
Expressiveness and Understandability
Considerations of Hierarchy in Declarative

Business Process Models?

Stefan Zugal1, Pnina Soffer2, Jakob Pinggera1, and Barbara Weber1

1 University of Innsbruck, Austria
{stefan.zugal,jakob.pinggera,barbara.weber}@uibk.ac.at

2 University of Haifa, Israel
spnina@is.haifa.ac.il

Abstract. Hierarchy has widely been recognized as a viable approach
to deal with the complexity of conceptual models. For instance, in declar-
ative business process models, hierarchy is realized by sub-processes.
While technical implementations of declarative sub-processes exist, their
application, semantics, and the resulting impact on understandability
are less understood yet—this research gap is addressed in this work. In
particular, we discuss the semantics and the application of hierarchy and
show how sub-processes enhance the expressiveness of declarative mod-
eling languages. Then, we turn to the impact on the understandability of
hierarchy on a declarative process model. To systematically assess this
impact, we present a cognitive-psychology based framework that allows
to assess the possible impact of hierarchy on the understandability of the
process model.

Key words: Declarative Business Process Models, Hierarchy, Under-
standability, Cognitive Psychology.

1 Introduction

Using modularization to hierarchically structure information has for decades
been identified as a viable approach to deal with complexity [1]. Not surprisingly,
business process modeling languages provide support for hierarchical structures,
e.g., sub-processes in BPMN and YAWL. However, in general, “the world does
not represent itself to us neatly divided into systems, subsystems. . . these divi-
sions which we make ourselves” [2]. In this sense, a viable discussion about the
proper use of modularization for the analysis and design of information systems
as well as its impact on understandability is still going on. In business process
management, sub-processes have been recognized as an important factor influ-
encing model understandability [3, 4], however, there are no definitive guidelines
on their use yet. For instance, recommendations regarding the size of a sub-
process in an imperative process model range from 5–7 model elements [5] over

? This research is supported by Austrian Science Fund (FWF): P23699-N23 and the
BIT fellowship program

2 Stefan Zugal, Pnina Soffer, Jakob Pinggera, Barbara Weber

5–15 model elements [6] to up to 50 model elements [7]. For declarative pro-
cess models, which have recently gained attention due to their flexibility [8], the
proper usage of modularization is even less clear. While work has been done with
respect to the technical support of declarative sub-processes, it remains unclear
whether and when hierarchy has an influence on the understandability of the
model. In general, empirical research into the understandability of conceptual
models (e.g., ER diagrams or UML statecharts) has shown that hierarchy can
have a positive influence [9], negative influence [10] or no influence at all [11].
For declarative process models, the situation is less clear as no empirical stud-
ies have been conducted so far. However, as declarative process models appear
to be especially challenging to understand [12], it seems particularly important
to improve their understandability. In the following, we will shed light on the
question which influence on understandability can be expected for hierarchy in
declarative process models.

The contribution of this work is twofold. First, the semantics of hierarchy
in declarative process models is elaborated on. In particular, we will show that
hierarchy is not just a question of structure but also enhances expressiveness and
has implications on the restructuring of a model. Second, the impact of hierarchy
on the understandability of the model will be investigated systematically. We will
present a cognitive-psychology based framework that explains general effects of
hierarchy, but also takes into account peculiarities of declarative process models.
The framework allows to assess the possible impact of hierarchy, i.e., whether a
certain modularization of a declarative process model has a positive influence,
negative influence or no influence at all. This, in turn, allows for a systematic
empirical investigation in future work.2

The remainder of this paper is structured as follows. Section 2 introduces
declarative process models. Then, Section 3 discusses the semantics of hierarchy
in declarative process models. Subsequently, Section 4 deals with the application
of hierarchy in declarative process models, whereas Section 5 investigates the
impact on understandability. Finally, related work is presented in Section 6 and
the paper is concluded with a summary and an outlook in Section 7.

2 Background: Declarative Processes

There has been a long tradition of modeling business processes in an imperative
way. Process modeling languages supporting this paradigm, like BPMN, EPC
and UML Activity Diagrams, are widely used. Recently, declarative approaches
have received increasing interest and suggest a fundamentally different way of
describing business processes [13]. While imperative models specify exactly how
things have to be done, declarative approaches only focus on the logic that gov-
erns the interplay of actions in the process by describing the activities that can be
performed, as well as constraints prohibiting undesired behavior. An example of

2 Please note that even though we take into account declarative models in general, we
will make use of the declarative language ConDec [13] for the discussion.

