they are not controlled by it. The aoence of an external event can be unanticipated,
but even for anticipated occurrences, the exact amd resulting state are usually not predictable.
In particular, they differ for different processiances.

As a basic part of the model, GPM explicitly adgessthe goal of a process, enabling the design
of a process to achieve its goal. At runtime, adhip a goal state marks the completion of a
process instance.

However, the transition law of GPM, which is a miagpbetween sets of states, is an abstract
notion. Specifically, as indicated in Definition GPM'’s process model abstracts from activities,
which are how state changes are brought about. d¢lénocmake GPM an appropriate basis for
declarative process models, the law needs to beng@esed into activities and constraints. To do
S0, a clear understanding of what an activity sdseto be developed.

Activities are the means for achieving internalrége Since internal events usually affect a subset
of the domain state variables, namely, a sub-donaaid since different internal events can occur
concurrently in independent sub-domains (Soffeakt.2010), an activity is an internal event in a
sub-domain. However, a sub-domain may changeate grough a series of internal events in an
almost continuous manner. What makes a specifiecti@y be considered an activity is the
intention that drives it. For example, the activif Pre CT evaluation entails actions such as
measuring the patient's blood pressure and he#et performing an electrocardiogram, and
others. We consider all these actions as partqefastivity, distinguished by the one aim to be
achieved. Intentions can be of achieving, maintainor avoiding a state (Lamsweerde, 2001).

We define an activity as an internal event in adaain, intended to achieve a defined change in

its state. According to our model the state chaasrgeght by an activity is deterministic, governed



by the law. However, as illustrated in Figure 2 #tate variables whose values are changed might
be mutual state variables of the process domain icenvironment. In such cases, the
environment is affected and its state might becansable. This, in turn, causes transformations
(events) in the environment, and these events magdin, affect the process domain. Thus, an
activity that acts on the environment might leachtoexternal event in response. Since external
events are not controlled by the process domaintheid outcome is unpredictable, this might
seem as if the outcome of the activity is unpreditd (especially if the reaction is immediate).
Nevertheless, we specify only the controllable geawithin the process domain as part of the
activity, and distinguish the uncontrollable chaagean external event invoked by the activity and
its effect on the process environment. Recall, regfeevents are part of the process context.

Hence, the result of an activity would depend @ombination of intention and context.

/ . \ Environment
Process domain

du\

State changg due
to an aclivity

Environmentbecomes
unstable

o,

Environment’s response:

\ / external event

Figure 2: Activity and external event in response

As an example, consider a basketball player thrgulie ball to the basket. The activity ends once
the ball is in the air, which is an unstable stdtthe environment. The movement of the ball in the
air is not controlled by the player. The resultaygnt can be that the ball either misses or hds th
basket, and it is an external event, not complgietylictable. The actual value resulting from the
external event will be determined at runtime. Nibeg in this example, the intention of the activity
was to bring about a state where the ball is inlthgket, but this can only be achieved by an
external event, and with uncertainty.

Activities can hence be classified to two clas¢gpactivities that affect only state variables ethi
are intrinsic to the process domain. Such actiwitause a fully predictable change that achieves

the intention associated with the activity. (b) i%ities that affect the state of the environmend an



invoke an external event. For these activities gpecified (and predictable) change in the state
does not necessarily correspond to the intendedgehdt may not even relate to the same state
variables.

We now consider constraints. A GPM process model loa represented by three types of
constraints: (@) initiation constraints, setting thossible initial set of states, (b) transfornratio
constraints that specify the relationship statéssgt namely, states that are preconditions for
activities, (c) Termination (goal) constraints, idefg the set of states where the process can
terminate. In addition, we can define a fourth typk constraint — environment response
constraints that place external events as resgoreivities that affect the environment.

Initiation constraints— determine values of state variables to spebifydonditions under which
the process can begin (e.g., when a patient aravéf®e clinic). Note that the initiation constitain

do not determine the exact initial state of a pssdastance. Rather, they are partial assignment of
state variable values. The exact initial state eddates to contextual properties which characateriz
each specific case (e.g., the weight of a patient).

Transformation constraints include two kinds of constraints: enabling coaists and triggering
constraints. Enabling constraints relate activitieshe sets of states when they can be activated.
Note that the state that follows the executionrofetivity is directly calculated from the statatth
precedes it and the change it causes.

Triggering constraints specify sets of states wdmemctivity must be activated, so when a state in
this set is reached the activity will immediateihef

Termination constraints- determine sets of states where the processnatesi There might be
two kinds of termination states. First, goal statelsich are stable states the process is interaled t
achieve. Once a state in the goal set is reachedyrbcess terminates. Second, exception states,
which are stable states where the process termsinaithout achieving what it is intended to
achieve. For example, the virtual cardiac catheation process can terminate when it is found out
the patient is not fit for scan so he is releasgdyhen an ER intervention is needed. These are
exception states. Note that the process may inchtdble states which are not defined as
termination states. If such a state is reachedptbeess waits for an external event to reactiitate

In the virtual cardiac catheterization process atestfter the examination has been paused is
stable, waiting for an external event (patientddw®dtter) to resume the process.

