
Merging Event Logs with Many to Many Relationships

Lihi Raichelson and Pnina Soffer

Department of Information Systems, University of Haifa, Haifa 31905, Israel

LihiRaOs@gmail.com, Spnina@is.haifa.ac.il

Abstract. Process mining techniques enable the discovery and analysis of

business processes, identifying opportunities for improvement. However,

processes are often comprised of separately managed procedures that have

separate log files, impossible to mine in an integrative manner. A preprocessing

step that merges log files is quite straightforward when the logs have common

case IDs. However, when cases in the different logs have many-to-many

relationships among them this is more challenging. In this paper we present an

approach for merging event logs which is capable of dealing with all kinds of

relationships between logs, one-to-one or many-to-many. The approach

matches cases in the logs, using temporal relations and text mining techniques.

We have implemented the algorithm and tested it on a comprehensive set of

synthetic logs.

Keywords: Process Mining, Multiple Instances, Merging Log Files, End-To-

End Process.

1 Introduction

Process mining techniques are used for discovery and analysis of the actual

business processes from the event logs of the systems that support and manage them

[1][2]. However, process mining usually considers a single event log, while different

process procedures often use different systems and thus have separate logs. To

provide a full analysis, process mining should be applied to a log containing all

relevant activities of the end-to-end process flow. Such log can only be obtained after

identifying and merging related log files from different distributed systems

corresponding to the same process.

Existing methods that compose logs [12] either assume identical case ID or the

existence of one log's case ID as an attribute in the other log, and simple relationships

between procedures (one-to-one or one-to-many). Often, real-life processes include

procedures that stand for multiple instances and hence may have complex relations

among them (e.g. many-to-one or many-to-many). In such situations, each procedure

employs a different case ID, not necessarily directly corresponding to cases in the

other procedures. Merging the logs of these procedures becomes a challenging task,

which is still mandatory for an extended analysis of the entire process.

In this paper we present an automatic technique for merging event logs, which does

not assume any specific relationship between the procedures and is hence applicable

mailto:LihiRaOs@gmail.com

for one-to-one as well as for many-to-many relationships, where no unique identifier

correlates the cases in the logs. To illustrate the problem, consider an example

process, where different organizational units can directly place orders for office

supplies through an ordering system. Consolidated deliveries are received at a

warehouse, where they are registered and distributed to the ordering units. We

consider the ordering process as the main process, and the delivery handling as the

sub-process. Table 1shows a simplified log of the main process, while a simplified log

of the warehouse procedure is given in Table 2.

Table 1. Simplified log of the main process of ordering goods

Order Timestamp User Activity Item no Department

3001 02/02/14 10:12 Ilana open order 1234 1235 dep. 89

3001 02/02/14 10:13 Tsvi approve order 1234 1235 dep. 89

3001 02/02/14 13:16 Ilana check status 1234 1235 dep. 89

3001 03/02/14 16:18 Ilana receive item 1234 dep. 89

3001 04/02/14 16:35 Ilana receive item 1235 dep. 89

3001 04/02/14 16:36 Ilana close order 1234 1235 dep. 89

3002 02/02/14 10:30 Sigal open order 1234 1236 dep. 79

3002 02/02/14 10:31 Rachel approve order 1234 1236 dep. 79

3002 02/02/14 15:31 Sigal check status 1234 1236 dep. 79

3002 03/02/14 16:19 Sigal receive item 1234 dep. 79

3002 04/02/14 16:35 Sigal receive item 1236 dep. 79

3002 04/02/14 16:36 Sigal close order 1234 1236 dep. 79

Table 2. Simplified log of the sub process of delivery handling

Delivery Timestamp User Activity Item no Department

5001 03/02/14 11:45 Mosh receive item 1234

5001 03/02/14 16:15 Mosh send to dep. 1234 dep. 89

5001 03/02/14 16:16 Mosh send to dep. 1234 dep. 79

5002 04/02/14 12:46 Mosh receive item 1235 1236

5002 04/02/14 16:30 Mosh send to dep. 1235 dep. 89

5002 04/02/14 16:31 Mosh send to dep. 1236 dep. 79

In the example, both processes employ multiple instance procedures. Furthermore,

the lower-level instances in both processes refer to ordered items. However, the

grouping of items to cases is different for the main and sub-process. In the main

process, the grouping is by order (serving as case ID), and in the sub process the

grouping is by delivery (case ID), where items ordered by different departments are

supplied together. As a result, multiple cases of the main process may correspond to

multiple cases of the sub process. Merging the logs would enable mining the end-to-

end process, and particularly tracing the low-level instances (ordered items). The

unified log would employ a single case ID for all the events that relate to the same

order. In the absence of a common case ID, the main challenge is to identify the

events in both logs that should be considered related to the same case.

