
G. Alonso, P. Dadam, and M. Rosemann (Eds.): BPM 2007, LNCS 4714, pp. 400–407, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Semantic Analysis of Flow Patterns in Business Process 
Modeling 

Pnina Soffer1, Yair Wand2, and Maya Kaner3 

1 University of Haifa, Carmel Mountain 31905, Haifa 31905, Israel 
2 Sauder School of Business, The University of British Columbia, Vancouver, Canada 

3 Ort Braude College, Karmiel 21982, Israel 
spnina@is.haifa.ac.il, yair.wand@ubc.ca, kmaya@braude.ac.il  

Abstract. Control flow elements are important in process models. Such 
elements usually appear in graphic models as splits and joins of activity 
sequences. Workflow patterns reflect possible executions of different 
configurations of splits and joins. However, despite the importance of process 
flow control and workflow patterns, no way exists yet to assure that a particular 
set of patterns is complete and non-redundant. We use an ontologically-based 
model of business processes to analyze the control configurations that can exist 
in a process model. A process is modeled in terms of state changes of the 
domain in which the process occurs. The state changes are controlled by laws 
which model the actions allowed in the domain. This model is notation-
independent and enables incorporating goals into process analysis. We use the 
model to suggest classification of control configurations and identify 
configurations that assure the enacted process can always reach its goal. 

1   Introduction 

The possible flows in business process execution are determined by points where 
parallel or alternative process paths might be taken, or where such paths merge. This 
paper aims at systematically analyzing, defining, and distinguishing the different 
types of phenomena that are described by splitting and merging in business processes. 
The motivation for this work is threefold.  

First, while splitting and merging structures in process modeling languages are 
frequently well-defined formally (e.g., [1][6]), they often do not convey a well-
defined ontological meaning [8]. Second, splitting and merging structures are major 
sources of logical errors in process models (e.g., deadlocks and lack of 
synchronization [2][7][9]). Third, the available notation for splitting and merging is 
usually not expressive enough for representing and distinguishing the different cases 
of possible process behaviors. Usually, AND and XOR constructs are available, 
sometimes an OR too (e.g., EPC [10]). In a few cases (e.g., BPMN) there are specific 
constructs that can express more complicated behavioral patterns, a variety of which 
are depicted by workflow patterns [3]. In addition, split and merge of the same logical 
type typically have the same graphical notation. However, while this may provide for 



 Semantic Analysis of Flow Patterns in Business Process Modeling 401 

easy visual representation, in essence, splitting and joining stand for different real-
world situations. Hence, this is a case of construct overload [13]. We believe this 
situation can lead to modeling errors. Hence, a clear distinction of the different 
situations represented by splitting and merging elements is expected to assist process 
designers in producing logically correct models. 

In this paper we suggest real-world semantics to splitting and merging in process 
models, and a framework to enable a systematic analysis of splitting and merging 
configurations. Our analysis is based on the Generic Process Model (GPM). GPM is a 
notation-independent framework for analyzing business processes based on Bunge's 
ontology [4][5] and its adaptation to information systems [13][14]. 

2   The Generic Process Model (GPM) 

This section provides an informal and brief presentation of the ontological state-based 
view of a process, which we employ for our analysis. The focus of analysis is a 
domain, which is a part of the world. A domain is represented by a set of state 
variables, each depicting the value of a relevant property of the domain at a given 
time. A successful process is a sequence of unstable states of the domain, leading to a 
stable state, which reflects the process goal. An unstable state is a state that must 
change due to actions within the domain (an internal event) while a stable state is a 
state that does not change unless forced to by action of the environment (an external 
event). Internal events are governed by transformation (transition) laws that define 
the allowed (or necessary) state transitions (events).  

In these terms, the task of the process designer is to define the transition law (and 
ways to enact it) so that the process can accomplish its goal. The goal is a set of stable 
states on which the process must terminate. The law is specified as mappings between 
sets of states and is often defined formally by predicates over the state variables used 
to model the properties of the domain. The process goal may also be formalized in 
terms of predicates that specify situations that should be achieved by the process.  