Environment response constrairtselate external events to activities that invtem. Note that

external events can also occur unexpectedly. Inymases the external event does not necessarily
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immediately follow the activity; there might be sermime elapse between them, but response will
eventually occur, and it is part of the processtexn

Finally, it can be shown that the combination afiation, termination, triggering, and enabling
constraints is sufficient for expressing all thenstpaint types available in Condec. Our set of
constraints provides these operations with resfpeatbroader scope, including context and goal.

Hence, it provides a richer expressive power.

Formalization

Following the above discussion, we now formalize pnoposed constructs.

Definition 2 (process model): Let D be a domain represented thystate variables vector

X=(X1,%,...%). Let \{ be the domain of values of state variable/x(Vy,V,,...\,). A process model

M over D is a tuple (I, G, A, BC, E), where

I: a set of states satisfying the initiation coagtts

G: a set of states satisfying termination constigiG=GgLGe; Gg includes states defined as the
goal of the process, Ge are states of excepti@raiihation.

A: a set of activities

BC: a set of behavior constraints

E: a set of external events.

Sets of states are specified by predicates ovesttiie variable vector. The predicates can require
partial assignments of state variable values im Xd¢come true. Hence, given predicatgsGgy,

and G that specify initiation, goal, and exceptionalntération conditions respectively, we
obtain:

I={s|C\(X)=TRUE}; Gg={s|Ceo(X)=TRUE}; Ge={s|Gs{(X)=TRUE}.

As discussed in the previous section, activitiesiatentional changes in the state of a sub-domain.
Following this, the specification of an activitycindes two elements: the change (delta) it brings

about to the state of the sub-domain and the ieteiseét of states to be achieved.

Definition 3 (activitiy): Let &(X) be a functiongV—V. Then a&A: (AX),1(X)), wherey is a
predicate denoting the set of states intended tadbéeved by the activity.
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Note thatd usually implies a change in a subset of the dorstite variables, which are the ones
affected by the activity. Also note thaty{fX) includes negation operators, then the intentibthe
activity is to avoid a set of states. As welly(K) refers back to the set of states that prechde t
activity, then the intention of the activity is teaintain an existing state.

The set of behavior constraints includes the t@ngdition and environment response constraints.
As discussed in the previous section, transformationstraints include enabling constraints and

triggering constraints.

Definition 4 (enabling constraint): Let @A, 6, a predicate, En(a)={¢}(X)=TRUE}, then a can

fire for every &En(a).

Definition 5 (triggering constraint): Let &A, z, a predicate, Tr(a)={st.(X)=TRUE}, then a must

fire for every &Tr(a).

Note that a triggered activity must also be engblethceTr(a)cEn(a) In order to define the
environment response constraints, we first neatkfime the external events element in the model.
In a process model an external event is an ocotgre/e make no a-priori assumptions about (e.g.,
regarding its effect on the state of the domaimwelver, some external events which are expected
to occur are expected to affect a subset of theaitostate variables and assign them some value
within their domain of possible values. The acttate that follows an external event will become

known at runtime as input made by the user.
Definition 6 (external event): An external everdtte {(x;,v)|x X, v eV}

In words, an event is defined by a subset of theaio state variables which it affects, resulting in
values within their domain of values.

Environment response constraints relate expectiret events to the activity that invokes them.

Definition 7 (environment response constraint): LetA, e<E. An environment response

constraint Er:(a,e) denotes that e always occuentéwally after a.

Since the occurrence of external events is notrothedl by the process, environment response
constraints cannot be enforced at runtime. NevirsBe they are specified so they can be

considered at process design time, and can be bateaccount when planning ahead in runtime.
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Specifying a process

This section demonstrates how the proposed modelegaesent the running example. We start by
defining the state variables of the domain and thessible range of values (Table 1). Table 1 also
provides the initial value of each state varialkfjning the initial set of states of the procéss,

Note that initial values are set for a subset efdtate variables, while state variables whosa&init
value is not specified stand for contextual prdpertThese need to be initialized to represent
specific case properties. In our example processdlevant contextual properties are overweight
of the patient and whether the patient is regulariybeta blockers. Also note that the table does
not include state variables that count the exenatimf each activity. All the activity counters are
initiated to 0.