Considerations of Hierarchy in Declarative Process Models 3

a constraint in an aviation process would be that crew duty times cannot exceed
a predefined threshold. Constraints described in literature can be classified as
execution and termination constraints. Execution constraints, on the one hand,
restrict the execution of activities, e.g., an activity can be executed at most once.
Termination constraints, on the other hand, affect the proper termination3 of
process instances and specify when process termination is possible. For instance,
an activity must be executed at least once before the process can be terminated.
Most constraints focus either on execution or termination semantics, however,
some constraints also combine execution and termination semantics (e.g., the
succession constraint [13]).

To illustrate the concept of decarative processes, a model specified in Con-
dec [13] is shown in Fig. 1 a). It contains activities A to F as well as constraints
C1 and C2. C1 prescribes that A must be executed at least once (i.e., C1 re-
stricts the termination of process instances). C2 specifies that E can only be
executed if C has been executed at some point in time before (i.e., C2 imposes
restrictions on the execution of activity E). In Fig. 1 b) an example of a pro-
cess instance illustrates the semantics of the described constraints. After process
instantiation, A, B, C, D and F can be executed. E, however, cannot be exe-
cuted as C2 specifies that C must have been executed before (cf. grey bar in
Fig. 1 b) below “E”). Furthermore, the process instance cannot be terminated
as C1 is not satisfied, i.e., A has not been executed at least once (cf. grey area in
Fig. 1 b) below “Termination”). The subsequent execution of B does not cause
any changes as it is not involved in any constraint. However, after A is executed,
C1 is satisfied, i.e., A has been executed at least once and thus the process in-
stance can be terminated (cf. Fig. 1 b)—after e4 the box below “Termination”
is white). Then, C is executed, satisfying C2 and consequently allowing E to be
executed (the box below “E” is white after e6 occurred). Finally, the execution
of E does not affect any constraint, thus no changes with respect to constraint
satisfaction can be observed. As all termination constraints are still satisfied,
the process instance can still be terminated. Please note that declarative process
instances have to be terminated explicitly, i.e., the end user must decide when
to complete the process instance. Termination constraints thereby specify when
termination is allowed, i.e., the process instance I could have been terminated
at any point in time after e4.

As illustrated in Fig. 1, a process instance can be specified through a list
of events that describe changes in the life-cycle of activity instances, e.g., “e1:
B started”. In the following, we will denote this list as execution trace, e.g.,
for process instance I: <e1, e2, e3, e4, e5, e6, e7, e8>. If activities are non-
overlapping, we merge subsequent start events and completion events, e.g., <B
started, B completed, A started, A completed> is abbreviated by <B, A>.

3 In the following we will use termination as synonym for proper termination.

4 Stefan Zugal, Pnina Soffer, Jakob Pinggera, Barbara Weber

B

A B C D E F

Execution
Termination

T
im

e
lin

e

Process

Instantiation

Process

Termination

e1 B started

e2 B completed

e3 A started

e4 A completed

e5 C started

e6 C completed

e7 E started

e8 E completed

A

C

E

A B

D

F

Declarative Process Model

C

E

C2

1..*

a) b)
Process Instance I

Execution Trace of I: <B started, B completed, A started, A

completed, C started, C completed, E started, E completed>

C1

Legend

X Activity X

1..* Activity X must be

executed at least once X

X Y
Activity X must be

executed before Y

can be executed

Fig. 1. Executing a declarative process

3 Discussion of Semantics

This section aims at establishing an understanding of the semantics of sub-
processes in a declarative model. Based on this, the next section discusses their
possible use, and then we turn to discuss their possible effect on model under-
standing. To our knowledge, the semantics of declarative sub-processes have not
been discussed explicitly yet, but their use has been suggested in the context
of imperative-declarative model combinations [14]. In general, a sub-process is
introduced in a process model via a complex activity, which refers to a process
model. When the complex activity is executed, the referred process model, i.e.,
the sub-process, is instantiated. Thereby, sub-processes are viewed as individual
process instances, i.e., when a complex activity is started, a new instance of the
sub-process the complex activity is referring to is created (cf. [14, 15]). The par-
ent process, however, has no information about the internals of the sub-process,
i.e., the sub-process is executed in isolation. Communication with the parent
process is done only via the sub-process’ life-cycle4. Thereby, the life-cycle state
of the complex activity reflects the state of the sub-process [14], e.g., when the
complex activity is in state completed, also the sub-process must be in state
completed.

