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Abstract. Empirical studies of business process modelingciyly aim at
understanding factors that can improve model quaMe identify two
limitations of such studies. First, the quality @imsions usually addressed are
mainly syntactic and pragmatic, not addressing séimauality sufficiently.
Second, while findings related to model understagdiave been anchored in
cognitive theories, findings related to model camngtion have remained mostly
unexplained. This paper proposes to study the psooé process modeling,
based on problem solving theories. Specificallg tork takes the approach
that problems are first conceptualized as mentafleisp to which solution
methods are applied. The paper suggests that igagsy these two phases can
help understand and hence improve semantic anacimyguality of process
models. The paper reports on an empirical studyesdthg the mental model
created during process model development, demdinstréhe feasibility of
such studies. It then suggests designs for othdrest that follow this direction.
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1 Introduction

The importance of empirical studies in general erperimental studies in particular
in the area of business process modeling has le@entty acknowledged, giving rise
to increasing body of such reported experimentses&€hexperiments promote the
understanding of how better support can be givethéohuman tasks involving the
use of process models and increase the qualityh@fautcomes of these tasks.
Following the SEQUAL frameworl7], quality dimensions of models include
syntactic, semantic, and pragmatic quality. Syitaahd semantic quality relate to
model construction, and address the correct ushepimodeling language and the
extent to which the model truthfully represents teal world behavior it should

depict, respectively. Pragmatic quality addreskesektent to which a model supports
its usage for purposes such as understanding lrhavideveloping process aware
systems. Considering process models whose purpasedevelop an understanding
of real world behavior, pragmatic quality is tydlgarelated to the understandability
of the mode[6].

Following this, experimental studies in the areacoficeptual process modeling
can be classified as studies addressing model rootish, and studies addressing
model understanding. The former are intended toromg syntactic and semantic
model quality. The latter are intended to incrgasgymatic model quality. Empirical



investigations of process understanding rely ororibe related to the cognitive
processes involved in this task (e[@2]). The underlying assumption of such studies
is that understanding the cognitive processes uaebin reading and comprehending
a model can lead to models that better supportethiasks and hence improve
pragmatic quality of process models.

The situation regarding model construction is défé. Reviewing empirical
investigations of process model construction, gfaper indicates two gaps. First, the
main quality attribute investigated is syntacti@alify. Syntactic quality often refers to
formal model correctness in terms of propertiehaagsoundness. Such properties do
not address the extent to which the model truthfudipresents domain behavior.
Clearly, an unsound model is both semantically syndactically incorrect. However,
sound models can still be semantically incorretaccurately depicting the domain
they intend to represent. To the best of our kndgde this issue has hardly been
investigated so far. Second, empirical investigatidhave identified correlations
between process models properties such as sizeaamplexity and quality attributes
(measured by error probability). However, most bése observations are still
unexplained theoretically. In other words, we askar@ of certain phenomena and can
derive practical conclusions from them (e.g., thees process modeling guidelines —
7PMGJ11]), but we do not understamdhy they exist.

We suggest that deeper understanding of the preégsscess model creation can
be obtained by making a clear distinction between phases in the modeling
process. The first phase is the creation of a mentalel of the domain, where
observed behavior is conceptualized and abstradtbd. second phase involves
mapping the mental model to a process model. Wgesighat using this two-phase
approach in empirical studies of model creation eult in better understanding of
difficulties and of opportunities for improving tlygiality of process models.

In the following, Section 2 reviews empirical stesliof process modeling. Section
3 discusses cognitive theories as a basis for eapstudies of process modeling.
Section 4 discussed the implications of the theaoie empirical studies and describes
an empirical study following this approach to destoate the feasibility of such
studies and their potential benefit. Section 5 baies the paper.

2 Empirical Studiesin Business Process Modeling

Several empirical studies investigated the qualftprocess models, mainly focusing
on syntax and pragmatics. For example, the impfstroctural model properties on
pragmatic quality has been studied [17, 23]. Sigaift correlations between control
flow complexity (i.e., structural complexity in tas of split and join types) and
process understandability and modifiability in BPNMiddels with different structural
characteristics is reported if19]. Another structural metric, termed cross
connectivity, has been found to affect model undeding[26]. These findings have
been explained based on cognitive considerations.