Process models usually include the concept of activity (a function, a task). The 
state, events and laws view of a process can be used to define activities. Consider a 
domain as comprising sub-domains, each represented by a subset of the domain state 
variables. The state changes of sub-domains are termed the projections of the 
domain’s behavior on the sub-domains. A sub-domain is said to behave independently 
if its state changes are independent of the states of other sub-domains. We then say 
that the domain law projects a (well-defined) law on the sub-domain.  

We view an activity as a change of a sub-domain from an unstable state to a stable 
state with respect to its (projected) law. As an independent sub-domain changes its 
state to a stable one, it is possible some other independent sub-domains will become 
unstable and will begin transforming. Thus, an activity can lead to other activities. As 
long as the process is active, at least one other sub-domain is still in an unstable state. 

Since a process goal can be represented explicitly, the state-based supports an 
analysis of goal reachability. A process whose design ensures its goal will always be 
achieved under a given set events external to the domain (but affecting it) is termed 
valid [11][12]. Our analysis is intended to support the design of valid processes. 



402 P. Soffer, Y. Wand, and M. Kaner 

3   Modeling and Configuring Splits and Joins 

3.1   Model Assumptions 

First, we assume the designer defines the law to achieve the process' goal. Hence, we 
consider only valid process models, i.e. those that ensure goal reachability. Our 
analysis depends on the observation that for such models as long as the enacted 
process has not reached its goal, at least one sub-domain is unstable or may become 
unstable as a result of a time-related event. 

Second, we assume that the granularity level of the model is defined in a manner 
that supports the business needs. In particular, a repeated activity (e.g. processing 
several replications of the same product) can be viewed as one activity. Hence, we do 
not address a flow of multiple instances in our model. 

Third, our model does not incorporate durations or resources availability. Activities 
are enacted immediately when they are enabled. 

Finally, for simplicity we only consider a binary splitting. The model can be 
readily extended to address cases of more than two sub-domains. 

3.2   Characterizing Parameters of the Model 

Under our basic assumptions we identify five parameters to characterize all splitting 
and merging situations. Using the requirement that the process should reach its goal, 
the combinations of possible values of these parameters will determine the set of 
acceptable combinations of splitting and merging configurations. 

Parameter 1: Domain Decomposability 
Splitting and merging can relate to one of two basic situations. First, a set of states 
achieved at a certain point in the process may be partitioned into two or more subsets 
and the next transformation is defined differently for each subset. Such partitioning 
might occur because the law at this state becomes “sensitive” to a certain state 
variable. Consider, for example, a process where a standard product is manufactured, 
and then packaged according to each customer's requirements. Until production is 
completed, the customer is not considered (even though this information may be 
known). At the completion point, the "customer" state variable determines which 
packaging action will be performed. This situation is clearly an XOR split, since the 
domain may take exactly one of the packaging paths available. 

Second, there may be a point in the process, where the domain can be decomposed 
into two or more independently behaving sub-domains. In such cases, for the process 
to continue, at least one sub-domain must be unstable. Several possibilities exist. 
First, several sub-domains are always in unstable states, and will change concurrently 
(AND split). Second, any number of sub-domains (but at least one) can be unstable 
(OR split). Third, exactly one sub-domain should be in an unstable state and proceed 
to change (XOR split). In the process discussed above, once products are ready, two 
independent concurrently transforming sub-domains exist: one where shipment to the 
customer is arranged and one where products are transferred into the warehouse.  



 Semantic Analysis of Flow Patterns in Business Process Modeling 403 

Our first characterizing parameter identifies whether the process domain is 
decomposable or not. The following four parameters apply only to decomposition-
related splitting and merging. 

Parameter 2: The Number of Paths 
For a decomposable process domain three possibilities exist: 

1. Both sub-domains are in an unstable state, thus they will transform in 
parallel. In this case the process has only one path (no selection decision is 
made). The "splitting" is merely a result of the decomposition. This situation 
is typically described by “AND” splitting elements in process models. 

2. Depending on some state variable(s) value(s), exactly one sub-domain can be 
in an unstable state. Hence, an exclusive choice between two possible paths 
is made. This situation is typically described by “XOR” in process models.  

3. Depending on some state variable(s) value(s), at least one or both sub-
domains can be in an unstable state. The process has three possible paths: (1) 
one sub-domain is active, (2) the other is active, and (3) both are active.  

