
Information Systems 28 (2003) 673–690

ERP modeling: a comprehensive approach

Pnina Soffer, Boaz Golany*, Dov Dori

Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Technion city, Haifa 32000, Israel

Received 20 February 2002; accepted 18 October 2002

Abstract

We present a generic reverse engineering process, aimed at developing a model that captures the available alternatives

at different application levels of an Enterprise Resource Planning (ERP) system. Such a model is needed when ERP

systems are aligned with the needs of the enterprise in which they are implemented. In order to support the ERP

implementation process, the model should describe the entire scope of the ERP system’s functionality and the

alternative business processes it supports, as well as the interdependencies among them. We analyze the desired

properties a modeling language should satisfy to be applied in constructing an ERP system model. This analysis, which

follows the Cooperative Requirements Engineering With Scenarios classification framework in its adapted ERP

modeling form, results in a set of criteria for evaluating modeling languages for this purpose. Using these criteria, we

evaluate the Object–Process modeling Methodology and apply it for generating a detailed ERP system model. The

generic process and detailed criteria we develop can serve for comprehensive ERP modeling, as well as for obtaining a

model of other process-supportive off-the-shelf systems that are of generic and configurable nature.

r 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Enterprise resource planning; Reverse engineering; Object–process methodology; Modeling languages

1. Introduction

Enterprise Resource Planning (ERP) systems
are off-the-shelf software packages that support
most of the key functions of an enterprise, such as
logistics, sales, and financial management. These
systems are generic, and the functionality they
provide can serve a large variety of enterprises.
The implementation of an ERP system involves

a process of customizing the generic package and

aligning it with the specific needs of the enterprise.
The alignment process simultaneously defines the
software configuration and the enterprise business
solution. Due to the need to adapt the enterprise to
the software package rather than the other way
around, it often results in redesigned business
processes [1,2]. Enhancing the system’s function-
ality through software customizations, although
not desired [3], is sometimes required. The business
process alignment, affected by various environ-
mental aspects, such as existing information
systems prior to the ERP implementation [2] and
organizational culture [4], bears crucial conse-
quences on the success of the ERP implementation
project and on the future business practice of the
enterprise [5].

*Corresponding author. Tel.: +972-4-8294512; fax: +972-4-

832-5194.

E-mail addresses: pnina@tx.technion.ac.il (P. Soffer),

golany@ie.technion.ac.il (B. Golany), dori@ie.technion.ac.il

(D. Dori).

0306-4379/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

PII: S 0 3 0 6 - 4 3 7 9 (0 2) 0 0 0 7 8 - 9

This work is motivated by the need to provide
support for the alignment process in enterprises
whose business processes are unique and form
their competitive edge. Such enterprises do not
necessarily wish to standardize all their processes
due to ERP implementation, as is often the case.
Common tools that support the alignment process
refer to predefined ‘‘best practice’’ models and
configurations [6–8], and therefore do not support
the needs of these enterprises. Preserving their
unique processes may require these enterprises to
make software customizations in the ERP system,
and take risks of a long implementation time and
high costs for maintenance and upgrades in the
future [3]. However, the functionality of ERP
systems is in many cases rich enough and capable
of supporting business processes that are not
included in the ‘‘best practice’’ solutions.
A requirement-driven alignment approach [9–

11] enables the enterprise to identify the ERP
configuration that satisfies stated requirements
that do not necessarily match any predefined ‘‘best
practice’’ solution, and the gaps—the requirements
that are not satisfied by the system.
Such an approach matches specifications of the

enterprise requirements with a model, specifying
the ERP system capabilities. This requires the
model of the ERP system capabilities to represent
the entire scope of options available in the ERP
system in a manner that enables matching with the
enterprise requirements. A common basis of
semantics and representation is needed for both
the ERP system model and the enterprise require-
ments.
The enterprise requirements, discussed in detail

in [11], are obtained through a requirements
engineering process and represented formally in
order to be matched with the ERP system
capabilities. Some ERP systems, such as SAP
and Baan, have embedded enterprise models,
which represent their capabilities and ‘‘best prac-
tice’’ solutions [6,8]. The model embedded in an
ERP system may serve as a basis for matching the
system with the requirements. Thus, it makes sense
to represent the requirements using the same
modeling approach. However, some ERP systems
have no embedded business model, and others
apply different modeling conventions, addressing

different aspects of the enterprise. The Architec-
ture of Integrated Information Systems (ARIS)
[6,12], applied in the reference models of SAP,
incorporates five representation views. These
include a function view, decomposing activities in
a top-down manner, a business process view,
represented as Event-driven Process Chains
(EPC), a resource view, representing organiza-
tional units and other resources, a data view
represented by Entity-Relationship Diagrams
(ERDs), and an output view, representing physical
inputs and outputs. The Dynamic Enterprise
Modeling (DEM) [8], applied in the Baan reference
models, incorporates a business control view,
which represents business functions, their structure
and interaction, an organizational structure view,
an enterprise structure view, showing geographi-
cally distributed inner supply chain, and a business
process view, represented as Petri Nets [8].
Due to the lack of a standard modeling

language, the enterprise requirements must be
represented differently when implementing differ-
ent ERP systems in order to be matched with the
ERP system capabilities. Furthermore, in order to
be matched, the issues addressed by the enterprise
requirements must correspond to the issues ad-
dressed by the modeling method applied in the
package, which is being implemented. This does
not make much sense, since the issues addressed by
the enterprise requirements are independent of the
specific ERP package implemented.
Rather than relying on the models embedded in

the various ERP packages, our goal was to
establish a proper ERP model and determine what
modeling language is most appropriate for repre-
senting the ERP system capabilities to be matched
with the enterprise requirements. For this purpose
the desired model should represent business
processes and their corresponding underlying
information objects [11], and capture the entire
scope of alternative options provided by the ERP
system and their interdependencies.
Constructing an abstract model of an existing

system is a process of reverse engineering. Reverse
engineering processes are generally composed of
three main activities: restructuring, comprehen-
sion, and production of an abstract model of the
system under investigation [13]. Restructuring,