A number of studies (e.d12][13][22][10]) focused on factors of the modeler and
of model representation, including labels, iconl éayout. They found significant
connection between these factors and model undeadity. These studies, as well
as others, used the theory of multimedia learnimgjinating from cognitive science



[8]. According to this theory, content, content g@etation, and user characteristics
can influence pragmatic qualif$2].

Several empirical studies deal with content repreg®n in terms of modeling
languages and their connection to pragmatic quaklitr example[21] compared
EPC with Petri Nets, finding that end users considehe EPC approach of using
connectors superior to the token game, but the BXRcconnector has a negative
impact on model comprehension. In another experinstudents were trained in EPC
and then given either EPC models or BPMN modelar{guage they were not trained
in) [17]. No significant differences were found betweka groups in terms of model
comprehension (recall questions about basic festofethe process model) and
problem solving (questions that require solutiomptoblems based on the process
models, but not directly included in them). Thehaus concluded that the knowledge
required for model understanding is of conceptaalire rather than syntactic one.

As opposed to the relative abundance of empiricaliss of model understanding,
only few have addressed model creation. The maipegsty that has been investigated
is error probability, which basically relates tagctic quality. Findings indicate that
certain properties of a model increase the likathof syntax and logical errors (e.qg.,
deadlocks, lack of soundness). Some stu@f44] identified types of error patterns
in SAP reference model and linked them to the met& (e.g., number of functions)
and to model complexity metrics (e.g., split-joatio). Note that a trivial explanation
to these findings is that as there are more elesriana model, its error probability
increases. Yet, some of these findings have beplaieed using cognitive theories
about the process of model construction. For exanthe cognitive load theory was
used for explaining the increase of error probgbiliith model size, implying that
human modelers lose track of interrelations in dargodels due to their limited
cognitive capabilities. This can lead to errord thauld be avoided in smaller models
[3]. However, no comprehensive cognition-based axation has addressed the
correlation between numbers of splits and joina imodel and its error probability.
Pragmatically, guidelines such as the 7PM@] exist, following empirical findings
to increase model quality (syntactic and pragmatitjwever, we are still far from
understanding why these practices can promotetguali

A study to understand the creation of a model byiaes with no knowledge in
modeling language§l8] identified five process design types rangimgni purely
textual to purely graphical representation formise Buthors evaluated the semantic
quality of the models, and found that over a cartavel of graphics use, the quality
of the models decreases with the increased useaphigs. The “optimal” level was
of hybrid designs, featuring appropriate text lakmid abstract graphical forms.

Other empirical studies aimed at understanding modsation in the context of
model variations. When a modeling language has ntbam one construct for
expressing a certain phenomenon (construct overlded modeler needs to decide
which of these options to use. The result is vianet among different models of the
same domain. While this is not usually perceiveé asodel quality problem, it can
impose difficulties on model understanding and pacffic uses of models. Studies
addressing this issue measure the number and tfpeariations (e.g.[23] with
respect to conceptual models, followed [} with respect to process models), and
use it as a predictor for possible difficultieslie process of modeling.



Summarizing the current state of empirical studies found two main gaps. First,
the studies focus on syntactic and pragmatic qualitd hardly on semantic quality,
namely, the extent to which the model truthfullpmesents domain behavior. Second,
cognition-based explanations are mainly relateider a process model is read and
understood, identifying affecting factors such asntent (e.g., model size,
complexity), content representation (modeling laagp) labeling) and user
characteristics. In contrast, extant studies apgromodel creation by practical
guidelines rather than based on cognitive consid@sof process modeling.

3 The process of process modeling

We turn to research in the area of human cognéiwh problem solving for guidance
in gaining better understanding of the cognitivegeisses involved in model creation.
According to[16], when facing a task, the problem solver figtmulates a mental
representation of the problem, also termed “thélgm space”, and then uses it for
reasoning about the solution. The cognitive fitotlye[5][27] adopts on this view,
stressing that matching information types along fhibcess support high performance
in the problem solving task. In process modelihg, task is to create a model which
represents the behavior of a domain. We therefistnguish two phases in the
construction of a process model. First, the maodelens a mental modebf domain
behavior. Second, the modeler maps the mental ntod®lbdeling constructs. Each
of these steps may incur specific difficulties. $hto identify problems that arise in
process model construction and find how the conBtm process can be supported, it
would be logical to study the two phases separately

Two characteristics of problem solving, indicatgd 6], are of particular interest.
First, the shape of the mental model is affectedhieycharacteristics of the task and
the methods for achieving it. Hence, the conceptilable to the modeler for
reasoning about the domain may affect the mentaletilg process even before an
actual mapping to constructs is performed. Sectimel,process of forming mental
models and applying methods for achieving the taslot done in one step applied to
the entire problem. Rather, due to the limited céapaof short term memory, the
problem is broken down to pieces that are addressgdentially, chunk by chunk.