Parameter 3: Past Awareness at the Merge 
In standard process design, the merge condition reflects the type of preceding split. 
This entails an implicit assumption that the merge decision is “aware” of the process 
“history”. However, this cannot be taken for granted. We therefore incorporate a 
three-valued parameter to reflect the information available at the merge point. 

1. No awareness – nothing is known about the preceding split. In other words, 
the view at the merge is purely local. We note this possibility is not of much 
interest, since usually the process designer is aware of the process structure.  

2. Topology awareness – the type of split that precedes the merge is available at 
the merge point. This information can be considered available to the designer 
and hence incorporated in the law governing the behavior at the merge point. 

3. Enactment awareness – this means that when the process is executed it is 
known at the merge point what happened at the preceding split. Specifically, 
for a two- or three- path split, it is known which path was actually chosen.  

Parameter 4: Entry Condition into the Merge Sub-domain 
The merge sub-domain is the sub-domain whose instability is affected by state 
variables of the two sub-domains. Several possibilities exist, but not all of them 
ensure a valid process. For example, each of the preceding sub-domains might 
activate the merge sub-domain, but not when both complete at the same time. It can 
be shown that only three cases exist for a valid process model: 

1. Each branch is sufficient: stability (completion of action) of each preceding 
sub-domain causes instability of the merge sub-domain, independent of 
whether one or both sub-domains were activated.  

2. Each branch is necessary and both together are sufficient: Only when both 
sub-domains reach stability (complete their activities) the merge sub-domain 
will become unstable. This is a synchronizing merge. 



404 P. Soffer, Y. Wand, and M. Kaner 

3. A specific branch is necessary and sufficient: stability of a specific one of the 
preceding sub-domains is necessary and sufficient for instability of the merge 
sub-domain. This is an asymmetric synchronization, where the merge can be 
activated by one sub-domain, or synchronize the two sub-domains, depending 
on which one has completed first.  

Parameter 5: Process Goal Requirement 
When two sub-domains become active at the split point, it may be sufficient that only 
one of them completes for activating the merge sub-domain, thus continuing the 
process. However, even if the process continues, it is possible that the goal depends 
on state variables that have to be set by actions in the other sub-domain. For example, 
one branch, necessary for the process to continue, deals with obtaining components 
for assembling a product. However, the process goal also includes securing means to 
deliver the product and this requires actions in the other sub-domain. Hence, we 
distinguish between two cases: 

1. The process goal does not require that both sub-domains complete their 
activities. Of course, one must still complete for the process to continue. 

2. The process goal is dependent on the completion of both sub-domains. 

Table 1. Valid and invalid design possibilities 

Merge entry condition Past 
awareness 

Split type 
Each branch 
sufficient 

Both necessary & 
together sufficient 

Specific one 
sufficient 

One path 
(AND) 

Always possible  it is not known a split 
happened 

it is not known a split 
happened 

Two paths 
(XOR) 

The only 
available option  

it is not known two 
options exist  

it is not known two 
options exist 

No awareness

Three paths 
(OR) 

The only 
available option  

it is not known three 
options exist 

it is not known three 
options exist 

One path 
(AND) 

Always possible  It is known both 
branches must activate 

It is known both 
branches must 
activate  

Two path 
(XOR) 

Always possible  Only one branch 
activates 

It is known one 
branch activated – not 
which one 

Topology 
awareness  

Three path 
(OR) 

Always possible  It is not known if two 
branches activated 

It is not known which 
branch activated 

One path 
(AND) 

Always possible  Same as for topology 
awareness  

Same as for topology 
awareness  

Two path 
(XOR) 

Always possible  Only one branch 
activates 

whichever branch 
taken should suffice 

Enactment 
awareness 

Three path 
(OR) 

Always possible  If known that both 
branches active –
condition on both 
possible(*) 

If known that both 
branches active –
condition on each 
possible(*) 

(*) The designer can specify conditions related to both branches, but should also allow for 
activating the merge domain on each branch if only one is activated. 



 Semantic Analysis of Flow Patterns in Business Process Modeling 405 

T
ab

le
 2

. P
at

te
rn

 c
om

po
si

ti
on

 (
N

A
– 

“n
ot

 a
pp

li
ca

bl
e”

.)
 