P. Soffer et al. / Information Systems 28 (2003) 673–690674

which is the process of transforming the structure
of a system without changing the level of abstrac-
tion, is applied when error correcting or recovery
of structure and consistency is needed, which is not
our case. Existing reverse engineering approaches
(e.g., [14,15]) that provide methodologies for
obtaining a model from an information system,
typically address legacy systems, and therefore do
not focus on capturing optionality. Other works,
addressing complex and configurable systems [16]
and product families [17], deal with the system’s
architecture in support of its evolution, rather than
its possible configuration options. Providing a
reverse engineering focus on optionality, which is
essential for ERP modeling, is one of the
contributions of the present work.
We start by outlining the steps that enable

systematic construction of a model that captures
the entire scope of alternative ERP system options
and the interdependencies among them. These
steps are generic and not specified for any
particular modeling language. They provide a
basis for discussing the nature of modeling
languages suitable for our purpose. The discussion
is based on the Cooperative Requirements En-
gineering With Scenarios (CREWS) classification
framework of modeling languages [18], which was
adapted for ERP representation in [10], and results
in a set of evaluation criteria for a modeling
language to be applied in ERP modeling. The
modeling steps are refined into a modeling
procedure that applies the Object–Process Meth-
odology (OPM) [19] as a modeling language. OPM
has been introduced and evaluated in [11] for
modeling the requirements posed by an enterprise.
Therefore, applying it for representing the ERP
system provides a basis for aligning the system
with the requirements. The OPM modeling proce-
dure can be applied as is, or serve as a meta-model
for constructing a modeling procedure, which is
implemented with any other modeling language
that fits the defined selection criteria.
The remainder of the paper is organized as

follows: Section 2 outlines the generic ERP
modeling procedure. The desired characteristics
of a modeling language that is useful for describing
an ERP model and implementing the modeling
procedure are discussed in Section 3 and form

selection criteria for such a language. Section 4
briefly introduces the OPM and presents an ERP
modeling procedure that follows the steps outlined
in Section 2. Discussion and concluding remarks
are given in Section 5.

2. Generic ERP modeling steps

The alternative options provided by an ERP
system appear in different levels of application. In
this section, we discuss the optionality levels, and
present a generic reverse engineering approach,
which is based on their structure. We illustrate our
approach with examples based on the Purchase
and Inventory modules of the Baan IV ERP
system, which concern purchasing of goods and
inventory transactions in warehouses.

2.1. ERP optionality levels

Capturing the entire scope of options supported
by the ERP system in a model is a challenging
task, which is essential for identifying a good
solution for the enterprise needs. The ERP options
enable adapting the system to various enterprises
with different needs, and are controlled by a set of
parameters, whose values are determined through
an alignment process.
Three levels of optionality are distinguished:

System Configuration level, Object level, and
Occurrence level.
The System Configuration optionality level

affects the functionality of the ERP system
throughout the entire system. The various options
are controlled by the system parameters, whose
values are set once when the system is implemen-
ted in an enterprise and remain static thereafter.
An example of such a parameter is a Boolean
parameter indicating whether warehouse location
control is implemented in the system. By setting
the parameter value to True, all the warehouse
location-related processes, such as warehouse
locations management and receiving purchased
goods to locations, are enabled, while a False
value of this parameter disables this functionality.
There are three types of system parameters. (1)

High-level process definitions, which control the

P. Soffer et al. / Information Systems 28 (2003) 673–690 675

system functionality by providing preconditions
to user-interface sessions. The location control
parameter is of this type. (2) Low-level process
definitions that control the system’s internal
functionality by indicating the specific algorithms
and rules to be applied when performing a specific
action. For example, a parameter of this type
defines what types of action require logging a
record of change history by the system. (3) Process
parameter definitions that provide values that
determine how a specific action is performed.
Examples of this parameter type are parameters
defining the numerical range and structure in order
numbering, and parameters indicating different
planning horizons.
The Object level is an intermediate optionality

level, controlled by the parameters of single data
objects, and can vary in different instances.
Different parameter values cause different in-
stances to be handled in a different manner. An
example of such a parameter is a Boolean attribute
of a warehouse indicating whether location is
controlled in this specific warehouse. When loca-
tion control is implemented in the system, each
warehouse may either be location controlled or
not, as set by the value of this attribute. A
warehouse cannot be location controlled if loca-
tion control is not implemented in the system, but
in a configuration including location control, there
may still be one or more warehouses that are
managed without location control. Since this is an
attribute of a Warehouse, its True and False values
enable performing inventory handling processes
differently in different warehouses. Another ex-
ample is a Boolean attribute of an item, indicating
whether or not it should undergo a quality
inspection when received and be approved before
it can be used.
The Occurrence level, which is the lowest level of

optionality, applies to a single occurrence of a
process, and facilitates variance in its performance.
For example, when registering the receipt of
purchased items that need to be inspected, the
user may select an option of a fast approval, and
automatically approve all the delivered goods
as being of good quality. Otherwise, the goods
will undergo a quality inspection as a separate
process. The user can decide whether to apply this

option in each occurrence of the goods receiving
process.