Consider now the formation of a mental model of tirecess behavior. This
requires gaining an understanding of the domainitsriaehavior, conceptualizing and
abstracting this behavior so it can then be mapgpeadodeling constructs. Different
types of domain information may require differeavdls of effort. For example, an
actor performing a task is a concrete part of thenain, easy to recognize and
conceptualize in terms which are possible to ineluda process model. An activity is
also observable and easy to identify as such, leretmight be different ways of
scoping it and different granularity levels by whi@& can be addressed. Routing
decisions, on the other hand, are not directly ofadde. Rather, they abstract
different possible occurrences of the process (thisvhy they are considered
decisions). Hence, conceptualizing routing decsiornight require a higher cognitive
effort than conceptualizing actors or activitigstérms of the cognitive fit theory, the
fit between domain concepts and modeling concaptadtors and activities is better

1 Note, we use the terms mental model and mentedseptation interchangeably



than for routing decisions. To illustrate, consitter commonly used token semantics
of process modeling languages. When the intendedem@s based on token
semantics, the modeler needs to conceptualize dob&tiavior in terms of tokens.
However, tokens are abstractions rather than obblrvphenomena. They do not
have a good fit with domain concepts. Hence, amfutti effort might be needed.

Consider now the phase of mapping the mental reptagon into modeling
constructs. This task follows conceptualization &ndf a more technical nature. This
is where the expressiveness of modeling languaggsn@deling practices may play a
role. For example, construct overload may imposéfeculty in deciding whether to
represent an organizational unit as a pool or Ema in BPMN. In contrast, token
semantics, which, as mentioned, may impose diffiesilin conceptualization, can
make the mapping itself easy to achieve. As wsllliacussed, the problem is usually
not addressed at once in its full scope. Rathds, litroken down to chunks that are
addressed sequentially, so the process model wuaglig constructed. Modeling
practices such as constructing well-structured locksstructured processes may
support the formation of “natural” problem chun&asier to map to a process model.

It follows that a variety of research questions gaitde empirical studies that may
promote the understanding of process modeling ahgl improve the quality of the
resulting models. In particular, mental model fotioa is related to the semantic
quality of process models because imprecision ambnipleteness of mental
representations will be carried through the mapgihgse. In comparison, the actual
mapping to modeling constructs is mainly associatgd syntactic quality (incorrect
mapping may however also result in reduced semgnadity).

Given the different impacts of conceptualizatior anapping, we are faced with
the challenge of how to differentiate these impattsmpirical studies. One possible
way is through think-aloud exercises with protoeoklysis to distinguish the two
phases. However, such techniques are mostly apatepn exploratory studies and
are less suitable when seeking quantitative results hypotheses testing. We now
describe an empirical approach that can isolateffeets of conceptualization.

4 Empirical Research Directions

This section discusses possible directions for gogbiresearch that may emerge
when considering the two phases of model constmictieparately. We start by
describing an empirical study which has alreadynhmerformed following this line of
research, as an example demonstrating how suchestwdn be performed. In
particular, we provide an in-depth discussion af tlonsiderations that drove the
experimental design. We then suggest how thess ichrabe generalized and suggest
other research questions about model constructimh @inciples for designing
empirical studies to address such questions.

4.1 Empirical study addressing mental models

Focus and hypotheses: The focus of the empirical study described hereristhe
mental model formed before the actual creation pfagess model. Two assumptions



underlie the study. First, for the resulting pracewdel to represent domain behavior
completely and accurately (namely, to be of higimaetic quality) the mental model
must reflect this behavior faithfully. Second, flaghfulness of the mental model to
the actual behavior will be affected by the reasgritools” used by the modeler.

The first assumption implies that the quality of tmental model can be measured in
terms of domain understanding gained while develp@ process model. In studies
of conceptual modeling, domain understanding has lmeeasured by comprehension
and problem solving questiongl]. Since the purpose is to measure domain
understanding prior to model creation, this appna&egjuires testing understanding of
domain behavioindependent of the model. The empirical task can be performed
before or after a process model has been congtruote must be done after subjects
have engaged in cognitive processing activitiesteel to domain behavior in a
process. Considerations as to when evaluationeofrtental model should take place
are discussed later with respect to our specifidysiind on a general level.