Table 1: State variables in the example process and thigalinalues

Statevariable Values Initial value | StatevariableValues Initial value
Candidacy {Null, Fit, Not| Null Beta Blockerg{Given,
fit} Not given}
Over-weight {Yes, No} Calcificatior{Found, Not found
Not found}
Images {Null, Null Deciphering [{Null, Null
Successful, results |Successful,
Unsuccessful} Unsuccessful}
Acute problem {Undiscovered,| Undiscovered| Irregularity |{Null, Appear, | Null
Discovered} Disappear}
Patient {Yes, No} No ER {Yes, No} No
released Intervention
Paused {0, 1} 0
examination

The termination set is comprised of two sets ofestaGg of desired (goal) states artge of
undesired termination states. Considering our ei@mp
Gg={s|(DecipheringResults="successfukYPatientReleased="Yes")}
Ge={s|((DecipheringResuitssuccessful’i(PatientReleased="Yes¥))(ERIntervention="Yes")}
Ge stands for two possible cases of terminationhenshe patient is released without having
reached successfully deciphered images (e.g.,aumidf fit to scanning, or after calcification has

been discovered), or when ER intervention is needed
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The activities of the process are specified in &&bln terms of the functio® relating to specific
state variables, and the predicatélhe table also specifies for every activityhe predicate®),

and z, that define the related transformation constraim&)andTr(a), respectively.

Table 2: Activities and corresponding transformation corietg

Activity | § Y Transformation constraints
PreCT PreCTEval.Count> Candidacy= 6. (Candidacy="null")\ (Paused
Evaluation | PreCTEvaluation.Count + “fit” Examination=0)

1
Beta (BetaBlockers Beta blockers 5 ¢,:(Compatibility="Fit") A (Beta
Blockers Reception.Count>Beta "Given" blockers:"Given")a (Paused
Reception | blockers Reception.Count| Examination = 0)

+1) A (Beta blockers =

"Given")
CardiacCT | CardiacCTScan.Count (Calcification 6. (Compatibility="Fit") A (Beta
Scan CardiacCTScan.Count +1| ="Not Found”) | blockers = "Given" (Over-weight

" (Images= ="No") A (Calcification = "Not

"Successful' | Found")a (ObesityCTScan.Count =
0) A (Paused Examination = Q)
(CardiacCTScan .Count < 2)

ObesityCT | ObesityCTScan.Count (Calcification 6. (Compatibility="Fit") A (Beta

Scan ObesityCTScan.Count +1| ="Not Found") | blockers = "Given" (Over-weight
" (Images= ="Yes") A (Calcification = "Not
Successful) Found")A (CardiacCTScan.Count =

0) A (Paused Examination = Q)
(ObesityCTScan.Count < 2)

Deciphering | DecipheringScanResults. | Deciphering 0. Images= " Successful"

Scan Count— DecipheringScan results=

Results Results.Count + 1 “Successful”

ER ER intervention = "Yes” ER interventior| 4,: Patient released = “No”
Intervention ="Yes" 7. Acute problers "Discovered"”
Release Patient Released = “Yes” Patient Releaseg,: (ER intervention="No”)x (Paused
Patient ="“Yes” Examination = 0)

Pause Paused Examinatiorn 1 Paused 7. ((Irregularity= Appear)a (Paused
Examination Examination=1 | Examination = 0))

Resume Paused Examinatiorm O Paused 7. ((Irregularity= Disappearh

Examination=0 | (Paused Examination = 1))

To illustrate the specification of activities anldeir related transformation constraints, let us
consider the activity ObesityCTScan, whdseelates to the execution counter of the activity,
raising it by 1. Recall, this activity can be penfed up to twice. Ideally, after two executions a
state will be reached wheneis achieved, namely (Calcification="Not Found")(knages =

"Successful"). The enabling set of this activitywiken (Compatibility="Fit")A (Beta blockers =
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"Given") A (Over-weight="Yes")a (Calcification="Not Found"\ (CardiacCTScan.Count=Qy
(Paused Examination=0) (ObesityCTScan.Count< 2), denoting that (a) theviég can start after
beta blockers are given (either in the process dtsicontext) and compatibility is evaluated and
found fit (this condition is needed in case betackérs are given contextually), (b) the activity is
executed only for patients with over-weight (in walinicase CardiacCTScan cannot be performed),
(c) the activity can only be performed twice, anib inot repeated if calcification is found, and (d
the activity cannot start when the examinationasged.

Note that there are activities such as BetaBloéketsption, where for a state preceding the
activity seEn(a) the change achieved with certainfy(s) satisfies the intention,. These are
activities that achieve their intention with centgi not depending on external events. For other
activities (e.g., PreCTEvaluation), an externalntve expected in response to the activity, for a
state satisfyingy, to be achieved. As previously discussed, in thesses the intention of the
activity may not be achieved, depending on theeshet by the external event.