2.2. Systematic ERP modeling

The generic reverse engineering process pre-
sented here is focused on two of the three
fundamental reverse engineering activities: achiev-
ing comprehension of the ERP system and its
optionality controls, and abstracting it to a model.
The sources of information for the process are the
system database schema, as reflected in the system
tables, the system on-line and off-line documenta-
tion and help facilities, the user interface, and
domain knowledge of the modeler. If the system
includes an embedded process model, such as SAP
[6] and Baan [8], that model can serve as a basis for
the business process model, but should be treated
carefully and checked for consistency with the
other information sources.
The process, whose summary is provided in

Table 1, includes four modeling levels: a global
level and three levels corresponding to the
optionality levels discussed above.

Global level: The initial level in the modeling
process concerns the global functionality of the
system without addressing its various options.
First, the ERP system’s database schema is
represented and abstracted in order to gain
understanding of the business objects that partici-
pate in the supported business processes. The
database model is obtained in a bottom-up
manner, first by extracting the physical data
structure and second by establishing generalized
objects. The business processes are identified by
grouping the user-interface sessions in the ERP
modules into functional groups, and by following
the order in which transformations of the status
attributes of the objects may occur. In cases where
the ERP system includes an embedded process
model, this model can serve as a basis for the
Global model. This top-level model specifies the
sequence of activities that manipulate the main
data objects in the system but it does not represent
alternative processes.

System configuration level: The second step,
which addresses the System Configuration level,
concerns the alternative business processes that are

P. Soffer et al. / Information Systems 28 (2003) 673–690676

determined by the system configuration. This
entails identifying the effect of the system para-
meters, which are included in the database model
and belong to the high-level process definition set
of parameters. These parameters determine the
main alternatives for performing the business
processes by controlling the access to user-inter-
face sessions. Identifying their effect on the
activities of the Global process model leads to
refined business process alternatives in the System
Configuration-level business process model.

Object level: The third step addresses the Object
level, representing process variants that hold for a
single instance. It involves studying the activities
of the business processes and the data objects they
manipulate in order to identify (a) the possible
variants of the process activities, and (b) the
preconditions of each such variant in terms of data
object attribute values. The preconditions may be
a combination of system parameters and data
object attribute values. The instance-specific pro-
cess variants, along with their preconditions, are

represented at the Object-level business process
model.

Occurrence level: The fourth and last step,
addressing the Occurrence level, considers the
options the user may select in each occurrence of
a process, thus constructing the most detailed layer
of the model. This layer expresses the alternative
options available for performing each process
variant. The enterprise operations can be con-
trolled through a combination of higher-level
parameters of the first three layers with low-level
process occurrence parameters. In this step the
user interface is studied in order to identify options
that the user can determine while performing a
task. The effect of these options on the business
processes is defined and modeled.
The layers of the model obtained through the

process steps are illustrated by the Purchase and
Inventory example, in which the database model
includes objects such as Warehouse, Item, Supplier,

Location, and Purchase order, along with their
relations and attributes, as well as system

Table 1

Generic ERP modeling process

Step Description Information sources Output

ERP global level 1. Constructing a

data model in a

bottom-up

manner

2. Constructing a

Global business

process model

* ERP database
* ERP system modules

and sessions
* Embedded business

process model
* Status transformation of

objects

1. Database

model

2. Global

business

process

model

System

configuration

level

Identifying and

modeling the alternative

business processes,

controlled by the system

parameters

* ERP database model:

system parameters
* ERP system modules

and sessions

System

configuration-

level business

process model

Object level Identifying and

modeling business

process alternatives and

options, controlled by

data object attributes

* ERP database model:

system parameters and

object attributes
* ERP system modules

and sessions

Object-level

business process

model

Occurrence

level

Identifying and

modeling activity

options, controlled by

user-defined options

* ERP database model:

system parameters and

object attributes
* ERP system modules

and sessions: user interface

Occurrence-level

business process

model

P. Soffer et al. / Information Systems 28 (2003) 673–690 677

parameters, such as Location Control Implemented.

The Global business process model specifies
processes such as receiving purchased goods.
In the System Configuration level, two alter-

native ways of receiving goods to a warehouse are
identified and modeled. These are controlled by
the system parameter Location Control Implemen-

ted, whose False value means that the alternative
of receiving goods into a non-location controlled
warehouse is selected, while a True value allows
both alternatives, one of receiving goods into a
location controlled and another—to a non-loca-
tion controlled warehouse.
Two examples illustrate the Object level. In the

first one the combination of the system parameter
Location Control Implemented and the warehouse

attribute Location Controlled serves as a precondi-
tion for location controlled or non-location con-
trolled receiving. In the second example the Item

attribute Inspection Required controls by itself the
activation of an inspection sub-process, included
as a variant in the purchase receiving process.
The Occurrence level is illustrated by the option

Fast Approval, which the user may select when
dealing with items that require inspection. This
option activates an activity of automatically
approving all the goods received.
The Purchase and Inventory example demon-

strates the modeling steps, based on the para-
meters that control the ERP functionality at the
different application levels. As the number of these
parameters increases through the entire software
package, so does the number of process alter-
natives and options.
The four modeling levels are independent of the

modeling language applied. Nevertheless, in order
to be applicable for the proposed modeling process
and to properly express the system’s rich and
complex functionality, the modeling language
should meet certain requirements. In the following
section we discuss the properties of modeling
languages suitable for ERP modeling.