N
o.

 o
f 

su
b-

do
m

ai
ns

 
N

um
be

r 
of

 p
at

hs
Pa

st
 

aw
ar

en
es

s 
M

er
ge

 e
nt

ry
 

co
nd

iti
on

 
G

oa
l 

re
qu

ir
em

en
tD

es
cr

ip
tio

n 
E

xa
m

pl
e 

1 
2 

N
A

  
N

A
 

N
A

 
Si

ng
le

 d
om

ai
n 

ex
cl

us
iv

e 
ch

oi
ce

 
Q

ua
lit

y 
in

sp
ec

tio
n 

de
te

rm
in

es
 w

he
th

er
 a

 p
ro

du
ct

 is
 g

oo
d 

an
d 

ca
n 

be
 s

up
pl

ie
d 

(p
at

h 
1)

 
or

 n
ee

ds
 r

ew
or

k 
(p

at
h 

2)
. M

er
ge

 a
ft

er
 r

ew
or

k.
 

2 
1 

A
ll 

va
lu

es
 

O
ne

 
su

ff
ic

ie
nt

R
eq

ui
re

s 
on

e 
do

m
ai

n
C

on
cu

rr
en

cy
 w

it
h 

co
m

pe
tit

io
n 

A
n 

ur
ge

nt
 lo

an
 is

 r
eq

ue
st

ed
 f

ro
m

 tw
o 

ba
nk

s 
(e

ac
h 

ba
nk

 r
eq

ue
st

 is
 a

 d
om

ai
n)

. T
he

 f
ir

st
 

on
e 

to
 a

pp
ro

ve
 th

e 
lo

an
 is

 c
ho

se
n.

 
2 

1 
T

op
ol

og
y 

/ 
en

ac
tm

en
t 

O
ne

 
su

ff
ic

ie
nt

R
eq

ui
re

s 
bo

th
 

C
on

cu
rr

en
cy

 w
it

h 
Fi

rs
t-

in
-f

ir
st

-o
ut

 (
FI

FO
) 

m
er

ge
 

Sa
le

s 
da

ta
 (

do
m

ai
n1

) 
an

d 
pr

od
uc

tio
n 

da
ta

 (
do

m
ai

n 
2)

 a
re

 c
ol

le
ct

ed
 f

or
 a

 p
er

io
di

ca
l 

re
po

rt
, w

ho
se

 p
re

pa
ra

tio
n 

st
ar

ts
 o

nc
e 

th
e 

fi
rs

t t
yp

e 
of

 d
at

a 
ar

ri
ve

s,
 b

ut
 r

eq
ui

re
s 

bo
th

 to
 

en
d.

 
2 

1 
T

op
ol

og
y 

/ 
en

ac
tm

en
t 

B
ot

h 
ne

ce
ss

ar
y 

R
eq

ui
re

s 
bo

th
 

C
on

cu
rr

en
cy

 w
it

h 
sy

nc
hr

on
iz

at
io

n 
W

he
n 

an
 o

rd
er

 is
 r

ec
ei

ve
d,

 th
e 

cu
st

om
er

's
 c

re
di

t (
do

m
ai

n 
1)

 a
nd

 th
e 

av
ai

la
bi

lit
y 

of
 

pr
od

uc
ts

 (
do

m
ai

n 
2)

 a
re

 c
he

ck
ed

. A
ft

er
 b

ot
h 

co
m

pl
et

e,
 th

e 
or

de
r 

m
ay

 b
e 

ac
ce

pt
ed

. 
2 

1 
T

op
ol

og
y 

/ 
en

ac
tm

en
t 

Sp
ec

if
ic

 o
ne

 
su

ff
ic

ie
nt

R
eq

ui
re

s 
on

e 
do

m
ai

n
C

on
cu

rr
en

cy
 w

it
h 

as
ym

m
et

ri
c 

sy
nc

h.
 / 

co
m

pe
tit

io
n 

W
he

n 
co

ns
id

er
in

g 
an

 a
rc

hi
te

ct
ur

al
 d

es
ig

n,
 a

 p
ro

fe
ss

io
na

l d
ra

w
in

g 
m

ay
 b

e 
pr

ep
ar

ed
 

(d
om

ai
n1

);
 u

nt
il 

it
 is

 r
ea

dy
, a

 d
ra

ft
 m

ay
 b

e 
m

ad
e 

fo
r 

de
m

on
st

ra
ti

on
 p

ur
po

se
s 

(d
om

ai
n 

2)
. W

he
n 

th
e 

dr
aw

in
g 

is
 r

ea
dy

 th
e 

dr
af

t i
s 

di
sc

ar
de

d 
an

d 
th

e 
pr

oc
es

s 
m

ay
 p

ro
ce

ed
.  