Our study focuses on situations modeled as spiitraarge structures in process
models. Empirical studies reviewed in Section 8.(¢15]) have indicated that these
situations are associated with high error prob@hiti the resulting models. While this
phenomenon has been observed and corroboratedptts have not been explained
theoretically so far. Following the above two asptions, we suggest that (a) this
high error probability is related to difficulties iforming a complete and accurate
mental model of branching situations, and (b) theceme of modeling can be
improved by supporting the reasoning process wifir@priate “thinking tools”.

Cognitive fit theory[5] [27] indicates that a good fit between conceptsduse
problem domain description and concepts used foblpm solving can improve
problem solving performance. For split and mergacstires, the concepts modelers
typically use to reason about behavior are driverthe commonly used modeling
language constructs (mainly AND, OR, XOR). We poldwever, that node types
available in process modeling languages do not im#bte full range of actual
behaviors which should be represented by branchaags. It follows that a poor fit
exists between problem domain phenomena and prodadérimg concepts.

Based on this, we hypothesize that a set of coacepich better represent real
world behavior at split and merge situations wobddter support the creation of the
mental model. Such a set of concepts has beenretitadly developed25] based on
ideas presented ifR4]. It has resulted in a catalog of split and geebehaviors,
which includes four split types and eight merge avétrs for binary nodes (two
branches). In comparison to the Workflow patteroifection[20], which is the most
comprehensive set of behaviors available so farcttalog includes split and merge
types which are not recognized there.

We propose that the catalog can help analysts ptungléeze branching situations
by classifying them in terms similar to human pet@mns of domain behavior.
Classifying a situation, an analyst can infer ddddl information about it and
possibly ask additional questions to better undersit.

Method: The catalog was evaluated in an experiment thatsumed domain
understanding. The treatment group received thalaat and the control group a
comparable list of split and merge cases taken titmmworkflow patterns collection
[20]. The study focused on the mental model creatbde developing a process
model. Since the purpose was to compare the “$et®ols” used (the catalog and the



workflow patterns list) independent of any modelilagguage, we tested domain
understanding without asking subjects to creatmagss model.

A main challenge faced when designing the experimes to design a task that
would enable assessing the quality of the mentalahahile ensuring that it relies on
the “set of tools” given. To address this challenge designed a task focusing on
understanding the situations without actually miodethem. In particular, we tested
the success in classifying control flow situaticared the understanding developed
following this classification. Understanding wasakated by asking subjects to make
inferences about the situations, not directly amable from the material.

The task comprised two types of assignment thatthide done in sequence for five
short cases (an example case is given in Fig. 1).

i (b )Case description :In a purchasing department ,buyers always seek quotations from a
(a) Diagram: preferred supplier and from an alternative supplier for an additional and possibly better

quotation .If the preferred supplier's quotation arrives first — the buyer proceeds to send
X an order ;the additional quotation from the alternative supplier is saved for future use .If
Quotation
needed

the first quotation to arrive is from the alternative supplier — the buyer waits for the
preferred supplier's quotation before deciding from whom to order.

(c) Understanding questions (answers in italic):

For each of the following sentences, indicate “true” if it is possible based on the above case
description, “false” otherwise, and provide a brief explanation.

1. The preferred supplier’s quotation arrived yesterday but no supplier is selected yet.
False. If the preferred supplier’s quotation arrives, the buyer sends an order.
2. The preferred supplier’s quotation arrived, so an additional inquiry (alternative
supplier) is not needed and is not made.
False. Both quotations are always asked.
3. If there are two quotations, two orders are made.
False. One supplier is selected.
4. The order was sent even though one of the quotations has not arrived yet.
True. If the quotation from the preferred supplier arrived first.
5. It might be that the worse quotation (higher price) is accepted.
True. If the preferred supplier’s quotation arrives first.

Request
alternative
supplier

preferred
supplier

(d) Split Rule: Parallel split
Merge Rule: If preferred supplier's quotation arrives first — Structured discriminator
If alternative supplier’s quotation arrives first — Synchronization
Fig. 1: An example case including: (a) Diagram, (b) Casecrifgfon, (c) Understanding
questions and expected answers (in italics), (djidad rules as can be specified using the
workflow patterns list

Each case included a textual description (Fig.)1émd an EPC-like diagram,
where the logical connectors were left blank (Hi@)). The EPC representation was
chosen since the subjects were familiar with tloition, but it could be replaced by
any other graphical notation.