3. Desired properties of an ERP modeling language

In this section we discuss the properties of an
effective ERP modeling language. The discussion

follows the CREWS classification framework of
scenario representations [18], which was adapted
by Rolland and Prakash [10] to classification of
ERP modeling approaches. We make some
modifications to their framework, whose summary
is given in the Appendix A. The extended frame-
work, which enumerates the properties of model-
ing languages that are of relevance to ERP
representation, is the basis of our discussion. We
consider the consequences of each of the proper-
ties, and indicate its desired values. Thus, we in
fact transformed the adapted CREWS classifica-
tion framework into an evaluation framework of
modeling languages.
The adapted CREWS classifies modeling meth-

ods by four views: Content, Form, Purpose, and
Customization process. Each view has a set of
associated facets, and each facet is characterized
by a set of relevant attributes.
The Content view refers to the knowledge

captured in the model, defined according to four
facets: Abstraction, Context, Coverage, and Argu-
mentation.

Abstraction: The Abstraction facet is character-
ized by a single attribute, Abstraction, which
classifies the scope of abstraction levels available
in a modeling language. This scope can be
Flexible, allowing different levels of abstraction
in a model; Fixed, indicating that once the abstrac-
tion level is set in a model, it is not possible to
change it into a higher abstraction level or a lower
one; or the scope may be unique, allowing a pre-
defined abstraction level only (e.g., details only).
For the purpose of ERP modeling Flexible

abstraction is required of the modeling language,
in order to support a top-down/bottom-up model-
ing process. Furthermore, due to the high level of
complexity and broad scope of ERP systems, a
fixed level of abstraction (unique or even change-
able) may either provide insufficient information
or become overloaded.

Context: The Context is characterized by three
Boolean attributes: Internal, Interaction, and
Contextual. The Internal attribute indicates
whether the internal system functionality is ad-
dressed in the obtained model. The Interaction
attribute indicates whether the interaction between
the system and its environment is represented. The

P. Soffer et al. / Information Systems 28 (2003) 673–690678

Contextual attribute indicates whether the model
represents the environmental context in which the
system operates.
Since the purpose of ERP modeling is to align

the ERP system with the enterprise requirements,
the contextual and interaction properties are of
relevance. As discussed in [11], the requirements
treat the system as a black box, specifying its
organizational context and partly its interaction.
In order to address the same issues as the require-
ments, the ERP model should focus on the context
of the system and its interaction.

Coverage: The Coverage facet is expressed by
two attributes: Functional, which characterizes the
functional information captured in the model, and
Intentional, whose Boolean value indicates
whether the model includes intentional informa-
tion, such as objectives and goals.
While the ERP-adapted CREWS framework

[10] treats the Functional attribute as a Boolean
one, we chose to follow the original CREWS
framework, and distinguish between structural,
functional and behavioral information captured
by the modeling languages. This attribute, there-
fore, indicates the types of functional information
captured in the model. Proper representation of
the ERP functionality requires the modeling
language to express all three types: structural,
functional and behavioral information. Intentional
information is not an essential part of the ERP
model, as presented in Section 2.

Argumentation: The Argumentation facet, relat-
ing to the ability of a modeling language to express
optionality-related information, is expressed by
three attributes: Variant, Arguments, and Variant
Dependency.
The Variant attribute, indicating whether the

modeling language is capable of expressing op-
tions and variants, is essential for capturing the
entire scope of options and business process variants
supported by the ERP system. The Arguments
attribute identifies whether the modeling method
provides for including arguments that support the
selection. Such arguments, although possibly help-
ful in the alignment process, are not mandatory.
While the third attribute, the Variant Depen-

dency, was not included in the adapted CREWS
framework, we consider it as an important element

of the framework. Dependencies and inter-rela-
tions play a major role in the customization
decision-making process, and should therefore be
reflected in the model resulting from the modeling
language under consideration.
Table 2 summarizes the facets and attributes of

the Content view and indicates the required
attribute values of an adequate ERP modeling
language. If no required value is specified in the
table, every value is acceptable.
The Form view refers to the notation and

structure applied in the modeling language,
through two facets: Notation and Structure.

Notation: The Notation facet has a single
attribute, Notation, which classifies the formality
level of a modeling language. It should preferably
be either formal or semi-formal in order to support
a systematic matching with the requirements, or
else it may lead to inaccuracy and ambiguity in the
alignment process.

Structure: The Structure facet, addressing the
types of elements and relations in a modeling
language, has three attributes: Element Type,
which is merely an identification of the element
types included in the model, Intra-element Rela-
tionship, and Inter-element Relationship.
The Intra-element Relationship attribute indi-

cates whether the elements of the model constitute
a nested structure or a flat one. This attribute is
closely related to the Abstraction attribute of the
Content view, since a nested structure typically
corresponds to a flexible level of abstraction, while
a flat structure typically indicates a single level of
abstraction. Since a flexible level of abstraction is
desired in ERP modeling, the Intra-element
relationship should be nested, or a combination
of nested and flat structures.
The Inter-element Relationship attribute, which

specifies the relationship types in the model,
determines to a great extent the expressive power
of a modeling language, which should be as high as
possible. Nevertheless, relating this attribute to the
Intra-element Relationship, a nested intra-element
structure provides for generalization and refine-
ment relationships to be reflected by the abstrac-
tion levels of the model. Therefore, within a single
level of the model, the lack of generalization and
refinement is acceptable.

P. Soffer et al. / Information Systems 28 (2003) 673–690 679

Table 3 summarizes the facets and attributes of
the Structure view and indicates the required
attribute values of a modeling language adequate
for ERP modeling.