The rest of the paper is structured a follows. Section 2 presents the approach and

the log merging algorithm, demonstrating it using the running example; Section 3

reports the evaluation performed to a set of synthetic logs; Section 4 discusses related

work. Finally, conclusions are given in Section 5.

2 Merging event logs

For the above described challenge we suggest an approach of an automatic merge

of log files by finding a match between each case in the main process and

corresponding cases in the sub process. To handle many-to-many relationships

between the cases of the different logs, we duplicate cases of the sub process and

merge them with every relevant case in the main process, revealing the end-to-end

process flow.

The overall idea is shown in Fig. 1. An illustration of a main log includes cases

which may have multiple instances is presented in Fig. 1(a). Those instances are

grouped together in the sub process, so instances from case 1 in the main process are

included in case 1 and case 2 of the sub process. Our approach, illustrated in Fig 1(b),

generate new case IDs for the unified log file, were each case of the main process

corresponds to a unique new case id, and cases of the sub process can be duplicated

(e.g. case 1 of the sub process) in order to reflect the relationships to the cases of the

main process.

Ca
se

s i
n

M
ai

n
Pr

oc
es

s

Ca
se

s i
n

Su
b

Pr
oc

es
s

Ne
w

 ca
se

 1
Ne

w
 ca

se
 2

Un
ifi

ed
 lo

g
fil

e

Case 1

Case 2

Case 1

Case 2

Case 3

Case 1
Main

process

*Case 1
Sub

process

Case 2
Sub

process

Case 2
Main

process

*Case 1
Sub

process

Case 3
Sub

process

(a)

(b)

Fig. 1. An illustration of merging cases from different event logs

2.1 Approach overview

As a preliminary step, the boundaries of the end-to-end process need to be

determined and all related procedures identified. As a consequence, a set of logs from

various systems can be identified and preprocessed to a uniform format [14]. In this

paper we limit ourselves to merging two logs, one related to a main process and the

other to a sub-process. However, this can be performed repeatedly to a hierarchy of

sub-processes. Note that the identification of a main and sub process might not always

be clear. In what follows, we indicate clear temporal relationships that should hold

between the process considered as “main” and the one considered as “sub” for the

sake of the merging.

As explained, we seek matching cases in the two logs, taking the following

assumptions. (1) Both logs are taken from synchronized systems and consist of

reliable and comparable timestamps. (2) Both logs might include multiple instances,

thus four types of relationships between the logs are possible: one-to-one, one-to-

many, many-to-one, and many-to-many. (3) The attribute values in the logs use

uniform terms. Note that this assumption can be relaxed by using synonym detecting

tools (e.g. Wordnet), but this is not included in our current scope. (4) The attribute

values may include free text. The approach should be capable of dealing with logs

where the reference to the other log is unstructured and given as free text. (5) The log

of the sub process might include cases initiated by other processes. Hence, it is

acceptable that not all its cases would be matched to cases of the main process and

appears in the unified log file. In other words, the unified log should not necessarily

contain all the cases of the sub process log.

Finding a match between log cases is trivial when the logs have a one-to-one

relationship and both have the same case ID. In this case, matching is immediate and

the logs can be merged directly. For logs whose case ID is not identical, cases are

matched based on (i) similarity of attribute values, and (ii) appropriate temporal

relations.

Similarity of attribute values can easily be established if we know in advance

which attributes should hold similar values in the two logs. This is often the case, and

can rely on domain knowledge. However, according to our assumptions, the logs

might contain free-text attributes, and these might contain the information which is

relevant for the match.