2 
1 

T
op

ol
og

y 
/ 

en
ac

tm
en

t 
Sp

ec
if

ic
 o

ne
 

su
ff

ic
ie

nt
R

eq
ui

re
s 

bo
th

 
C

on
cu

rr
en

cy
 w

it
h 

as
ym

m
et

ri
c 

sy
nc

h.
 / 

FI
FO

 

In
fo

rm
at

io
n 

ab
ou

t p
ro

du
ct

 r
eq

ui
re

m
en

ts
 (

do
m

ai
n 

1)
 a

nd
 p

ro
du

ct
io

n 
re

so
ur

ce
s 

(d
om

ai
n 

2)
 is

 n
ee

de
d 

fo
r 

pr
od

uc
tio

n 
pl

an
ni

ng
, w

hi
ch

 c
an

 s
ta

rt
 w

he
n 

pr
od

uc
t 

re
qu

ir
em

en
ts

 a
re

 k
no

w
n,

 e
ve

n 
if

 th
e 

re
so

ur
ce

s 
ar

e 
no

t k
no

w
n 

ye
t. 

W
he

n 
re

so
ur

ce
 

in
fo

rm
at

io
n 

ar
ri

ve
s 

pl
an

ni
ng

 c
an

 c
om

pl
et

e.
  

2 
2 

A
ll 

va
lu

es
 

E
ith

er
 o

ne
 

su
ff

ic
ie

nt
R

eq
ui

re
s 

on
e 

do
m

ai
n

T
w

o 
do

m
ai

n 
ex

cl
us

iv
e 

ch
oi

ce
 

A
 p

ro
du

ct
 c

an
 b

e 
m

an
uf

ac
tu

re
d 

(d
om

ai
n 

1)
 o

r 
ou

ts
ou

rc
ed

 (
do

m
ai

n 
2)

. G
oa

l i
nc

lu
de

s 
ha

vi
ng

 p
ro

du
ct

. 
2 

3 
A

ll 
va

lu
es

 
O

ne
 

su
ff

ic
ie

nt
R

eq
ui

re
s 

on
e 

do
m

ai
n

M
ul

ti-
ch

oi
ce

 w
it

h 
co

m
pe

tit
io

n 
A

 m
es

sa
ge

 c
an

 b
e 

se
nt

 b
y 

m
ai

l (
do

m
ai

n 
1)

 o
r 

by
 f

ax
 (

do
m

ai
n 

2)
. I

f 
it

 is
 s

en
t b

y 
bo

th
, 

th
e 

fi
rs

t o
ne

 th
at

 a
rr

iv
es

 is
 a

dd
re

ss
ed

, a
nd

 th
e 

ot
he

r 
on

e 
is

 d
is

ca
rd

ed
. 

2 
3 

E
na

ct
m

en
t

O
ne

 
su

ff
ic

ie
nt

R
eq

ui
re

s 
bo

th
 

M
ul

ti-
ch

oi
ce

 w
it

h 
Fi

rs
t-

in
-f

ir
st

-o
ut

 (
FI

FO
) 

m
er

ge
 

A
 p

er
so

n 
m

ak
es

 a
 c

la
im

 to
 th

e 
in

su
ra

nc
e 

co
m

pa
ny

 a
ft

er
 a

 c
ar

 a
cc

id
en

t r
eg

ar
di

ng
 c

ar
 

in
ju

ry
 o

r 
ph

ys
ic

al
 in

ju
ry

 (
or

 b
ot

h)
. E

ac
h 

cl
ai

m
 (

do
m

ai
n)

 is
 p

ro
ce

ss
ed

 s
ep

ar
at

el
y,

 a
nd

 
w

he
n 

it
s 

pr
oc

es
si

ng
 is

 c
om

pl
et

ed
 th

e 
pe

rs
on

 is
 p

ai
d.