The Purpose view refers to the objectives
that may be satisfied by using the model. It has
one facet, the Aim of Representation, expressed
by three Boolean Attributes: Descriptive,

Table 2

Required values for attributes of the Content View

Facet Attribute Explanation Required values

Abstraction Abstraction: ENUM

{Unique, Fixed, Flexible}

The scope of abstraction

levels supported

Flexible

Context Internal: BOOLEAN The model represents

internal system functionality

Interaction: BOOLEAN The model represents

interaction between system

and environment

True

Contextual: BOOLEAN The model represents the

organizational environment

True

Coverage Functional: SET (ENUM

{Structure, Function,

Behavior})

Notes the aspects of the ERP

system captured in the

model

{Structure, Function,

Behavior}

Intentional: BOOLEAN The model provides

intentional information

Argumentation Variant: BOOLEAN Ability to represent options

and variants

True

Arguments: BOOLEAN Argumentation guiding the

variant selection

Variant dependency:

BOOLEAN

Ability to represent

dependencies among the

variants

True

Table 3

Required values for attributes of the Structure View

Facet Attribute Explanation Required values

Notation Notation: ENUM {Formal,

Semi-formal, Informal}

The notation formality level Formal, Semi-formal

Structure Element type: SET The main element types in

the model structure

Intra-element relationship:

SET (ENUM {Flat, Nested})

Type of structure constituted

by the elements

Nested

Inter-element Relationship:

SET (ENUM {Composition,

Generalization, Precedence,

AND, OR, XOR, Refinement,

Characterization})

Possible relationship types

between elements

{Composition,

Precedence, AND,

OR, XOR,

Characterization}

P. Soffer et al. / Information Systems 28 (2003) 673–690680

Exploratory, and Explanatory. Since ERP systems
have many alternative options supporting alter-
native business processes, their representation is
exploratory in nature. The model may as well be
explanatory and provide further assistance by
suggesting guidelines for decision-making, but this
is not essential for aligning it with the enterprise
needs.
Table 4 summarizes the facets and attributes of

the Purpose view and indicates the required
attribute values of a modeling language adequate
for ERP modeling.
The Customization process view refers to the

process of aligning and customizing an ERP
system to the enterprise needs on the basis of the
model. It has one facet characterized by two
attributes: Customization Approach (e.g., top-
down, bottom-up) and Customization Paradigm
(e.g., data-driven, requirement-driven).
These two attributes were originally defined in

the ERP-adapted CREWS framework [10] as
variables of an enumerated type, implying that a
modeling language is characterized as uniquely
serving a single customization approach or para-
digm. However, a modeling language can be
applied in different customization (or alignment)
processes, taking different approaches and para-
digms. We define these two attributes as sets of
possible customization approaches and paradigms,
for which the modeling language is applicable.
Therefore, this classification view does not affect
the selection of an ERP modeling language.
Rather, it is a result of the selection and
application of a modeling language in an align-
ment process.

4. Object–process ERP representation

This section introduces the OPM, evaluates it
according to our adapted CREWS framework
criteria, and provides an ERP modeling procedure
in which OPM is the modeling language.

4.1. Object–Process Methodology

OPM, described in detail in [19], has been
applied for various purposes, such as computer
integrated manufacturing [20], image understand-
ing [21], modeling research and development
environments [22], algorithm specification [23],
document analysis and recognition [24,25], and
modeling electronic commerce transactions [26].
The basic building blocks of OPM are two

equally important classes of entities: objects and
processes, which are related through a variety of
links among them. While most object-oriented
modeling methods require the use of a set of
models, each with its diagramming symbols and
conventions, to describe different aspects of the
system, OPM uses a single graphic tool, the
Object–Process Diagram (OPD) set, as a single
model of the structural, functional, and dynamic
system aspects. This eliminates the model multi-
plicity problem [27], which requires special efforts
to integrate the various views into a coherent
system model and to keep consistency among
them.
While using a single model representation, OPM

keeps simplicity through two abstracting-refine-
ment mechanisms that control the visibility of the
system details. Unfolding objects and zooming

Table 4

Required values for attributes of the Purpose View

Facet Attribute Explanation Required values

Aim of

representation

Descriptive: BOOLEAN The model describes one

way of achieving a goal

Exploratory: BOOLEAN The model describes several

possible different ways of

achieving a goal

True

Explanatory: BOOLEAN The model includes

explanations of why to select

a certain way

P. Soffer et al. / Information Systems 28 (2003) 673–690 681

into processes allow a top-down analysis, yielding
a hierarchical OPD set, which specifies the system
at a spectrum of abstraction levels. Through
folding and out-zooming, OPM may as well
support a bottom-up analysis, going up in levels
of abstraction.
The links employed between the entities in an

OPD include structural relations, such as aggrega-
tion, generalization, and characterization, and
behavioral links, classified into enabling, resulting,
and triggering link types.
Aligning the ERP system with the requirements

of an enterprise can be achieved when the system
and the requirements are represented in the same
modeling language. An evaluation of OPM’s
ability to represent the requirements posed by
enterprises regarding ERP systems has found its
expressive power adequate for this purpose [11],
implying that both contextual and interaction
information of the system can be represented in
an OPM model. When applying the adapted
CREWS framework evaluation criteria presented
in Section 3, OPM is found to be suitable for ERP

modeling. Therefore, OPM can serve as a model-
ing language in an ERP-enterprise alignment, since
it is suitable for representing both the enterprise
requirements and the ERP system. The evaluation
of OPM’s adequacy for ERP modeling is summar-
ized in Table 5.