To accommodate for such situations, we assume that matching cases would have

more common words in their attribute values than non-matching cases. For example,

consider possible free text in the main log “we wish to order two monitors of models

1234 and 1235”, and free text in the sub-process log “ordered by department 89”.

While generally similar text might appear in many entries across the logs, the specific

item ids and department ids - representing the actual case properties - will be common

only to the matching cases; hence their common words count is expected to be higher

than those of non-matching cases. We hence calculate a similarity score based on the

number of common words in the total text associated with the cases. However, some

words can be common to all cases (e.g., stop words like "the", or activity names).

These should not affect the similarity score. To this end, we use a text mining

technique, the Term Frequency-Inverse Document Frequency (tf-idf) [18]. tf-idf

relates to the frequency of a word in a given text (case attributes) as compared to its

appearance in other texts (other cases). It allows filtering out words that are common

to all cases and would not be a good indicator of similarity of two specific cases. The

remaining words are extracted to a "bag of words" for each case, and similarity score

of two cases is calculated as the count of unique words that are common to them.

In our running example the bag of unique words of the 1
st
 case in the main log

(Table 1) would be {3001, Ilana, 1234, 1235, 89} and the bag of unique words of the

1
st
 case in the sub log (Table 2) would be {5001, Mosh, 1234, 89, 79}. The similarity

score would hence be 2.

Note that it is common for two logs to include similar but not identical terminology

(e.g., concatenation of several attribute values from the other log). This kind of

relations can usually be indicated a-priory based on domain knowledge, so the log can

be pre-processed accordingly.

Appropriate temporal relations – here we make two requirements. First, since the

sub process is triggered by the main process, it should start after the beginning of the

main process. Second, we require the sub process to provide some feedback to the

main process, and hence it should have some time overlap with the main process and

cannot start after the main process has ended. Note that in general it is possible that a

sub process will appear in the log as starting after the main process has ended (e.g.,

recorded manually, mistakenly closed cases). Those cases are exceptions and not

considered as correct matches in our automatic solution.

To formalize these requirements in terms of temporal relations we rely on Allen’s

interval algebra [4]. Table 3 specifies for each of Allen's temporal relation types

whether it meets the requirements and can be considered a match.

Table 3. The 13 temporal relations with respect to case matching

Case in Main

Process Vs. Case in

Sub Process

Relation:

X=Main;

Y=Sub

Match

(Y/N) Illustration Comments

Main Process takes

place before Sub

Process X < Y

NO

match

missing feedback

from sub-process (Y)

to main process (X)

Sub Process takes
place before Main

Process Y > X

NO

match

Main process starts
after sub process; No

triggering

Main Process meets

Sub Process X m Y

NO
match

Missing feedback

Sub Process meets

Main Process Y m X

NO

match

Main process starts
after sub process; No

triggering

Main Process
overlaps with Sub

process X o Y

Positive

Match
 Meets requirements

Sub Process overlaps
with Main process Y o X

NO
match

Main process starts

after sub process; No
triggering

Main process starts
with Sub process X s Y

NO

match

Start at the same time,
no triggering

Sub process starts

with Main process Y s X

NO

match

Start at the same time,

no triggering

Main process start-

end during Sub
process X d Y

NO

match

 Main process starts

after sub process; No
triggering

Sub process start-end
during Main process Y d X

Positive

Match Meets requirements

Main process start

during and finishes
with Sub process X f Y

NO
match

Main process starts

after sub process; No
triggering

Sub process start
during and finishes Y f X

Positive

Match Meets requirements

 X E
 Y E

 X E
 Y E

 X E
 Y E

 X E
 Y ____ _
E

 X E
 Y_____________
E

 X E
 Y ____________
E

 Y E
 X E

 Y E
 X E

 Y E
 X E

 Y E
 X __ __
E

 Y E
 X_____________
E

 Y E
 X ____________
E

with main process

Main process equal to
Sub process X = Y

NO
match

Start at the same time
no triggering

2.2 Algorithm

Following the above discussion the algorithm takes two logs, one of the main

process and the other of the sub process, and generates a unified log file. The

algorithm, depicted in Listing 1, addresses only situations where the main process and

the sub process have different case IDs (.