To complete the process specification, we defirestit of external evens which, together with

the uninitiated variables in Table 1, form the eomtof the process. Table 3 includes external
events and their associated environment respomsramts (column “Response to” in the table).
Some of the external events are expected in resgorspecific activities, while some can occur

unexpectedly, in which case the “Response to” calisrblank.

Table 3: External events in the example process

External event Affected statevariables | Responseto

Candidate compatibility Candidacy PreCTEvaluation

Calcification discovery | Calcification CardiacCTScan/eSiyCTScan
Image generation Images CardiacCTScan/ ObesityCTScan
Deciphering outcome Deciphering results Deciph&uoanResults

Acute health problem Acute problem
Irregularity appearance  Irregularity
Recovery Irregularity

To illustrate, consider the event Calcificationadigery. This event is expected in response to a CT
scan (either obesity or regular). It may changevtiae of the state variable Calcification from
Not Found to Found (see Table 1).
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Execution engine mechanism

The execution of the model is based on an Evendifion-Action (ECA)-like logic, which
responds to events and controls the activities dhatenabled or triggered at each moment. The
ECA rules depict the process constraints so foivangstates, the set of enabled activities is
Ae={a|s eEn(a)}, and the set of triggered activitiesAg={als €Tr(a)}. Still, activities are started
and completed by users (humans), who decide wittitity to execute from the set of enabled or
triggered activities, as reflected in the statuthefactivities.

The possible statuses of an activity are: Disabledgbled, Triggered, Active, Paused. Their

possible transitions are depicted in Figure 3.

Complet

Pause Resume

Disabled

Paused

Figure 3: Activity status types and possible transitions

At the beginning of the process, an activity can ewabled or disabled (depending on its
transformation constraints). When the state chatigesigh events, disabled activities can become
enabled or triggered (as noted, a triggered agtigitalso enabled), and enabled activities can
become triggered as well. It is also possible foeaabled or triggered activity to become disabled
(e.g., if another activity, with which the curreactivity has an exclusive choice relation, was
executed). These transitions are governed by thA B@ic. When a user decides to start an
enabled or triggered activity, the activity becoraeive. While it is active, it can be paused and
resumed by the user. When the user completes tivitygche ECA logic sets its status to disabled
or to enabled again, based on the transformatiostcaints. In addition, on activity completion,
the new state of the domain is determined, so tifile ®n completion o0& is J4(s). Finally, the
process is explicitly started and terminated by tiser. Termination is only possible in a

termination state, namely, a state in G. When age®instance is started, the state variable values
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are initiated according to the initiation consttajnand an input form is opened for the user to
report values of contextual variables.
The following event types are possible: Start(aigfly Complete (Activity), Pause (activity),
Resume (activity), Event(EventName). The eventstaft, complete, pause, and resume use the
activity name as a parameter; Start and Compleieatsm relate to the entire process. The general
type of event relates to external events, whichassign values to state variables (given as input
by the user). For convenience, it is possible teatx a set of predefined event templates
(EventName), for which it is known in advance whitlate variables will be assigned a value
(e.g., scan results should relate to the statabias of Calcification and of Images).
Since the occurrence of external events shoul@perted to the system, an event is represented as
an input form, where the user can assign valussate variables. The input form is opened when
the user decides to report an event. Then he daotseporting a predefined event (EventName)
or a general external event, in which case thetifipum allows assigning values to any state
variable. When the user submits the event formsylséem can react to the event.
The ECA rules include generic rules (or rule terrgdy that can be specialized for the specific
process and its activities at design time. Belowpnasent these templates, including activity rules,
state assessment rules, and termination rules.
Activity rules include rules for the start, com@gpause, and resume events of the activity.

On Start(a) if (a.status==enabled OR a.status==triggered) do a.status=active

On Conpl ete(a) do s=da(s) AND a.status=di sabl ed

On Pause(a) if a.status==active do a.status=paused

On Resune(a) if a.status==paused do a.status=active
The rules of state assessment fire at any kindrerfite(including Start and Complete of activities)
and determine which activities should be enabladgéred, or disabled at the new state that
follows the event. Note that the first event (Starbcess)) is automatically generated at initiatio

once the user submits the form where context viarizdlues are entered.

Event () if (6, AND a. st atus==di sabl ed) do a. status=enabl ed
Event () if (z,AND (a.status==di sabl ed OR a. status==enabl ed)) do a.status=triggered
Event () if (=6, AND a.status==enabl ed) do a.status=di sabl ed

Event () if (—7z,AND a.status==triggered) do a.status=di sabl ed
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Finally, termination rules include one rule whichosld fire on an explicit termination of the
process. This should be possible only if the curséate is in G.

Conpl ete(process) if (Cgy OR Cs) do Termi nate(instance)

Termination of a process instance includes disghidiith activities, removing the process instance

from the work list and archiving its information.