4.2. Applying OPM for ERP modeling

The modeling method presented in this section is
based on the generic modeling steps introduced in
Section 2, and includes specific instructions for
representing the ERP data and functionality in
OPM terms. Each modeling step is illustrated by
an example.

Step 1: Convert the database to an object model.

In this step, the data model is constructed based on
the database tables. It involves two activities:
representation and generalization. First, each of
the system’s tables is represented by an OPD.
Then, structurally similar objects are generalized
into higher-level objects. The representation activ-
ity converts each database table into an OPD, in

Table 5

Attribute values required for ERP modeling and the corresponding OPM values

View Facet Attribute Required Value

for ERP

Modeling

OPM’s

Attribute Value

Content Abstraction Abstraction Flexible Flexible

Context Interaction True True

Contextual True True

Coverage Functional (Structure,

Function,

Behavior)

(Structure,

Function,

Behavior)

Argumentation Variant True True

Variant dependency True True

Form Notation Notation Formal/

Semi-formal

Formal

Structure Intra-element

relationship

(Nested) Nested

Inter-element

relationship

(Composition,

Precedence,

AND, OR, XOR)

(Composition,

Precedence,

AND, OR, XOR,

Generalization,

Refinement)

Purpose Aim of

representation

Exploratory True True

P. Soffer et al. / Information Systems 28 (2003) 673–690682

which the table’s title is an object characterized by
each one of its fields through characterization
links. Foreign keys in a table are represented either
by a tagged structural relation (e.g., Purchase order

Is Supplied by Supplier) or by an aggregation link
(e.g., Purchase order line to Purchase order),
depending on the context.
Second, the objects that share common features

(attributes and operations) are identified as spe-
cializations of a generalized object. Then the
generalized object, its features and inheritance
relations constitute one OPD, and each of the
specialized objects with its unique features is
represented in a separate OPD.
As an example, the OPDs in Fig. 1(a) and (b)

are obtained in the initial representation activity
from the database tables Standard Item and
Customized Item. For the sake of clarity, the
OPDs in the Figure, as well as in the other
examples, are simplified. Since both objects share
many common features, the generalization activity
defines the object Item as their abstraction, whose
features, shown in Fig. 1(e), are the features that
are common to both tables. Each table is modeled
as a specialized object of Item and exhibits only its
unique features, as shown in Fig. 1(c) and (d).

Step 2: Construct the Global business process

model. In this step, both domain knowledge and
ERP system knowledge are applied in order to
define the high-level generic business processes
supported by the system. The sessions of the
system are grouped into functional groups, such as
‘‘purchase order creating’’ or ‘‘purchased goods
receiving’’. Each such functional group is repre-
sented as an OPM process. The objects that enable
and are manipulated by the processes are identified
and their links with the processes are established.
Objects included in the model are preferably
generalized objects, or else the main objects related
to database tables. Attributes are not included in
the model at this step.
This step is illustrated by the process Purchase

Goods Receiving in Fig. 2.
This top-level process includes three sub-pro-

cesses, Purchase Receipt Registering, Goods In-

specting and Approving and Warehouse Allocating.
The instruments used by this process are the
objects Item, Warehouse, and Supplier, while the

other objects, such as Purchase Order and In-

ventory by Item, are objects that the process
Purchase Goods Receiving affects by changing the
state or value of one or more of their attributes.
Note that the refinement of OPDs does not

necessarily correspond to the modeling steps.
Rather, a modeling step may yield several levels
of the OPD set representing the system, or merely
add details to one or more OPDs obtained in
earlier steps.

Step 3: Identify System Configuration-level busi-

ness process alternatives. In this step, the system
parameters in the data model are investigated and
categorized. The high-level process-defining para-
meters are identified as preconditions to some of
the user-interface sessions. The alternative busi-
ness processes are represented in OPM as specia-
lizations of the processes in the Global-level
model. Each process alternative is related by
condition links to the relevant states of the control
parameters, represented by objects. The sub-
processes modeled for each business process
alternative are the sessions it includes.
This step is illustrated in Fig. 3, which shows the

alternative specializations, obtained when zoom-
ing into the Warehouse Allocating process. These
alternative processes are controlled by the system
parameter Location Control Implemented?, whose
Yes state is related by a condition link to Location

Controlled Warehouse Allocating. This modeling
step may also include zooming into the alternative
process specializations in order to represent their
sub-processes.

Step 4: Identify Object-level variants of the

business processes. This step identifies variants of
the business processes, which are controlled by the
parameters of single data objects, either by
themselves or in combination with the system
parameters. The attributes of the objects that
participate in the modeled processes are studied to
identify their influence on the process activities.
The outcome in the OPM model can be specialized
processes conditioned by object attribute states, or
as specific sub-processes of a process, each of
which is related by a condition link to an attribute
state.
This step is illustrated by the OPDs in Fig. 4 and

5. In Fig. 4, the attribute, represented by the

P. Soffer et al. / Information Systems 28 (2003) 673–690 683

Fig. 1. A part of the database model.

P. Soffer et al. / Information Systems 28 (2003) 673–690684

Boolean Object Location Controlled? of a Ware-

house, allows for performing different processes in
different Warehouse instances. The process is

controlled by the combination of the system
parameter Location Control Implemented? and
the Warehouse attribute values.

Fig. 2. A top-level business process model.

Fig. 3. System configuration-level business process model.