Considering this, it is essential that sub-processes are executed in isolation,
as isolation forbids that constraints can be specified between activities included
in different sub-processes. In other words, in a hierarchical declarative process
model with several layers of hierarchy, the constraints of a process model can

4 We do not take into account communication via input- and output data here, as we
focus on control flow behavior only.

Considerations of Hierarchy in Declarative Process Models 5

neither directly influence the control flow of any parent process, nor directly
influence the control flow of any sub-process on a layer below.

To illustrate these concepts, consider the process model in Fig. 2 a). It consists
of activity A and complex activity B, which in turn contains activities C and D.
C and D are connected by a precedence constraint, i.e., D can only be executed
if C was executed before. Fig. 2 b) shows an example of a process instance
that is executed on this process model. On the left a timeline lists all events
that occur during the process execution, e.g., starting or completing an activity.
To the right, the enablement of the activities is illustrated. Whenever the area
below an activity is colored white, it indicates that this activity is currently
enabled. The timeline is to be interpreted the following way: By instantiating
the process, activities A and B become enabled, as no constraints restrict their
execution. C and D cannot be executed, as they are confined in complex activity
B and no instance of B is running yet. Also the subsequent execution of A (e1,
e2) does not change activity enablement. However, with the start of B (c3), C
becomes enabled, as it can be executed within the new instance of B. Still, D is
not enabled yet as the precedence constraint is not satisfied. After C is executed
(e4, e5), the precedence constraint is satisfied, therefore also D becomes enabled.
After the execution of D (e6, e7), the user decides to complete sub-process B
(e8). Hence, C and D cannot be executed anymore. Still, A and B are enabled
as they can be executed directly within process instance I. Finally, after the
process instance is completed by the end user through explicit termination, no
activity is enabled anymore.

4 Using Hierarchy in Declarative Models

Regardless of the modeling language, hierarchy allows to structure models and
to hide modeling elements in sub-models. In this section, the use of hierarchy,
given the semantics of Section 3, is discussed.

4.1 Running Example

To illustrate and discuss the implications of hierarchy on declarative process
models, we make use of a running example. We chose the business process of
writing a scientific paper and created two business process models describing the
process. In Fig. 3 the process is modeled without hierarchy, whereas in Fig. 4
hierarchical structures are used. Due to space restrictions, the examples are not
described in detail, but will be used in the following for illustration purposes.

4.2 Preconditions for Using Sub-Processes

While for imperative models, any Single-Entry-Single-Exit fragment can be ex-
tracted to a sub-process [16, 17], in declarative models the structure is not in-
formative enough. Rather, two main conditions should hold for the introduction

6 Stefan Zugal, Pnina Soffer, Jakob Pinggera, Barbara Weber

A

A B C D

Activity
Enablement

Ti
m

el
in

e

Process
Instantiation

Process
Termination

e1 A started
e2 A completed

e3 B started

e4 C started
e5 C completed

e6 D started
e7 D completed

e8 B completed

B
C

D

A

C D

Declarative Process Model

a) b)
Process Instance I

Execution Trace of I: <A started, A completed, B
started, C started, C completed, D started, D
completed, B completed>

B

X Activity X

X Y
Activity X must be
executed before activity Y
can be executed

Legend

X Complex activity X

Fig. 2. Execution of a sub-process

Complete writing
paper

init

Get rejection

Get revise and
resubmit

Get acceptance Prepare and submit
final

Select venue

Language editing

Format to
instructions Execute submission

1..*

Read reviewsWrite response
letter

Work on revision

1

Legend

X Activity X

Y
Activity X cannot
be followed by
activity Y

X

Y
Activity X must be
executed before Y
can be executed

X

X
Activity X must be
executed exactly
once

1

X
Activity X must be
executed at least
once

1..*

X
Activity X must be
the first activity
executed

init

Y
Each execution of Y
must be preceded by
an execution of X

X

X Y

Z

Each execution of X
must be directly
followed by Y or Z. Each
Y or Z must be directly
preceded by X.