Theroleof activity intentions along process life-cycle

The execution engine described in the previousi@eetoes not use the intentional part of the
activity specification at all. Relying only on statelated constraints, the execution engine’s
operation is relatively simple. Still, the activilgtention information can be utilized at process
design time as well as at run time. This secti@sents these two uses. Below, we first elaborate
how intentions can support the validation of a psscmodel at design time. Second, we indicate a

possible use of the intention information for pleagnat run time.

Design time support

At design time, there is a need to assess theityatifia process specification, namely, the ability
of the specified process to achieve its goal. W peesent five conditions, which are necessary
for the specification to be valid, and indicate hovevaluate their satisfaction.

Condition 1 (concurrency): For every a, a&A, if Tr(@)HTr(@’) =2 thend, and 6, do not affect
the same state variables.

This condition is intended to ensure that two atitis that are triggered by the same state (namely,
must be performed concurrently), do not change vhieies of shared state variables. For a
discussion of this condition, see Soffer et. al01@. Verifying the condition is rather
straightforward: (a) identifying the subset of waities that have triggering constraints, (b) pair-
wise comparison of the triggering conditions of thetivities in the set, (c) for couples with
overlapping triggering states — check the statéabbes included in thé specification. Our

example process includes three activities that haiggering conditions: PauseExamination,
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ResumeExamination, and ERIntervention. Their tnigmeconstraints are not overlapping, hence
Condition 1 is not breeched.

Condition 2 (sequence of intended stateg)here exists at least one sequence of states,(s.s)
such that gel, s,eGg, and for i=1...n-1;5 &{s|»=TRUE} and scEn(a).

This condition requires the existence of at leagt sequence of states leading from an initial state
to the goal of the process, where the enablinggydring set of each activity is in the intendetl s

of the previous one. This means that the actidtgnabled either immediately and certainly after
an activity whose intention is achieved by édsor after an external event responding to the
previous activity has achieved its intention.

Note that there might be other sequences whichotitead to the goal set. These, however, should
end on a termination state in Ge and not on angrattate. In other words, continuation of the
process should be enabled for any state whichtisn@. To ensure this continuation, we require
the following three conditions.

Condition 3 (process continuation — intentionsyor every intentiory that can be achieved, there
exists at least one sequence of statess{(s..s) such that s={s|)=TRUE}, s,€G, and for i=1..n-1

S+1 €{s|7=TRUE} and seEn(a).

Condition 3 is intended to ensure that for evetgrtion achieved there should be a sequence of
states leading to a termination state. The intan8onot necessarily on the sequence identified as
satisfying Condition 2. Additionally, the requirentés not for the sequence to lead to a goal state,
since this might not always be feasible. Rathex,gbquence is required to lead to a termination
state, ensuring that the process does not getk'stuc

Condition 4 (process continuation - activities):et acA such thaty, is not achieved by,. Then7

an external eventeE and an environment response constraint Er:(a,e).

Condition 4 is intended to ensure the possibilitgwery activity to achieve its intention, everitif

is not with certainty.

We now introduce a possible way for evaluating Gims 2, 3, and 4, using a simple Intention-
action diagram. Figure 4, presenting an Intentictea diagram of the running example, is also

used for informally introducing the semantics oflsdiagrams.
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ER Intervention
] Patient sent

to ER

ER Intervention "}

F N

(Candidate compatibility)
Beta Blockers Reception
= - CT Scan ER Intervention
Candidacy="it" AND (Calcification discovery,
BetaBlockers="given” Images)
ER Intervention

PreCT Evaluation
(Candidate compatibility)
Obesity CT Scan
Calcification="not

Pause (Calcification discovery,
found™ AND

Images)
Images="successful”

PreCT Evaluation Candidacy="fit"

Pause

Deciphering scan results
(Dgciphering outcome)

Deciphering
results="successful”

Release Patient

Examinat\on:'paused‘lﬂ" Pause

Patient

Patient

Patient
released

Rel Patient

Legend:

Initial or
final set of
states

set of states 81 Activity a, En{a}=51, intention{a}=52 . set of states 82
satisfying intention (Event e in response to activity a, leading to S2) satisfying intention

Figure 4:Intention-action diagram of the running example

The notation of the diagram is given in the legeddte that an arc between sets of stateand

S,, denoting an activity enabled at &d intended to reach,3s marked by the activity name; in
case the intention is not achieved directly byabtvity, but can be achieved by an external event
which is a response to that activity, the event eents) name appears in brackets below the
activity name. Also note that the diagram doesdifférentiate enabling and triggering states. It
includes only activities that are enabled at inezhdtates, and does not include activities that are
only enabled as a result of external events (Besume).