P. Soffer et al. / Information Systems 28 (2003) 673–690 685

In Fig. 5, the process Goods Inspecting and

Approving is conditioned by the Boolean attribute
Inspection Required? of Item.

Step 5: Expose the Occurrence-level business

process options. In this step, the options available
to the user in each of the sessions represented in
the model are investigated. These options are
determined by the user in real time, and allow a

limited control of the process’ course. In the OPM
model, a user-controlled option is an object inside
a process, whose states are events that trigger sub-
processes.
This step is illustrated by the example in Fig. 6,

which shows the option Fast Approval? available
to the user in the process Purchase Receipt

Registering.

Fig. 4. Business process variants controlled by an attribute of a warehouse.

Fig. 5. A business process variant controlled by an attribute of an item.

P. Soffer et al. / Information Systems 28 (2003) 673–690686

By selecting the state Yes of the Fast Approval

option, the user triggers a step of Automatic

Approving as part of the registering process.
For the purpose of being matched against the

enterprise requirements, the ERP model needs to
be modular, so that alternative processes are
represented in different OPDs. Then each OPD
in the system model can be evaluated separately,
so that the alignment rules out the OPDs that
specify the ERP parts that do not match the
requirements, and selects the ones that comply
with them. The following modeling principles
ensure that the constructed model is modular
and complete.

* Separation of concerns: Each OPD in the model
deals with a single issue and can be given a
single title that fully expresses its content. This
principle addresses the tendency of modelers to
try to squeeze as much information as possible
in an OPD (e.g., a process affecting an object
together with the structure of the object).
According to this principle, different issues
(process, object data structure) need to be
represented in different OPDs.

* Separation of alternatives: When there are
several alternative specializations of a specific
process, whose selection is controlled by a

system parameter or an object attribute, their
details should be specified in separate lower-
level OPDs.

* Completeness of low-level OPDs: Where links
between an object and a process appear in the
lowest-level OPDs (the ‘‘leafs’’ of the OPD set),
all the attributes that participate in the link
(either as enablers or as objects which are
affected) must be specified. According to the
separation of concerns principle, structural
information of an object, rather than being
included in OPDs showing processes in which it
is involved, is represented in a separate OPD.
However, in the lowest level OPDs the complete
details of the relation are provided by showing
the specific object attributes that participate in
the processes. This principle is demonstrated in
Fig. 6, which, as a low-level OPD, provides all
the affected attributes of the objects participat-
ing in the process.

5. Conclusions

The ERP modeling approach suggested in this
paper addresses the construction of an ERP
model, for the purpose of aligning an ERP system
with the needs of an enterprise.

Fig. 6. Process option model.

P. Soffer et al. / Information Systems 28 (2003) 673–690 687

The contribution of the paper is threefold. First,
we introduce generic ERP modeling steps, aimed
at capturing the entire scope of process variants
supported by the ERP system and the interdepen-
dencies among them. These generic steps may be
applied using a variety of modeling languages.
However, the complexity of the problem poses
requirements on properties that a modeling
language should satisfy to be suitable for this
task. The second contribution of the paper is the
analysis and characterization of these properties,
which results in a set of evaluation criteria for
modeling languages. This analysis extends the
ERP-adapted CREWS classification framework
[10]. The main addition to the framework is the
consideration and representation of possible de-
pendencies among variants and options in the
ERP system. The analysis and evaluation criteria
established led to the selection of OPM as the
modeling language of choice for ERP modeling.
Since OPM has been evaluated in [11] and found
adequate also for representation of enterprise
requirements, it is now shown to be applicable as
a basis for ERP-enterprise alignment. Finally, the
third contribution is a detailed ERP modeling
procedure that we present in Section 4. The
modeling procedure can be used as is, or serve as
an example showing how the generic modeling
steps are refined into a detailed procedure.
The ERP modeling process has been applied

and proven useful in obtaining a model of the parts
of the Baan ERP system as part of a requirement-

driven alignment experiment. The model construc-
tion was labor-intensive and required studying the
details of the ERP system and the processes it
supports. Nevertheless, this is a one-time effort,
which produces a model that can serve repeatedly
for any number of implementation projects.
The modeling process, although developed for

ERP systems, is not limited only to this type of
systems. The levels of optionality included in ERP
systems appear also in other off-the-shelf cus-
tomizable information systems. Therefore, the
modeling process may be relevant to any pro-
cess-supportive generic off-the-shelf information
system. It may also be of importance to reverse
engineering of product families, which include
parametric variability.
Future research addresses the application of the

ERP model in ERP-enterprise alignment. It can
also apply the evaluation criteria for evaluating
and comparing other modeling languages, and
develop detailed modeling procedures for those
languages that are found suitable on the basis of
the generic modeling steps. Another research
direction is to relate our modeling process, which
deals with optionality, to the architectural-
oriented reverse engineering approaches of
product families.

Appendix A

See Table 6.

P. Soffer et al. / Information Systems 28 (2003) 673–690688

References

[1] T.H. Davenport, Putting the enterprise into the enterprise

system, Harv. Business Rev. 76 (1998) 121–131.
[2] C.P. Holland, B. Light, A critical success factors model for

ERP implementations, IEEE Software 16 (1999) 30–35.

[3] B. Light, The maintenance implications of the customiza-

tion of ERP software, J. Software Maintenance: Res.

Practice 13 (2001) 415–429.

[4] M. Krumbholz, N. Maiden, The implementation of

enterprise resource planning packages in different organi-

sational and national cultures, Inf. Systems 26 (2001)

185–204.