The algorithm uses the following main variables and functions:

*Word_Set (case): a set holding all the values of attributes in all events of a case

(bag of unique words).

**Function Match_time (case1, case2): checks the temporal relation between case1

and case2 and returns TRUE if they meet temporal requirements

***Function check_Match_Score [word_set(case 1), word_set(case 2)]: returns an

integer value Match_Score() – the calculated similarity score of attribute

values between the cases.

The algorithm generates a new case ID for each case of the main process, and

calculates match scores for every case combination that meets the temporal

requirements. For every case of the main process (and corresponding New_Case ID)

it selects the sub-process cases whose match score is maximal (and above zero),

possibly creating duplications of sub-process cases. Finally, it merges the logs

accordingly.

Listing 1.

Algorithm: Check match score between cases in cross logs for potential merging

1: Set *word_set {main log(case_id)} == extract all unique values for every case id in main log
2: Set *word_set {sub log(case_id)} == extract all unique values for every case id in sub log
3:
4: For all case_id do
5: For all case_id do
6: If ** } then
7: *** == check_Match_Score {word_set (case1);word_set (case2)}
8: end if
9: end for
10: end for
11:
12: For all case_id do
13: Generate new_case_id
14: For all case_id do
15: Return case_id { > 0 && Max()}
16: merge {case_id(main_log),case_id(sub_log)}
17: end for
18: end for
19: return UnifiedLogFile

 X E
 Y ______________
E

2.3 Running Example

A merged log of one New Case for our running example (Tables 1 and 2) is given

in Table 4. While being related to a New ID, the events keep record of the reference

log where they originated and the respective original case ID. The new case relates to

an end-to-end process of one order (3001) placed by one department (89) for two

items (1234 and 1235). Since handling the delivery of these items is grouped at the

warehouse with items ordered by another department (79), the new case of the

merged log includes the respective events as well.

Table 4. Illustration of the merged log of the running example.

New ID Ref log ID Timestamp User Activity Item no Department

3001-A main log 3001 02/02/14 10:12 Ilana open order 1234 1235 dep. 89

3001-A main log 3001 02/02/14 10:13 Tsvi approve order 1234 1235 dep. 89

3001-A main log 3001 02/02/14 13:16 Ilana check status 1234 1235 dep. 89

3001-A sub log 5001 03/02/14 11:45

Mosh receive item 1234

3001-A sub log 5001 03/02/14 16:15

Mosh send to dep. 1234 dep. 89

3001-A sub log 5001 03/02/14 16:16

Mosh send to dep. 1234 dep. 79

3001-A main log 3001 03/02/14 16:18 Ilana receive item 1234 dep. 89

3001-A sub log 5002 04/02/14 12:46

Mosh receive item 1235 1236

3001-A sub log 5002 04/02/14 16:30

Mosh send to dep. 1235 dep. 89

3001-A sub log 5002 04/02/14 16:31

Mosh send to dep. 1236 dep. 79

3001-A main log 3001 04/02/14 16:35 Ilana receive item 1235 dep. 89

3001-A main log 3001 04/02/14 16:36 Ilana close order dep. 89

3 Evaluation

The proposed algorithm has been implemented and evaluated in a controlled

experiment using synthetic logs. The use of synthetic logs for evaluating the

algorithm enables a fully controlled experiment, since (a) the correct match between

cases is known in advance, allowing an accurate measurement of precision and recall

[10][15] of the results, (b) when generating the logs, a full coverage of relationship

types (one-to-one up to many-to-many) and temporal relations between the logs can

be ensured, and (c) it is also possible to control the amount of text-related noise

(additional irrelevant text) in the attribute values.

We generated event logs specifying a process model for each of the introduced

relationships (i.e. one-to-one, one-to-many, many-to-one, many-to-many) as shown in

table 5. As a result, four logs of a main process (similar to the running example) and

corresponding logs of sub processes were generated. The logs includes up to 260

cases, each case consisting of 3-7 events. The generated synthetic logs included the

following mandatory fields (possibly with multiple instances): case ID (order number

vs. delivery number), timestamp, user, department number, item number, and activity.