Using the diagram, the evaluation of Condition8,2and 4 is as follows:

Condition 2 — a path from the initial set of stateshe goal can be visually detected. Such path
can, e.g., take PreCTEvaluation to achieve Cangidéit’ AND Beta Blockers="given”, then
through CardiacCTScan reach Calcification="not fun AND Images="successful”,

DecipheringScanResults to reach Deciphering Ressliscessful”, and ReleasePatient, leading
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to a state in Gg. Note that this is not the onlgsilsle path, but one is sufficient for a positive
evaluation of the condition.

Condition 3 — similarly to Condition 2, paths shiblble established from every intention to a final
set of states. In Figure 4 it is possible to ses the condition is evaluated negatively, since no
such path exists from the intention Examinationi§ed”. This intention has only incoming arcs
and no outgoing ones, since once the examinatipaused nothing can be done until an external
event of Recovery, which triggers the activity ofdRme. However, this external event is not
certain to occur. Hence, for the process to alveayaplete, the model needs to be modified, so at
least one activity is enabled even when the exaioimds paused. It would make sense, for
example, to change the enabling set of Releaselat®e it can be performed even when the
examination is paused (in case Recovery does ot after a while).

Condition 4 — directly available in the diagranatigh the response external events in brackets
next to the relevant activities (e.g., Deciphemugcome next to DecipheringScanResults).

Finally, Condition 5 is also intended to ensurecess continuation, but considering the external
events rather than intentions and activities. Heiteeeeds to be evaluated separately.

Condition 5 (process continuation — eventsfor every external event €(x;, v)}, for every value

v; that state variable xcan assume, the resulting state s satisfies €03 sor (2) 7 activity acA

such that €En(a).

Table 4. Enabled activities following external events

External event Possible state variable | Enabled or Triggered activities
values
Candidate compatibility Candidacy=Fit a=PreCTEvaluation
Candidacy=Not Fit ReleasePatient, ERIntervention,
PauseExamination, Resume
Calcification discovery | Calcification=Not Found Alttivities
Calcification=Found ReleasePatient, ERIntervention,
PauseExamination, Resume
Image generation Images=Successful DecipheringScaiReReleasePatient,
ERIntervention, PauseExamination,
Resume
Images=Unsuccessful ReleasePatient, ERIntervention,
PauseExamination, Resume
Deciphering outcome Deciphering results= ReleasePatient, ERIntervention,
Successful, Unsuccessful | PauseExamination, Resume
Acute health problem Acute problem=Discovered E&l\gntion
Irregularity appearance  Irregularity=Appear Paxseiination
Recovery Irregularity=Disappear Resume
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This condition requires that every external evétfiee leads to a state in the termination set @& to
state where at least one activity is enabled. Taluexe it, all possible state variable values that
might be assumed as a result of external eventstodee examined. Table 4 indicates the enabled
or triggered activities for every external evergule Note that the activities listed in Columnf3 o
the table are the ones for which the relevant vaymart of the enabling set definition. This does
not mean that they become enabled when this valagssumed. Rather, they are enabled when this
value is in combination with the rest of their elivadp conditions. Since Table 4 lists enabled

activities for every row, Condition 5 is positivedyaluated.

Planning at run time

In addition to the basic execution mechanism dbedrin the previous section, a separate planning
mechanism can support the user in deciding whitikigcto perform at a given moment. The full
details of this mechanism are outside the scopthisfpaper. This section briefly outlines the
underlying principles of such planning, and hightgy the role of activity intentions for this
purpose.

At run time, there might be several activities dadtat any given moment. Current models let the
human user make the decision of which activity &rfgrm, based on his judgment and
considerations. Implicitly, it is assumed that thaman user is goal seeking, hence will select the
activity that is most likely to contribute to thea achievement of the process (even if the goal is
not explicitly specified). Some approaches for reo@ending the next action have been proposed,
relying on past experience (Aalst et. al., 201ddenberg et. al., 2008) or on simulation (Rozinat
et. al.,, 2009). As opposed to these approachesnipigq looks ahead at the possible state
transitions and seeks a sequence of transitionge¢hahes the goal. Additionally, some objective
function can be set, so planning looks for suclueage that optimizes the value of the objective
function subject to the given constraints. The cofye function is generally referred to as cost to
be minimized, but it can relate to other factorghsas time, resources, or number of steps to be
taken. In our running example no specific objectivaction exists, so the objective can be to

minimize the number of activities that need to kecaited for achieving the goal.
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There exist a number of planning formalisms (68§.RIPS (Bylander, 1994)). Here we refer to
the SAS+ formalism (Backstrom and Nebel, 1995), nehee general planning problem is of the
following form:

A SAS: planningtaskis a 4-tupld1= <V,0, g, s> with the following components:

V ={vg,... v} is a set ofstate variableseach with an associated finite domain D

A partial variable assignmendver V is a function s on some subset of V such $(@ € Dv
wherever s(v) is defined. If s(v) is defined fanakV, s is called atate

O is a set obperators where an operator is a pair <pre, eff> of pasaiable assignments called
preconditionsand effects respectively. gis a state called thanitial state and s is a partial
variable assignment called tgeal.