Fig. 3. Example of a flat model

Considerations of Hierarchy in Declarative Process Models 7

Revise paper

Submit paperComplete writing
paper

init

Get rejection

Get revise and
resubmit

Get acceptance Prepare and submit
final

1

Submit paper

Select venue Language editing

Format to
instructions

Execute
submission

1

Revise paper

Read reviews Write response
letter

1..*

Work on revision

1...*

Subprocesses

Main process

Legend

X Activity X Y
Activity X cannot
be followed by
activity Y

XY
Activity X must be
executed before Y
can be executed

X

X
Activity X must be
executed exactly
once

1

X
Activity X must be
executed at least
once

1..*

X
Activity X must be
the first activity
executed

init X Y

Z

X Complex
activity X

Y Activity X must be executed before Y can be
executed. After X is executed, Y must be executed.

X

Each execution of X
must be directly
followed by Y or Z. Each
Y or Z must be directly
preceded by X.

Fig. 4. Example of a hierarchical model

of sub-processes. First, the activities in a sub-process should relate to a certain
intention [18] to be fulfilled. For instance, in Fig. 4, Read reviews, Write response
letter and Work on Revision all serve the purpose of revising a paper. Once the
sub-process of Revise paper is completed, it is clear that the paper has been
revised. On a higher abstraction level it may not make a difference, e.g., how
many times Work on revision has been executed or whether the reviews have
been read. But knowing the paper has been revised is substantial for the con-
tinuation of the process. This information is not available in the flat model (and
it only exists in the mind of the human who executes the process). Second, the
activities included in a sub-process should be such that they can be executed in
isolation from the top-level process. This is due to the local nature of the con-
straints within the sub-process, and the lack of communication with the parent
process, as discussed in Section 3. In other words, a sub-process cannot include
any activity that has constraints specifically relating that activity to activities
outside the sub-process. Still, if all the activities considered for inclusion in a
sub-process share a common constraint with some other activity, then this con-
straint holds for the entire sub-process. In the flat model (cf. Fig. 3), activities

8 Stefan Zugal, Pnina Soffer, Jakob Pinggera, Barbara Weber

Read reviews, Write response letter and Work on Revision all have a constraint
restricting them from following Get Acceptance. In the hierarchical model (cf.
Fig. 4), these constraints are aggregated to one constraint related to the top-level
complex activity of Revise paper. As the constraints are aggregated so a single
constraint, we refer this to as aggregation of constraints.

4.3 Enhanced Expressiveness

For imperative process models, hierarchical decomposition is viewed as a struc-
tural measure that may impact model understandability [19], but does not influ-
ence semantics. In declarative process models, however, hierarchy also has im-
plications on semantics. More precisely, hierarchy enhances the expressiveness
of a declarative modeling language. The key observation is that by specifying
constraints that refer to complex activities it is possible to restrict the life-cycle
of a sub-process. A constraint that refers to a complex activity thereby not only
influences the complex activity, but also all activities contained therein.

This, in turn leads to two effects. First, constraints can be specified that ap-
ply for a set of activities (cf. aggregation of constraints in Section 4.2). Second,
the specification of constraints, that apply in a certain context only, is supported.
Consider for instance Work on revision and Revise paper in Fig. 4. Work on re-
vision is mandatory within the context of Revise paper. Hence, Work on revision
must be executed at least once whenever Revise paper is executed, but it might
not be executed at all (if Revise paper is not executed).

To illustrate how these two effects enhance expressiveness, consider model M
in Fig. 5, which solely uses constraints defined in [20]. The chained precedence
constraint between C and D specifies that for each execution of D, sub-process
C has to be executed directly before. When executing sub-process C, in turn,
A has to be executed exactly once and B has to be executed exactly twice (in
any order). Hence, the constraint between C and D actually refers to a set of
activities. For each execution of D, A has to be executed exactly once and B has
to be executed exactly twice. In other words, constraints on A and B are only
valid in the context of C. Such behavior cannot be modeled without hierarchy,
using the same set of constraints.

C

A B

Model M

1 2
D

Legend X Activity X

X
Activity X must be
executed exactly n times

n

X Complex
activity X

YX
For each execution of
activity Y, X must be
executed directly before

Fig. 5. Enhanced expressiveness

Considerations of Hierarchy in Declarative Process Models 9

4.4 Impact on Adaptation

Constructing hierarchical models supports top-down analysis, i.e., creating the
top-level model first and further refining complex activities thereafter. While
this seems like a natural way of dealing with complexity, in some cases, it is
desirable to transform a flat model to a hierarchical one. In the following we will
argue why refactoring [16], i.e., changing hierarchical structures in a control-flow
preserving way, is only possible under certain conditions for declarative process
models. Refactoring requires that any hierarchical model can be translated into
a model without hierarchy, but the same control-flow behavior (and vice versa).
As discussed, expressiveness is enhanced by hierarchy. In other words, there
exists control flow behavior that can be expressed in an hierarchical model, but
not in a model without hierarchy—cf. Fig. 5 for an example. Hence, only those
hierarchical models that do not make use of the enhanced expressiveness can be
refactored.