 
2 

3 
E

na
ct

m
en

t
B

ot
h 

ne
ce

ss
ar

y 
R

eq
ui

re
s 

bo
th

 
M

ul
ti-

ch
oi

ce
 w

it
h 

sy
nc

hr
on

iz
at

io
n 

Pl
an

ni
ng

 a
 tr

ip
 m

ay
 in

vo
lv

e 
fl

ig
ht

 b
oo

ki
ng

 (
do

m
ai

n 
1)

 a
nd

 h
ot

el
 r

es
er

va
ti

on
 (

do
m

ai
n 

2)
. I

f 
bo

th
 a

re
 p

er
fo

rm
ed

, t
he

y 
ha

ve
 to

 b
e 

co
m

pl
et

ed
 b

ef
or

e 
th

e 
tr

ip
 c

an
 ta

ke
 p

la
ce

. 
2 

3 
E

na
ct

m
en

t
Sp

ec
if

ic
 o

ne
 

su
ff

ic
ie

nt
R

eq
ui

re
s 

on
e 

do
m

ai
n

M
ul

ti-
ch

oi
ce

 w
it

h 
as

ym
m

et
ri

c 
sy

nc
h.

 / 
co

m
pe

tit
io

n 

A
 n

ew
 e

m
pl

oy
ee

 r
ec

ei
ve

s 
sa

la
ry

 o
nl

y 
af

te
r 

hi
s 

de
ta

ils
 a

re
 r

ec
or

de
d 

in
 th

e 
in

fo
rm

at
io

n 
sy

st
em

 (
do

m
ai

n1
).

 B
ef

or
e 

th
at

, t
he

 c
om

pa
ny

 m
ay

 m
ak

e 
a 

ca
sh

 a
dv

an
ce

 (
do

m
ai

n 
2)

,
no

t n
ee

de
d 

if
 s

al
ar

y 
is

 p
ai

d 
on

 ti
m

e.
 

2 
3 

E
na

ct
m

en
t

Sp
ec

if
ic

 o
ne

 
su

ff
ic

ie
nt

R
eq

ui
re

s 
bo

th
 

M
ul

ti-
ch

oi
ce

 w
it

h 
as

ym
m

et
ri

c 
sy

nc
hr

on
iz

at
io

n 
/ F

IF
O

Pl
an

ni
ng

 a
 tr

ip
 m

ay
 in

vo
lv

e 
fl

ig
ht

 b
oo

ki
ng

 (
do

m
ai

n 
1)

 a
nd

 h
ot

el
 r

es
er

va
ti

on
 (

do
m

ai
n 

2)
. T

ri
p 

ca
n 

be
gi

n 
be

fo
re

 a
ll 

ho
te

ls
 a

re
re

se
rv

ed
, b

ut
 n

ot
 b

ef
or

e 
fl

ig
ht

 is
 b

oo
ke

d.
 S

om
e 

ho
te

ls
 c

an
 s

til
l b

e 
bo

ok
ed

 d
ur

in
g 

th
e 

tr
 



406 P. Soffer, Y. Wand, and M. Kaner 

3.3   Combining Parameter Values 

The combinations of the above parameters provide possible split and merge 
configurations. Analysis of these configurations can identify those that will always 
progress and those that may fail to progress in certain situations, thus preventing a 
process from reaching its goal. The latter should not be used in valid process models. 

Table 1 presents the possible combinations of parameters 2-4. Combinations 
allowing goal reachability are marked by clear boxes. Combinations that do not 
guarantee process success are marked by shaded boxes. For example, a two-path split 
(XOR) leading to a merge where both branches are necessary cannot progress to the 
process goal, and is hence not a valid configuration. 

Table 2 enumerates all possible valid combinations of the five parameters. In some 
cases, as indicated in the table, different values of the same parameters support the 
same behavior (e.g., when one sub-domain is sufficient for activating the merge, all 
valid values of past awareness may be considered equivalent). To illustrate the 
derivation of Table 2, consider, for example, lines 2 and 3. Line 2 refers to the case 
where the process continues when one branch completes, regardless of whether a 
second branch even exists. Hence, the goal should be reachable based on any of the 
branches completing. On the other hand, in line 3 it is known two branches were 
activated. Hence the process goal can depend on both. 