An operator <pre, eff> is applicable in a stateffss{v) = pre(v) whenever pre(v) is defined.

Applying the operator changes the value of v tovgfif eff(v) is defined.

It is easily seen that a general planning probleeciication is quite similar to our declarative
model. The main difference is that a planning pgabldoes not consider external events. Hence,
we propose to use planning under the assumptidretlay activity achieves its intention. With
this assumption, it is possible to get an initialmp

The planning problem would dé= <V,0,%,s*>, where V is the set of state variables considered,
the operators in O correspond to the activitiesernetpre= En(a) and effa) for every activity;
So=l; s*=Gg.

Two notes should be made. First, the state vasadile required to have a finite domain of values.
This is reasonable in most practical situationse\an state variables whose domain of values is
infinite (e.g., weight) can in most cases be regmd on a finite scale of meaningful ranges (e.qg.,
normal weight, overweight). Second, the planningsaat achieving a state in,@nd not just any
termination state, to obtain a plan that achiekegtrocess goal.

As noted, the plan would assume every activitydoieve its intention. However, this would not
necessarily be what actually happens. When theepsois executed, in case the intention of an
activity is not achieved (due to the state broufghtan external event), re-planning can be
performed, taking the current state as an initiatesand again seeking a plan for achieving the
goal from that point. If no feasible solution isuf@ by the planning algorithm, some other

termination state (not in the goal) can be sought.
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Discussion

Declarative process models are a promising meanacfueving flexibility in business processes.
The paper has indicated gaps in the existing datbl@r models, and proposed a model which
includes aspects that are not addressed by othpaghes. Below we discuss the advantages
gained by this approach, as well as its limitati@scompared to LTL-based declarative models.
Flexibility vs. decison making support: Enabling and triggering activities based on statd
context information, and addressing the procesd, gha proposed model supports decision
making while providing sufficient flexibility whemeeded. Yet, the flexibility allowed by LTL-
based specifications is higher. The Condec spatidic of the running example allows releasing
the patient at any point in the process, or exaegubecipheringResults repeatedly again and
again. These, naturally, would be avoided by a-geaking process operator, but decisions are
completely delegated to human and not supporteériorced) by the model. The absence of a
process goal in LTL-based models makes an abund#neeecution traces possible, and it is the
sole responsibility of the human to lead it towasdscessful completion.

Activity representation: The model proposed in this paper is novel in nindethe activities by
the definite change they bring about and the identhey serve, and separating the non-
deterministic effects of external events from thévéties that invoke them. Not relating to states,
LTL-based models do not address the outcome ottvity (as discussed, this is left for human
consideration). Our representation relies on thmlogical view, aiming to anchor the process
model in real world business semantics and gaiam@n-depth understanding of the process and
what drives it.

Intention-based life-cycle support: At process design, the intentions can provide ansdor
semantically validating the process model. LTL-lbhpeocess models only employ verification
techniques (Pesic et. al. 2007), capable of chgclir absence of dead activities and conflicting
constraints. Semantic validation of existing modseleot supported, especially since the business
semantics of goal is not depicted in the modelrukttime, intentions can serve for planning and
providing recommendations on which activities te@xe at a given moment. Recommendation is
important when several possible paths can be taRimning can also relate to some objective
function (e.g., cost or time) and recommend a fh#t optimizes it. The proposed execution

engine, however, ignores the intention elemenhefdctivities. Rather, it only relates to the state
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events, and constraints. This separation is ingnoeimplify and avoid over complication of the
execution engine.

State representation dimensionality: As compared to LTL-based models, the main linotatf

the proposed model is the high dimensionality cduseaddressing the various state variables in
the process domain. This applies to both the ei@mtuéngine and the planning module.
Considering execution, the feasibility and appliigb of ECA engines has been long
demonstrated (e.g., McCarthy and Dayal, 1989).Un aase, experimentation is still needed to
assess the effect of process size on the perfoend@unsidering planning, finding an optimal
solution is a Pspace-complete problem (BackstrochNebel, 1995), thus large models might be
impossible to optimize at acceptable time. Howeiremany cases (as in the running example of
this paper) optimization is not sought. Rather,nfan issue is to find a feasible path to the goal.
In other cases, efficient heuristics are availdbtdinding a sub-optimal yet good solution.
Usability: Unlike LTL-based models, the proposed model da#semploy a graphical notation.
We intend to consider different visualization pb#gies, including an adaptation of the graphical
notation of Condec used by Declare, to the additiexpressiveness of our model. Note that the
lack of a graphical notation is mainly an obstati@rocess design, while runtime usability can be
achieved without an explicit graphical representatf the model. An appropriate visualization is
hence expected to increase the usability of theetnaidprocess design, and to a lesser extent also

at runtime.