The first part of the task (sub-task “Rule”) requirthe subjects to assign the
correct logical rule to each connector using onéwaf methods: (1) identifying the
specific case (from the catalog or from the wornkflpatterns list, for the treatment
and control groups respectively), or (2) providadpgical expression specifying the
behavior of the process at the specific node irbagss model fragment (for example,
see Fig. 1(d)). The Rule task, done first, “forcedbjects to engage with the details
of the case and with the concepts of the list theye given, and to actually use these
concepts in the mental model they were forming.

The second part of the task performed for each (adetask “Understanding”)
was intended to evaluate the understanding thestsbhad gained while forming the
mental model. It included five “true/false” questiorelating to possible process



behavior (when enacted). For example, see Fig. I{be subjects were also required
to explain their answers. While the Rules task utfed catalog or the workflow
patterns list as a classification scheme for thgaton at hand, the Understanding
task could be viewed as reflecting inferences basedhe classification. The task
materials were designed to include some cases white directly available as
entries in both the catalog and the workflow patdist (termed the “WF direct set”),
and some cases which were only directly availabléhé catalog (termed “non WF
direct set”). When not directly available in a giviist, the cases could be described
by combining up to three entries in a logical rule.

The experiment was conducted with 54 senior 1Sesttsdin a course on Enterprise
Resource Planning (ERP) systems and business prdestggn. The students were
randomly assigned to the treatment group or to dbetrol group. Each group
received one hour of training on the catalog (treatt group) or workflow patterns
list (the control group). To avoid any effect offfdiences of training materials
(except differences in contents), an effort was enadmaximize the equivalence and
appearance of the workflow pattern list and thelogt as provided to the subjects.
The task was performed immediately after trainidg.printout of the training
materials was handed to the subjects so they casddit as a reference list when
performing the task. No time limit was placed fbe tassignments. To increase the
motivation of the students, a bonus of up to 1(hizoin the lab component (30% of
the course grade) was promised to the studentsdlmstheir performance.

The dependent variables were performance scoreshenRules and on the
Understanding tasks. These were graded based efired grading scheme. Since
the non WF direct cases did not have directly matcrentries in the workflow
patterns list, we expected the performance ofréetinent group to be better than the
control group in the non WF direct cases. We dit expect differences in the WF
direct ones. Accordingly, we formulated two setdhgpotheses, considering the two
sub-tasks and the two sets of cases.

Findings: The findings, reported in detail if25], supported our hypotheses.
Considering the non WF direct set of cases, thatrtrent group outperformed the
control group with a high level of significance fire Rule assignment (P-value
=0.000) and with significance for the Understandasgignment (P-value = 0.017).
As expected, no significant performance differenaese found for the WF-direct
cases, directly available in both lists. Theseifigd are not surprising with respect to
the Rule sub-task. Clearly, conceptualizing a sibmais easier when a matching
concept is available in a given list than when pprapriate rule combining several
concepts needs to be logically defined. Howevensitering the Understanding sub-
task, the findings indicate that the quality of thental model is affected by the set of
concepts used. This was not a predictable ressilit andicated the understanding
gained of the situations was not the same. This ggainst the common belief that
process models are constructed based on deep tamdbng of the behavior to be
depicted. This understanding directly affects tkenantic quality of the resulting
process model. Our findings indicate that domaidemstanding cannot be taken for
granted. Furthermore, the study shows that undetstg can be improved when
using an appropriate set of “thinking tools” or cepts. These indications are
obtained despite the small scale of the study, lwlsdts main limitation. In addition,
the results provide an explanation for the diffimd found in other works with



respect to correctly modeling routing situationdhieTconcepts “borrowed” from
modeling languages might not support conceptuaizatell enough.

4. 2 Designing empirical studiesto separately address modeling phases

The empirical study described above demonstrates Hsbudies to test
understanding of domain behavior can be designddrennon-trivial results that can
be obtained, leading to improved model quality. Wev generalize these ideas by
outlining possible research questions about meantael formation (independent of
the process model), and suggesting experimentardet address them.