The logs were generated by simulating the end-to-end process with the three possible

temporal relations between the main and the sub-process, namely (1) sub process

during main process (2) main process overlaps with sub process (3) sub process

finishes main process (see Table 3).

Note that the logs included cases of the end-to-end process with similar attribute

values. The corresponding cases in the main and sub log could have a relatively high

match score, but should not be candidate for merging due to inappropriate temporal

relations (e.g., main process before sub process or sub process before main process).

Table 5. Synthetic logs generated for the evaluation

Logs Relationship

Main Log –

number of cases

Sub Log –

number of cases

Unified log – expected

number of cases

One-To-One (OTO) 130 130 130

One-To-Many (OTM) 130 260 260

Many-To-One (MTO) 260 130 260

Many-To-Many (MTM) 260 260 520

Applying the algorithm to all four versions of log combinations resulted in a

perfect unified log with 100% recall and precision. Recall was calculated as the

proportion of correctly matched cases from all the positives matches, and precision

was calculated as the proportion of correctly identified matched cases from the total

identified matches.

Yet, the investigated logs included only fully structured data with no free text. To

evaluate the ability of the algorithm to handle noisy free text, we relied on the

structure and context of real-life logs, with a 200 words free text attribute in the main

log and three five - words free text attributes in the sub-log. Following this, we (1)

added to the main logs a free text attribute of up to 200 words, and (2) added to the

sub logs three free text attributes with up to five words each. The text for the

attributes in all logs was randomly selected from the free text attributes of the real-life

log. Note that the additional free text attributes served as noise, and were not

supposed to determine the match. The results obtained by applying the algorithm to

the logs that include free text are given in Table 6 and graphically presented in Fig. 2.

Table 6. The table present recall and precision calculations vs. relationship types.

Logs

relationship

True positives (tp)

- correctly

identified

False positives

(fp) - incorrectly

identified

False negative (fn) -
incorrectly rejected

Recall Precision

F-measure

OTO 126 16 4 97% 89% 93%

OTM 244 28 16 94% 90% 92%

MTO 239 11 10 96% 96% 96%

MTM 501 35 15 97% 93% 95%

 In general the results indicate that the algorithm performs well, with recall of at

least 94% and precision of at least 89%. Recall was higher than precision in most

cases (except for MTO, where they were equal). It should also be noted that no

substantial trade-off was observed between precision and recall, and that no

relationship type was identified as "easier match" with superior performance over the

others, with insignificant differences of F measure values: 92% to 96%.

Fig. 2. Evaluation results: (a) precision/recall for all types of relationships (b) true

positives/false positives/false negatives for all types of relationships

Note that despite the encouraging results, this evaluation is still too limited to draw

general conclusions, but it is reasonable to believe based on these results that the

performance of the algorithm is not sensitive to the type of relationship between the

logs. Sensitivity to the amount and distribution of free text in the logs is yet to be

tested. Last, the ability of the algorithm to handle real life complexity should be tested

using a real-life log. To obtain an initial indication of the scalability of the algorithm

and the required processing time when handling realistically large logs, we applied it

to real-life logs taken from the 2014BPI challenge. The main process log contains

26,876 instances and the sub process log contains 21,960 instances. With this data, a

unified log was obtained in 1 minute and 54 seconds. With a real-life log, however,

precision and recall would only be estimated, as the real matches would not be known

a-priori.

4 Related Work

Process mining uses event logs data in order to discover, monitor and improve the

actual processes in an organization from an event log commonly available in

information systems [1]. However, it should be applied to a single event log [1][3]. In

case the addressed business processes are conducted at different systems, the pre-

processing of the log, which usually aims at obtaining a "clean" and uniformly

formatted dataset [18], should also combine the logs of the systems into a single one.

84%

86%

88%

90%

92%

94%

96%

98%

O
TO

O
TM

M
TO

M
TM

Recall

Precision

0%

20%

40%

60%

80%

100%

120%

O
TO

O
TM

M
TO

M
TM

True
positives (tp)

False
positives (fp)

False
negative (fn)

(a) (b)

Merging logs as a preparatory step to process mining has not been widely

addressed. The work which is closest to the one we propose is presented in [12],

whose approach for matching the cases in the different logs is based on genetic

algorithms. The main difference in the problem addressed is that they assume that

each case in the sub-process relates to exactly one case in the main process, thus

many-to-many relationships are not addressed. Another difference is that free-text

data is not addressed by [12]. Another closely related work is [8], which addresses

conformance checking of processes comprised of various sub-processes (proclets),

each possibly having a separate log. Differently than our work, their basic assumption

is that the connection between the sub-processes is known. Rather than merging the

logs before mining, they mine each sub-process separately and then combine the

process models.