4   Conclusion 

Attempts to distinguish different types and behaviors represented by splitting and 
merging elements in process models were made in the past. The most comprehensive 
one is probably the workflow pattern initiative [3]. Workflow patterns address, in 
addition to flow structures, workflow management system functionality (e.g., 
cancellation). Some of our patterns are included in the control flow patterns, while 
others are not. Specifically, we distinguish between single-domain and two-domain 
XOR, and identify asymmetric synchronization, where synchronization may or may 
not be required, depending on the branch which completes first.  

This paper adds to extant analysis in several ways. First, it anchors splitting and 
merging elements in an ontological theory, thus suggesting a real-world interpretation 
of process control elements. Second, it provides a framework for systematic 
identification of splitting and merging configurations. The framework is based on an 
explicitly specified set of assumptions and parameters. It can be shown that under this 
set the identified set of patterns is complete, if a process model is required to assure 
that the process can always reach its goal.   

The framework thus forms a basis for further systematic analysis that can be 
achieved by relaxing these assumptions. Such analysis can yield a broader set of 
patterns, whose completeness with respect to its set of underlying assumptions can be 
analyzed. Third, the identified patterns include cases which have not been indicated 
and discussed so far. Finally, we identify patterns that provide for goal reachability of 
the designed process, thus suggesting a way to support the task of process designers. 

Future research should investigate the applicability of the identified patterns as a 
benchmark for evaluating and developing process modeling languages and as 



 Semantic Analysis of Flow Patterns in Business Process Modeling 407 

guidance to the actual practice of process design. We believe that incorporating the 
view suggested in this paper into the practice of modeling (through, e.g., modeling 
rules) may lead to an improved quality of designed processes. 

Acknowledgement. This work was supported in part by a grant to one of the authors 
from the Natural Sciences and Engineering Research Council of Canada. 

References 

[1] van der Aalst, W.M.P.: The Application of Petri-nets to Workflow Management. Journal 
of Circuits, Systems and Computers 8(1), 21–66 (1998) 

[2] van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W.: An Alternative Way to Analyze 
Workflow Graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) 
CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002) 

[3] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow 
Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003) 

[4] Bunge, M.: Treatise on Basic Philosophy: Ontology I: The Furniture of the World, vol. 3, 
Reidel, Boston (1977) 

[5] Bunge, M.: Treatise on Basic Philosophy: Ontology II: A World of Systems, vol. 4, 
Reidel, Boston (1979) 

[6] Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of control 
flow in workflows. Acta Informatica 39(3), 143–209 (2003) 

[7] Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. 
In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 82–97. 
Springer, Heidelberg (2004) 

[8] Rosemann, M., Recker, J., Indulska, M., Green, P.: A Study of the Evolution of the 
Representational Capabilities of Process Modeling Grammars. In: Dubois, E., Pohl, K. 
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006) 

[9] Sadiq, W., Orlowska, M.E.: On Correctness Issues in Conceptual Modeling of 
Workflows. In: Proceedings of the 5th European Conference on Information Systems, 
Cork, Ireland, pp. 943–964 (1997) 

[10] Scheer, A.W.: ARIS-Business Process Modeling. Springer, Berlin (1998) 
[11] Soffer, P., Wand, Y.: Goal-driven Analysis of Process Model Validity. In: Persson, A., 

Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 521–535. Springer, Heidelberg (2004) 
[12] Soffer, P., Wand, Y.: Goal-Driven Multi-Process Analysis, Journal of the Association of 

Information Systems (forthcoming, 2007) 
[13] Wand, Y., Weber, R.: On the Ontological Expressiveness of Information Systems 

Analysis and Design Grammars. Journal of Information Systems 3, 217–237 (1993) 
[14] Wand, Y., Weber, R.: Towards a Theory of Deep Structure of Information Systems. 

Journal of Information Systems 5(3), 203–223 (1995) 


	Semantic Analysis of Flow Patterns in Business Process Modeling
	Introduction
	The Generic Process Model (GPM)
	Modeling and Configuring Splits and Joins
	Model Assumptions
	Characterizing Parameters of the Model
	Combining Parameter Values

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