Empirical evaluations related to model constructimve so far focused on the
properties of a developed process model to forned@ent variables. This approach
does not allow separating the two phases — domaiteptualization and model
construction. Hence, the effect of modeling langsaglomain knowledge, model size
and model complexity, cannot be attributed to aifigephase. However, as shown,
such differentiation can provide useful (and eveaxpected) results. Evaluating each
phase separately gives rise to a variety of reheguestions that can be studied by
experiments, whose possible variables and measutgromts are now discussed.

Independent variables: various factors may affeetrhental model, its mapping to
a process model, or both. These include modelinguages, conceptualization tools
(e.g., tokens, catalog), problem characteristicg.(@rocess size and complexity),
modeling practices, and modeler’s experience.

Dependent variables: the mental model can be eealuay the level of domain
understanding the modeler gains. Domain understagndis a dependent variable, can
be measured as performance in answering questiimg ¢he domain, either before
or after the actual process model is constructdderGan accurate and complete
mental model, mapping to modeling constructs mdlyseld errors. These errors
might be of two origing2]. First, they may be syntactic, suggesting sgtitaquality
as a second type of dependent variable, which eaevaluated by itself or with
respect to domain understanding. Second, expresesgedeficiencies of modeling
grammars might affect semantic quality. Finallypeedent variables might relate to
the process of modeling rather than the outconme rftbdel). In particular, the effort
required for mapping the mental model to a procassdel (e.g. measured by time
required) might depend on various factors. Thigcags a third type of dependent
variable.

Point of measurement: domain understanding canvhkiaed prior to or after
model construction. If the manipulation is related the modeling language or
practice, evaluation should be done after modektroation. Since the phases of
modeling may apply separately to chunks of the @sec the full effect of the
treatment can only be measured after a model hers dmnstructed, but should reflect
domain understanding. If the manipulation is ndatexl to modeling language or
process, domain understanding may be evaluatedebefodel construction.

Examples of research questions that can be askgdhtr with basic features of
possible experimental designs are summarized itteTlbThe table presents for each
research question possible independent and depewvaeables, and specifies when
the dependent variable should be measured.
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Table 1. Possible experimental studies

Resear ch question| Independent Dependent Point of Comments
variable variable measur ement

How to support | Conceptualizing| Domain Prior to model | Measure deep

mental model tools (tokens, understanding| construction | understanding by

creaion | catalog
Modeling Domain ' After modgl gnswerable from they
language understanding| construction materials, related to

the domain.

How is the mental

Process size an

i Domain

Prior to model

Relates to the domain

model affected by| complexity understanding| construction | behavior —requires
process size and suitable process
complexity metrics

Do modeling Modeling Domain After model Task should be
practices (e.gwell| practices understanding| construction related to domain
structuredness) understanding
affect the mental

model

Is poor syntactic Correlation of | After model Test correlation
quality attributed domain construction | between variables

to problems of
conceptualization
or of mapping

understanding
and syntactic
model quality

(use “difficult” —
error prone processes)

Conceptualization Conceptualizing| Domain Prior to model| Evaluate syntactic
effect on the tools (tokens, | understanding| construction guahty W|thdrespecc§_to
manpin catalo 7 : omain understanding
pping s)) Modeling During model and the modeling
time construction | -
Model After model | Eyaluate model
correctness | construction | correctness (e.g. by
Syntactic subject matter expert
quality
5 Conclusion

Empirical studies of process modeling are aimeda@ting an understanding that
can guide the development of higher quality modetswvever, the quality dimensions
usually addressed are mainly syntactic and pragmatile semantic quality has not
been addressed sufficiently. In addition, while &roal findings related to model
understanding have been anchored in cognitive iggofindings related to model
construction have remained mostly unexplained.

In this paper, we propose based on cognitive theasf problem solving, to view
the process of process modeling as comprising tlasgs conceptualization
(creation of a mental model), anthpping of the mental model to process modeling
constructs. We suggest that empirical investigatieeparating these phases can lead
to a better understanding of process modeling rdtten relying on the final model
created. Furthermore, we claim that improving thalidy of the mental model



11

formed is a key to achieving semantic quality, siacmental model reflecting flawed
domain understanding will result in a semanticBiiyved process model.

To demonstrate how such research can be doneaper pescribed an experiment
to test process domain understanding. The reshittseastudy showed the feasibility
of such studies and their potential benefits. Wecuised the considerations that
drove the experimental design of the reported study particular, the
operationalization of evaluating the mental modsgdasately from a process model.
These considerations were then generalized to ettyggrimental designs that can be
used for addressing various research questiongthatge from the two-phase view.
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