The problem we address is related to mining hierarchical process models, since our

aim is to facilitate the discovery of an end-to-end process comprised of sub-

procedures. Mining hierarchical models has received research attention

[6][11][13][20] In most of these works, mining applies to a single log, and various

approaches are taken to determine the hierarchy and to overcome abstraction

challenges [6][11][20], attempting to cluster events into sub-processes [8][10]. In our

case, we only lay the ground for mining by providing a unified log that can be mined.

Since we keep the information of the original log each event is taken from,

hierarchical mining would be easier and would not need techniques for discovering

this information.

Process hierarchy is an inherent part of artifact-centric processes [5][7][19].

Artifact-centric processes are centered around an artifact, which encompasses data

and life-cycle models. Artifact lifecycle is modeled by a Guard-Stage-Milestone

(GSM) model [19], which provides a natural hierarchy of the model. Artifacts also

enact and trigger other artifacts in a hierarchical manner, often including multiple

instances. The triggered artifacts might be managed separately by different

information systems and have separate logs. Following this, mining artifact lifecycle

is of much relevance. Indeed, [17] and [16] address the possibility of many-to-may

relationships between artifacts, and hence they abandon the case as a basis for mining.

Yet, they assume a single log where all events are recorded. With this log, the effort is

to relate each event to a relevant artifact so artifact-related logs are created, and then

mining can produce a GSM model of these artifacts.

In summary, to the best of our knowledge the problem of merging logs with many-

to many relationships in preparation for process mining has not been addressed so far.

Additionally, while text processing has received much attention is various areas,

process mining mostly does not currently relate to free text data in logs.

5 Conclusions

Process mining techniques, which are useful for discovery and analysis of actual

processes, rely on a single case ID that classifies all events into process cases. Hence,

in common situations where processes include separately managed procedures with

separate logs, some preprocessing is required for producing a unified log with unique

case IDs. Existing techniques are able to do this only when the main and sub-process

have one-to-one or one-to-many relationships. This paper proposes an algorithm

which can produce a unified log for all relationship types and specifically for the

many-to-many case, where each log has non-matching case IDs. Another unique

feature of the proposed algorithm is its ability to handle logs that contain unstructured

and free-text data by using text mining techniques.

These capabilities enable mining complex and distributed processes that often exist

in organizations and analyzing their flow. Process improvement opportunities that

would emerge from such analysis would address the end-to-end flow rather than local

views that relate to the individual sub-processes comprising the overall one. In

particular, lack of coherence, correlation and synchronization among the different

parts of the process can be identified. However, while the unified log provides a good

support to overall flow analysis, it is less suitable for other analysis types. In

particular since it includes duplicate sub-process activities that are associated with

several main cases, it does not support analysis of activity frequencies and resource

load.

Two other limitations of the algorithm are the assumption of comparable

terminology and attribute values across logs, and the assumption of synchronized

systems, producing timestamps along one time-line (as opposed to, e.g., systems in

different time zones). The former can be overcome by using synonym-detection tools

like Wordnet; the latter can be overcome if the lack of synchronization is consistent

(different time zones). Then timestamps can be modified consistently as a preparatory

step, to provide a uniform time-line for all logs. However, if lack of synchronization

is not consistent and the time-gap between the systems might unexpectedly change,

temporal relations between cases cannot be determined and the algorithm will not

produce correct results.

Future research includes a number of directions. First, additional evaluation on

real-life logs would be beneficial in order to better test the performance of the

developed algorithm. Second, using the merged logs for the end-to-end process

discovery might require some specialized visual representation. Visualizations used

by current process discovery techniques are not fully supportive of the many-to-many

relationship along process hierarchy, and might not provide the full benefits of

process visualizations that apply to simply structured processes. Last, match results

can be improved through interaction with the user, who can evaluate the matching of

specific cases based on domain knowledge. Based on the user feedback, machine

learning techniques can be used for improving the match results.