5 Model Understandability

So far we discussed that hierarchy in declarative process models is not just a
question of structure, but also affects semantics. In the following, we will describe
how these effects impact the understandability of a declarative process model.

5.1 Framework for Assessing Understandability

The influence of hierarchy on model understandability has been investigated in
a number of different modeling languages, such as ER-Models [21], imperative
business process models [9] and UML Statecharts [11] (for an overview see [19]).
While reported results do not entirely clarify when and how understandability
is affected, a trade-off between (sub)model size and degree of hierarchy can be
observed. For instance, in small models hierarchy may have no [11] or even a
negative impact [10], while for large models a positive influence could be ob-
served [9].

In [19], we introduced a cognitive-psychology-based theory describing when
and why hierarchy has an impact on understandability (for a introduction to
cognitive psychology in business process modeling we refer to [22]). In this work
we present an enhanced version that is still generic but also takes into account
the idiosyncrasies of hierarchy in declarative process models. The central concept
of the framework is mental effort [23], i.e., the mental resources required to solve
a problem. In the context of this work, solving a problem refers to understanding
the semantics of a declarative process model, i.e., answering questions about a
model. According to the framework, hierarchy is the source of two opposing
forces influencing this problem solving process. Positively, abstraction decreases
mental effort by hiding information and supporting the recognition of patterns.
Negatively, fragmentation increases mental effort by forcing the reader to switch
attention between fragments and integrating information from fragments.

10 Stefan Zugal, Pnina Soffer, Jakob Pinggera, Barbara Weber

performance

abstraction

fragmentation

mental effort

Information hiding

induces

determines

allows for

increases

hierarchy

enables

causes

Pattern recognition

Integration of
information

Switching attention
between fragments

Split-attention effect Attention
management

allows for

requires

requires

question
complexity

increases

decreases

decreases

Fig. 6. Framework for assessing hierarchy, adapted from [19]

Abstraction. Hierarchy allows to aggregate model information by hiding the
internals of a sub-process using a complex activity. Thereby, irrelevant infor-
mation can be hidden from the reader, leading to decreased mental effort, as
argued in [21]. From the perspective of cognitive psychology, this phenomenon
can be explained by the concept of attention management [24]. During the prob-
lem solving process, i.e., answering a question about a model, attention needs
to be guided to certain parts of a model. For instance, when checking whether a
certain execution trace is supported by a process model, activities that are not
contained in the trace are irrelevant for answering the question. Here, abstrac-
tion allows removing this irrelevant information, in turn supporting the attention
management system and thus reducing mental effort. To illustrate this effect for
declarative process models, consider the process model shown in Fig. 4. For an-
swering the question, whether Get acceptance can be executed after Complete
writing paper it is sufficient to look at activities Complete writing paper, Submit
paper and Get acceptance. In other words, hierarchy helps to abstract from all
activities contained in Submit paper, making the question easier to answer.

Besides reducing mental effort by improving attention management, abstrac-
tion presumably supports the identification of higher level patterns. It is known
that the human’s perceptual system requires little mental effort for recognizing
certain patterns [24, 25], e.g., recognizing a well-known person does not require
thinking, rather this information can be directly perceived. Similarly, in pro-
cess models, by abstracting and thereby aggregating information, presumably
information can be easier perceived. Consider for example the process models
depicted in Fig. 3 and Fig. 4. The models are (almost) information equivalent,
still we argue that for the model with sub-processes the overall structure and
intention of the process is easier to grasp. By introducing complex activities,
it is easier to see that the process is about iteratively reworking a paper until
it gets accepted. For the sibling-model in Fig. 3, however, the reader first has
to mentally group together activities before the overall intention of the process
becomes clear.