Related Work

Substantial research efforts have been investdddtarative process models in recent years. Most
notably, Declare 0, an LTL-based modeling and etieo platform, which also allows changing
the model at runtime and performing some verifarati Methodological issues that concern
declarative process models have also been investiggExamples include life-cycle support
(Zugal et. al., 2011), user assistance 0 et2@08), and usability evaluation (Weber et. al.,®01
User assistance includes recommendations whichgenerated based on similar past process
executions by considering specific business ohjestiO et. al., 2008). An initial usability
evaluation using the Alaska simulator, has indidatieat humans are capable of coping with

flexibility and can effectively plan in an agile mzer O et. al., 2010).
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Declarative model segments have also been usedthémaging imperative models. Ly et. al.
(2008) developed a framework for integrating casts into adaptive process management
systems in order to ensure semantic correctnesanofing processes at any time. Awad et al.
(2008) suggested a technique to accomplish thdication of process models against imposed
compliance rules by using BPMN-Q queries.

Planning based on declarative specification has bien proposed. Barba et. al. (2012) used
planning together with a Condec specification, baitlbuild time for obtaining an initial plan and
at runtime for re-planning. However, the LTL-baspecification does not employ a process goal,
so planning aims at achieving a state where alkttaimts are satisfied, with the objective of
minimizing execution time.

All these approaches basically employ an activagdd view, with LTL-based constraints on
activities. Goals are usually not specified or added, although some goal consideration is
included in the Alaska simulator (Weber et. al.02p It relates to a goal, which is actually an
objective function, as an overall business value, iminimization of cost, cycle time or the
optimization of quality or customer satisfactionodBs of this kind are called soft-goals in GPM
terminology, and can be addressed as part of drnlg.

A different and early approach is presented by Asstmn et. al., (2005) who defined a business
process pattern based on the state-oriented apptbacincludes a state space, a goal, and valid
movements in the state space. Constraints are adé fiormally and explicitly, but roughly in the
form of valid movements. Other, more recent apgneac which consider states as well as
activities include the declarative model proposgdRigchkova et. al. (2008) and the Guard-Stage-
Milestone (GSM) model (O et. al., 2011) proposed lfusiness artifact lifecycles. The first one
proposed using a declarative specification ass fitep at process design. The specification is
therefore not executable, but it can be refinedamoimperative model when the process is
customized and deployed. The declarative spedificagmploys a state space with activity pre-
and post-conditions. However, it assumes an agtalivays achieves a predefined state and does
not take external events into account. GSM is dadative specification consisting of nested
process stages that have guards and milestonesyuBinds monitor the conditions for activating
the stages, while milestones represent their plessibmpletion states. GSM is capable of
addressing external events and considering the #tat follows them. It employs an ECA-like

execution mechanism. In all these elements, GSNMsheach similarity to the model proposed in
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this paper. However, GSM does not support an iiteak view and its process lacks a clear goal,
which would indicate which of the possible milestens preferable and should be aspired for.

In summary, the approach presented in this papends the capabilities of both LTL-based and
state-based declarative process models. Comparédltdbased models, the approach has an
extended expressiveness, enabling all LTL-basedstaints and adding state and goal
information. Considering state-based declarativelels) the intentional aspect of both the process
(goal specification) and activities enables stateeldl execution as well as goal-oriented design and

planning.

Conclusion

Declarative process models support flexibility irogess aware information systems. The paper
proposes a model which extends currently availat#@elarative process models. The model
constrains the execution of activities based otestahich reflects activity execution as well as
case properties and results of events in the emviemt of the process. As such, it is context aware
and suitable for highly diverse and frequently aiag environments, where process flexibility is
particularly important. Furthermore, an explicitagjgpecification can guide execution towards this
goal and serve for validating the process at detiige and planning at runtime.

We consider the main contribution of the paperdate activity definition, which makes a clear
distinction between the certain change brought bgut and the intended change, which may or
may not depend on environment response invokedhdowactivity. The design time validation and
planning mechanism demonstrate the usefulnesseofntientional information of the activities.
Describing the execution mechanism, we show thanwimnecessary, the intentional information
can be ignored for simplicity, as it has no rolé¢ha actual execution mechanism.

We envision further use of the intentional inforroatalong the process life-cycle as future
research directions. Mining can possibly indicdite success rate in intention achievement over
time, so improvements can be made for increasiisgréite. Additionally, constraints and relevant
state variables can change during the executiothedfprocess. This possibility is supported by

Declare, and we consider it as an important futesearch direction.
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