References

1. Van der Aalst, WMP.: Discovery, Conformance and Enhancement of Business Processes.

Springer, Heidelberg, (2011)

2. Van der Aalst, WMP, et al.: Process mining manifesto. Business process management

workshops. Springer Berlin Heidelberg, (2012)

3. Van der Aalst, WMP, Weijters, T., & Maruster, L.: Workflow mining: Discovering process

models from event logs. Knowledge and Data Engineering, IEEE Transactions on, 16(9),

1128-1142, (2004)

4. Allen, J. F.: Maintaining knowledge about temporal intervals.Communications of the

ACM, 26(11), 832-843, (1983)

5. Nigam, A., & Caswell, N. S.: Business artifacts: An approach to operational

specification. IBM Systems Journal, 42(3), 428-445, (2003)

6. Baier, T., & Mendling, J.: Bridging abstraction layers in process mining by automated

matching of events and activities. In Business Process Management (pp. 17-32). Springer

Berlin Heidelberg (2013)

7. Cohn, D., & Hull, R.: Business artifacts: A data-centric approach to modeling business

operations and processes. Bulletin of the IEEE Computer Society Technical Committee on

Data Engineering, 32(3), 3-9 (2009)

8. Ferreira, D., Zacarias, M., Malheiros, M., & Ferreira, P.: Approaching process mining with

sequence clustering: Experiments and findings. In Business Process Management (pp. 360-

374). Springer Berlin Heidelberg (2007)

9. Fahland, D., De Leoni, M., Van Dongen, B. F., & Van Der Aalst, W. M.: Conformance

checking of interacting processes with overlapping instances. InBusiness Process

Management (pp. 345-361). Springer Berlin Heidelberg (2011)

10. Günther, C. W., Rozinat, A., & Van Der Aalst, W. M.: Activity mining by global trace

segmentation. In Business process management workshops (pp. 128-139). Springer Berlin

Heidelberg (2010)

11. Greco, G., Guzzo, A., & Pontieri, L.: Mining hierarchies of models: From abstract views to

concrete specifications. In Business Process Management (pp. 32-47). Springer Berlin

Heidelberg . (2005)

12. Claes, J., & Geert P.: Integrating computer log files for process mining: a genetic algorithm

inspired technique. Advanced Information Systems Engineering Workshops. Springer

Berlin Heidelberg, (2011)
13. Li, J., Bose, R. J. C., & Van Der Aalst, W. M.: Mining context-dependent and interactive

business process maps using execution patterns. InBusiness Process Management

Workshops (pp. 109-121). Springer Berlin Heidelberg (2011)

14. Raichelson, L. & Soffer, P.: Unifying Event Logs To Enable End-To-End Process Mining.

In: Proceeding of the 7th Israel Association for Information Systems (ILAIS) Conference,

July 2013.

15. Moghnieh, A., & Blat, J.: The potential of Recall and Precision as interface design

parameters for information retrieval systems situated in everyday environments (2011)

16. Nooijen, E. H., van Dongen, B. F., & Fahland, D.: Automatic discovery of data-centric and

artifact-centric processes. In Business Process Management Workshops (pp. 316-327).

Springer Berlin Heidelberg. (2013).

17. Popova, V., Fahland, D., & Dumas, M.: Artifact lifecycle discovery. arXiv preprint

arXiv:1303.2554 (2013)

18. Rajaraman, A., & Ullman, J. D.: Mining of massive datasets. Cambridge University Press

(2012)

19. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath III, F. T., &

Vaculin, R.: Business artifacts with guard-stage-milestone lifecycles: managing artifact

interactions with conditions and events. InProceedings of the 5th ACM international

conference on Distributed event-based system (pp. 51-62). ACM (2011)

20. Yzquierdo-Herrera, R., Silverio-Castro, R., & Lazo-Cortés, M.: Sub-process discovery:

Opportunities for process diagnostics. In Enterprise Information Systems of the Future (pp.

48-57). Springer Berlin Heidelberg (2013)