Fragmentation. Empirical evidence shows that the influence of hierarchy can
range from positive over neutral to negative (cf. [11, 10, 26, 21, 9]). To explain the

Considerations of Hierarchy in Declarative Process Models 11

negative influence, we refer to the fragmentation of the model. When extracting
a sub-process, modeling elements are removed from the parent model and placed
within the sub-process. When answering a question that also refers to the content
of a sub-process, the reader has to switch attention between the parent model
and the sub-process. In addition, the reader has to mentally integrate the sub-
process into the parent model, i.e., interpreting constraints in the context of the
parent process. From the perspective of cognitive psychology, these phenomena
are known to increase mental effort and referred to as split-attention effect [27].
To exemplify this effect, consider the process model in Fig. 4. To determine how
often activity Execute submission must be executed, it is required to look at
activity Submit paper too, as Execute submission is contained therein. In other
words, the reader has to split attention between these two activities. In addition,
the reader has to integrate the execution semantics of Submit paper with the
execution semantics of Execute submission. Both activities are mandatory, i.e.,
must be executed at least once, hence for any execution of the overall process,
Execute submission must be executed at least once. In other words, it is necessary
to mentally integrate the constraints restricting the execution of Submit paper
as well as constraints restricting the execution of Execute submission.

Interplay of Abstraction and Fragmentation. According to the model illustrated
in Fig. 6, a question’s complexity induces a certain mental effort, e.g., locating
an activity is easier than validating an execution trace. In addition, mental effort
may be decreased by information hiding and pattern recognition, or increased by
the need to switch between sub-processes and integrate information. Thereby,
abstraction as well as fragmentation occur at the same time. A model without
sub-processes apparently cannot benefit from abstraction, neither is it impacted
by fragmentation. By introducing hierarchy, i.e., creating sub-processes, both
abstraction and fragmentation are stimulated. Whether the introduction of a
new sub-process influences understandability positively or negatively then de-
pends on whether the influence of abstraction or fragmentation predominates.
For instance, when introducing hierarchy in a small process model, not too much
influence of abstraction can be expected, as the model is small anyway. However,
fragmentation will appear, regardless of model size. In other words, hierarchy
will most likely show a negative influence or at best no influence for small models
(cf. [28, 10, 26]).

5.2 Impact of Idiosyncrasies on Understandability

In Section 4, we have shown that hierarchy enhances expressiveness and allows
to aggregate constraints. In the following, we will discuss the impact of these
two phenomena on understandability.

Enhanced Expressiveness and Complex Mental Integration. As argued, hierar-
chy provides enhanced expressiveness. However, this also comes at a price, as
the constraint that is referring to a sub-process has to be integrated with the

12 Stefan Zugal, Pnina Soffer, Jakob Pinggera, Barbara Weber

semantics of the constraints within the sub-process. To illustrate such integra-
tions, consider the process model in Fig. 4. Activity Work on revision has to
be executed at least once, i.e., is mandatory. However, this activity is contained
in complex activity Revise paper, which is optional. In other words, Work on
revision is mandatory for Revise paper, which is optional for the main process.
Consequently, also Work on revision is optional for the main process.

Such mental integrations can be found in any hierarchical conceptual model.
For instance, in an imperative process model, mental integration refers to trans-
ferring the token from the parent process to the start event of the sub-process.
As argued, however, integrations are particularly complex in declarative process
models. Hence, it can be expected that a strong influence on the understand-
ability can be observed.

Aggregation of Constraints. As discussed in Section 4.3, hierarchy allows to ag-
gregate and thus reduce the number of constraints. In the context of the proposed
framework, we can identify three forces. Positively, aggregation reduces the num-
ber of constraints, hence hiding information. In addition, a reduced number of
constraints fosters the the layout of the process model. This, in turn, supports
the recognition of patterns, i.e., making the model easier to understand. Nega-
tively, complex mental integration operations, as discussed before, may diminish
the described gains. Whether positive or negative influences predominate will
have to be investigated empirically, as discussed in the following.

5.3 Discussion

So far we argued that hierarchy in declarative process models can be attributed
to increases as well as decreases in understandability. In the following, we will
discuss the impact of the identified influences. Positively, we see a big poten-
tial for hierarchy in declarative process models. In an imperative process model,
control flow is modeled explicitly. Hence, process models are usually structured
according to their control flow. Such a strategy is in general not possible for a
declarative process model, as constraints do not necessarily prescribe sequential
information. Sub-processes, however, allow to group activities and thereby to
introduce structure to the model. Sub-processes, however, allow to group activ-
ities by a mutual intention they serve and thereby to introduce structure to the
model and add higher-level information. As argued in our framework, this allows
recognizing patterns and makes it easier to grasp the intention of a business pro-
cess (cf. Fig. 3 and Fig. 4). Also the ability of sub-processes to hide information,
i.e., activities and constraints, can be expected to contribute to the understand-
ability of models. It is assumed that several interconnected constraints quickly
become challenging for the human mind [13, 12, 29]. Hence, hiding information
can be expected to be especially beneficial in declarative process models.