[5] J. Ghosh, SAP Project Management, McGraw-Hill, New

York, 2000.

[6] T.A Curran, A. Ladd, SAP R/3 Business Blueprint:

Understanding Enterprise Supply Chain Management,

2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 1999.

[7] M. Daneva, Measuring reuse in SAP requirements: a

model-based approach, in: SSR ’99, Proceedings of the

Fifth Symposium on Software Reusability, ACM Press,

New York, 1999, pp. 141–150.

[8] H.A. Post, R. Van Es (Eds.), Dynamic Enterprise

Modeling: a Paradigm Shift in Software Implementation,

Kluwer, Dordrecht, 1996.

[9] C. Rolland, Intention driven component reuse. In: S.

Brinkkemper, E. Lindencrona, A. Solvberg (Eds.), Infor-

mation Systems Engineering: State of the Art and Research

Themes, Springer, Berlin, 2000, pp. 197–208.

[10] C. Rolland, N. Prakash, Bridging the gap between

organizational needs and ERP functionality, Requirements

Eng. 41 (2000) 180–193.

[11] P. Soffer, B. Golany, D. Dori, Y. Wand, Modelling off-

the-shelf information systems requirements: an ontological

approach, Requirements Eng. 6 (2001) 183–199.

[12] A.W. Scheer, ARIS—Business Process Frameworks,

Springer, Berlin, 1999.

[13] H. Yang, X. Liu, H. Zedan, Abstraction: a key notion

for reverse engineering in a system reengineering approach,

J. Software Maintenance: Res. Practice 12 (2000) 197–228.

[14] W.J. Heuvel, M. Papazoglou, M.A. Jeusfeld, Configuring

Business Objects from Legacy Systems, in: Proceedings

of the CAiSE ’99 (LCNS 1626), Springer, Berlin, 1999,

pp. 41–56.

Table 6

ERP-adapted CREWS framework

View Facet Attribute

Content Abstraction Abstraction: ENUM {Unique, Fixed, Flexible}

Context Internal: BOOLEAN

Interaction: BOOLEAN

Contextual: BOOLEAN

Coverage Functional: BOOLEAN

Intentional: BOOLEAN

Argumentation Variant: BOOLEAN

Arguments: BOOLEAN

Form Notation Notation: ENUM {Formal, Semi-formal,

Informal}

Structure Element type: SET (STRING)

Intra-element relationship: SET (ENUM {Flat,

Nested})

Inter-element relationship: SET (ENUM

{Composition, Generalization, Precedence,

AND, OR, XOR, Refinement})

Purpose Aim of Descriptive: BOOLEAN

representation Exploratory: BOOLEAN

Explanatory: BOOLEAN

Customization

process

Customization

process

Approach: ENUM {Top-down, Bottom-up,

Middle-out, Single-level, Breadth-first, Depth-first}

Paradigm: ENUM {Data-driven,

Requirements-driven, Quality-driven,

Behavior –driven}

P. Soffer et al. / Information Systems 28 (2003) 673–690 689

[15] H. Lee, C. Yoo, A form driven object-oriented reverse

engineering methodology, Inf. Systems 25 (2000) 235–259.

[16] R.L. Krikhaar, Reverse engineering approach for complex

systems, in: Proceedings International Conference on

Software Maintenance, IEEE, Los Alamitos, CA, 1997,

pp. 4–11.

[17] B. Bellay, H. Gall, Reverse engineering to recover

and describe a system’s architecture, in: Development

and Evolution of Software Architectures for Product

Families, ARES ’98 (LNCS 1429), Springer, Berlin, 1998,

pp. 115–122.

[18] C. Rolland, C. Ben Achour, C. Cauvet, et al., A proposal

for a scenario classification framework, Requirements Eng.

3 (1998) 23–47.

[19] D. Dori, Object Process Methodology—a Holistic Systems

Paradigm, Springer, Berlin, Heidelberg, New York,

2002.

[20] D. Dori, Object–process analysis of computer integrated

manufacturing documentation and inspection functions,

Int. J Comput. Integrated Manuf. 9 (1996) 339–353.

[21] D. Dori, Analysis and representation of the image under-

standing environment using the object–process methodol-

ogy, Object-Oriented Programming 9 (1996) 30–38.

[22] D. Meyersdorf, D. Dori, The R&D universe and its

feedback cycles: an object–process analysis, R&DManage.

27 (1997) 333–344.

[23] L. Wenyin, D. Dori, Object–process diagrams as an

explicit algorithm specification Tool, J. Object-Oriented

Programming 12 (1999) 52–59.

[24] D. Dori, Arc segmentation in the machine drawing

understanding environment, IEEE Trans. Pattern Anal.

Mach. Intell. 11 (1995) 1057–1068.

[25] L. Wenyin, D. Dori, A generic integrated line detection

algorithm and its object–process specification, Comput.

Vision-Image Understanding (CVIU) 70 (1998) 420–437.

[26] D. Dori, Object–process methodology applied to modeling

credit card transactions, J. Database Manage. 12 (2001) 2–12.

[27] M. Peleg, D. Dori, The model multiplicity problem:

experimenting with real-time specification methods, IEEE

Trans. Software Eng 26 (2000) 742–759.

P. Soffer et al. / Information Systems 28 (2003) 673–690690

	ERP modeling: a comprehensive approach
	Introduction
	Generic ERP modeling steps
	ERP optionality levels
	Systematic ERP modeling

	Desired properties of an ERP modeling language
	Object-process ERP representation
	Object-Process Methodology
	Applying OPM for ERP modeling

	Conclusions
	References