On the other hand, as argued in Section 5.2, we assume that the integration
of constraints poses a significant challenge for the reader. In particular, it is not
clear yet whether an average process modeler is able to efficiently perform such
mental integrations. This is, however, necessary for the meaningful application

Considerations of Hierarchy in Declarative Process Models 13

of enhanced expressiveness by hierarchy. If efficient mental integration was not
possible, enhanced expressiveness would be rendered useless as resulting models
would be hardly understandable.

The presented framework can be seen as a first step towards a systematic as-
sessment of the impact of hierarchy on understandability in declarative process
models. Even though it is based upon well-established concepts from cognitive
psychology, the claims still have to be empirically challenged. In particular, we
postulated that the integration of constraints poses a significant, but manageable
challenge for the reader. Similarly, we assume that large declarative process mod-
els tend to be too complex for humans to deal with (cf. [13]). To corroborate the
postulated claims, we are currently planning a thorough empirical investigation,
cf. Section 7.

6 Related Work

In this work we discussed characteristics of hierarchy in declarative process mod-
els and the impact on understandability. The impact of hierarchy on under-
standability has been studied in various conceptual modeling languages, such
as imperative business process models [30, 9], ER diagrams [21, 31] and UML
statechart diagrams [10, 32, 28] (an overview is presented in [19]). Still, none of
these works deals with the impact of hierarchy on understandability in declar-
ative process models. The understandability of declarative process models in
general has been investigated in the work of Zugal et al. [12, 33, 34], however,
in contrast to this work, hierarchy is not discussed. With respect to understand-
ability of process models in general, work dealing with the understandability
of imperative business process models is related. In [7] modeling guidelines are
presented that target to improve the understandability of imperative process
models. The understandability of imperative process models is investigated em-
pirically in [35, 36]. Finally, in [20, 13] the technical aspects of declarative busi-
ness process models, such as the definition of modeling languages or verification
of models is investigated. In contrast to this work, understandability aspects are
neglected and the unique semantics and expressiveness enabled by sub-processes
is not elaborated.

7 Summary and Outlook

In this work we examined hierarchy in declarative business process models. Af-
ter elaborating on the semantics, we discussed the usage and peculiarities of
hierarchy. In particular, we showed that hierarchy enhances expressiveness, but
cannot be used arbitrarily to any model fragment. Subsequently, we discussed
implications on the understandability of declarative process models. Thereby, we
built upon previous work and proposed a cognitive-theory based framework to
systematically assess the impact of hierarchy on understandability in declarative
process models. In general it can be said that hierarchy should be handled with

14 Stefan Zugal, Pnina Soffer, Jakob Pinggera, Barbara Weber

care. On the one hand, information hiding and increased pattern recognition
promise gains in terms of understandability. On the other hand, the integration
of constraints presumably poses a significant challenge for the reader. In addi-
tion, switching between sub-processes may compromise the understandability of
respective models. We acknowledge that, even though the framework is based
on well-established concepts from cognitive psychology, an empirical validation
still has to be conducted.

In this sense, our next steps clearly focus on empirical validation. In par-
ticular, two main research directions are envisioned. First, we will investigate
whether information hiding lowers cognitive load and hence improves under-
standability. Second, the integration of constraints and the required mental effort
will be scrutinized.

References

1. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM 15 (1972) 1053–1058

2. Goguen, J.A., Varela, F.J.: Systems and Distinctions; Duality and Complementar-
ity. Int. J. Gen. Syst. 5 (1979) 31–43

3. Davies, R.: Business Process Modelling With Aris: A Practical Guide. Springer
(2001)

4. Damij, N.: Business process modelling using diagrammatic and tabular techniques.
Business Process Management Journal 13 (2007) 70–90

5. Sharp, A., McDermott, P.: Workow Modeling: Tools for Process Improvement and
Application Development. Artech House (2011)

6. Kock, N.F.: Product flow, breadth and complexity of business processes: An em-
pirical study of 15 business processes in three organizations. Business Process
Re-engineering & Management Journal 2 (1996) 8–22

7. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guide-
lines (7pmg). Information & Software Technology 52 (2010) 127–136

8. Pesic, M., Schonenberg, H., Sidorova, N., van der Aalst, W.: Constraint-Based
Workflow Models: Change Made Easy. In: Proc. CoopIS ’07. (2007) 77–94

9. Reijers, H., Mendling, J., Dijkman, R.: Human and automatic modularizations of
process models to enhance their comprehension. Inf. Systems 36 (2011) 881–897

10. Cruz-Lemus, J., Genero, M., Piattini, M.: Using controlled experiments for vali-
dating uml statechart diagrams measures. In: Software Process and Product Mea-
surement. Volume 4895 of LNCS. Springer Berlin / Heidelberg (2008) 129–138

11. Cruz-Lemus, J., Genero, M., Piattini, M., Toval, A.: Investigating the nesting level
of composite states in uml statechart diagrams. In: Proc. QAOOSE ’05. (2005)
97–108

12. Zugal, S., Pinggera, J., Weber, B.: Toward Enhanced Life-Cycle Support for Declar-
ative Processes. JSME (2011) DOI: 10.1002/smr.554.

13. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, TU Eindhoven (2008)

14. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proc. EDOC ’07. (2007) 287–298

15. OMG: BPMN Version 2.0. http://www.omg.org/spec/BPMN/2.0/PDF/ (2011)

Considerations of Hierarchy in Declarative Process Models 15

16. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process
model repositories. Computers in Industry 62 (2011) 467–486

17. Weber, B., Reichert, M., Rinderle, S.: Change Patterns and Change Support Fea-
tures - Enhancing Flexibility in Process-Aware Information Systems. DKE 66
(2008) 438–466

18. Soffer, P., Rolland, C.: Combining Intention-Oriented and State-Based Process
Modeling. In: Proc. ER ’05. (2005) 47–62

19. Zugal, S., Pinggera, J., Weber, B., Mendling, J., Reijers, H.A.: Assessing the
Impact of Hierarchy on Model Understandability—A Cognitive Perspective. In:
Proc. EESSMod ’11. (2011) 18–27

20. Montali, M., Pesic, M., van der Aalst, W., Chesani, F., Mello, P., Storari, S.:
Declarative Specification and Verification of Service Choreographies. ACM Trans.
Web 4 (2010) 1–62

21. Moody, D.L.: Cognitive Load Effects on End User Understanding of Conceptual
Models: An Experimental Analysis. In: Proc. ADBIS ’04. (2004) 129–143

22. Zugal, S., Pinggera, J., Weber, B.: Assessing process models with cognitive psy-
chology. In: Proc. EMISA ’11. (2011) 177–182

23. Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognitive
Science 12 (1988) 257–285

24. Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand
Words. Cognitive Science 11 (1987) 65–100

25. Scaife, M., Rogers, Y.: External cognition: how do graphical representations work?
Int.J. Human-Computer Studies 45 (1996) 185–213

26. Cruz-Lemus, J.A., Genero, M., Piattini, M., Toval, A.: An empirical study of the
nesting level of composite states within uml statechart diagrams. In: Proc. ER
Workshops. (2005) 12–22

27. Sweller, J., Chandler, P.: Why Some Material Is Difficult to Learn. Cognition and
Instruction 12 (1994) 185–233

28. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assess-
ing the understandability of UML statechart diagrams with composite states—A
family of empirical studies. Empir Software Eng 25 (2009) 685–719

29. Weber, B., Reijers, H.A., Zugal, S., Wild, W.: The Declarative Approach to Busi-
ness Process Execution: An Empirical Test. In: Proc. CAiSE ’09. (2009) 270–285

30. Reijers, H., Mendling, J.: Modularity in Process Models: Review and Effects. In:
Proc. BPM ’08. (2008) 20–35

31. Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the
model, method of creation and experimental evaluation. Requirements Engineering
9 (2004) 217–228

32. Cruz-Lemus, J.A., Genero, M., Morasca, S., Piattini, M.: Using Practitioners for
Assessing the Understandability of UML Statechart Diagrams with Composite
States. In: Proc. ER Workshops ’07. (2007) 213–222

33. Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability
of declarative process models. In: Proc. BPMDS ’11. (2011) 163–177

34. Zugal, S., Pinggera, J., Weber, B.: Creating Declarative Process Models Using
Test Driven Modeling Suite. In: Proc. CAiSE Forum ’11. (2011) 1–8

35. Reijers, H.A., Mendling, J.: A Study into the Factors that Influence the Under-
standability of Business Process Models. SMCA 41 (2011) 449–462

36. Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understand-
able? In: Proc. BPM ’07. (2007) 48–63

