
ALIGNING AN ENTERPRISE SYSTEM WITH ENTERPRISE
REQUIREMENTS: AN ITERATIVE PROCESS

Pnina Soffer
Department of Management Information Systems, Haifa University, Mount Carmel, Haifa, Israel

Email: spnina@is.haifa.ac.il

Keywords: Enterprise systems, Business process alignment, Object-Process Methodology
Abstract: Aligning an off-the-shelf software package with the business processes of the enterprise implementing it

is one of the main problems in the implementation of enterprise systems. The paper proposes an
iterative alignment process, which takes a requirement-driven approach. It benefits from reusing
business process design without being restricted by predefined solutions and criteria.
The process employs an automated matching between a model of the enterprise requirements and a
model of the enterprise system capabilities. It identifies possible matches between the two models and
evaluates the gaps between them despite differences in their completeness and detail level. Thus it
provides the enterprise with a set of feasible combinations of requirements that can be satisfied by the
system as a basis for making implementation decisions. The automated matching is applied iteratively,
until a satisfactory solution is found. Object Process Methodology (OPM) is applied for modeling both
the system and the enterprise requirements, which are inputs for the automated matching. The alignment
process has been tested in an experimental study, whose encouraging results demonstrate its ability to
provide a satisfactory solution to the alignment problem.

1 INTRODUCTION
One of the major problems associated with the

implementation of enterprise information systems is
business process alignment. Enterprise systems (e.g.,
ERP systems), designed to support a large variety of
enterprises, usually support standard business
processes, referred to as “best practice”. The
alignment is a mutual adaptation of both the
enterprise and the system, in which the system is
configured so that its options are set to support
business processes that meet the requirements of the
enterprise. These business processes are not
necessarily identical to the original processes of the
enterprise. Rather, they are the result of the
adaptation of the enterprise to the system-supported
processes. Software customizations, which are
enhancements of the software package, may be
performed when a feature, which is of importance to
the enterprise, is not available in the software
package.

The alignment problem, also known as “gap
analysis”, exists virtually in every implementation
project. Solving it is critical to the success of the
implementation project, since it determines the
future processes of the enterprise and the way the
system will support them. Adopting standard

business processes may adversely influence the
competitive advantage the enterprise may be
enjoying, and should therefore be carefully
considered to ensure that the enterprise does not lose
it (Davenport, 1998). However, unnecessary
software customizations may consume resources that
exceed the planned schedule and budget of the
implementation project and may harm the system’s
integrity, especially through future upgrades (Bingi
et. al, 1999; Holland and Light, 1999; Light, 2001).
The problem is not restricted to implementations of
a single software package. It is essential when a
combination of modules from different packages is
implemented in a “best-of-breed” setting. Then the
operation of each such package as well as their
interaction has to be determined (Themistocleous et.
al, 2001).

Common tools that support the alignment
process take a solution-driven approach, referring to
predefined “best practice” models and
configurations (Curran and Ladd, 1999; Daneva,
1999; Post and Van Es, 1996; Van Es, 1998). Based
on the premise that the enterprise has to adapt itself
to the package rather than the other way around, one
of the “best practice” solutions is to be selected and
adopted “as is” or, at best, with minimal changes.
The selection of a solution is based on predefined

mailto:spnina@is.haifa.ac.il

Figure 1: The iterative alignment process

Requirements
reformulation

Aligned model

Match and gap analysis

Automated matching
Enterprise system

model

Enterprise requirements model

criteria, which vary from a rough logistic
characterization of the enterprise to a detailed
questionnaire, addressing a variety of issues. The
actual requirements of the enterprise are not
explicitly considered in this process. Rather, they
exist only as part of the human knowledge and
reasoning underlying the solution selection. Gaps
between the enterprise needs and the system are
basically ignored or solved by requiring the
enterprise to adapt to an available solution.

This solution-driven approach speeds up the
implementation, reduces its cost and provides a high
quality, bug-free solution. However, these benefits
are worthwhile only if and when the enterprise
indeed finds a solution that suits its needs. In cases
where one or more core processes of the enterprise
are unique to the extent that they are not
satisfactorily addressed by the predefined criteria,
the alignment process cannot be supported. Rather, it
is typically done in an ad-hoc, intuitive manner,
which requires considerable efforts. Due to the high
complexity of enterprise systems, even a small
deviation from a given configuration is risky, and
requires an extensive verification effort (Ghosh,
2000).

Despite the common wisdom that suggests that
enterprises can and should standardize their
processes in alignment with “best practice”
solutions, research reports indicate that it is not
always the case in practice. Daneva (1999), who
measured requirements reuse in SAP R/3
implementations, found that full reuse was not
achieved, although in some cases the rate of reuse
was remarkably high.

In this paper a requirement-driven approach to
the alignment process is introduced. This approach
facilitates solution definition by reuse without
imposing a predefined set of reuse criteria, and thus

provides a systematic support for both standard
enterprises and unique ones. The idea and some
aspects related to requirement-driven approaches are
presented and discussed (Rolland, 1999; Rolland,
2000; Rolland and Prakash, 2000; Soffer et. al,
2001; Soffer, 2002; Soffer et. al., 2003). A
requirement-driven alignment approach emphasizes
the enterprise requirements rather than the system’s
capabilities and standard solutions. The
requirements themselves serve as reuse criteria.
These are matched against the capabilities of the
system in order to identify the required solution
parts and the remaining gaps.

The paper presents the suggested alignment
process, its input, output, and each of its steps.

2 THE ALIGNMENT PROCESS
This section outlines the alignment process,

which iteratively seeks a match between a model of
the requirements posed by the enterprise and a
model that expresses the entire scope of alternative
processes supported by the software package. The
Process, illustrated in Figure 1, uses a model of the
enterprise requirements as input. This model is
matched against a pre-existing model of the
enterprise system using an automated matching
algorithm, which yields an analysis of the matching
system options and the gaps identified between the
requirements and the system. Based on the analysis,
the requirements can be reformulated and matched
again. This is repeated until either a satisfactory
match is identified or until no reformulation
possibility is found.

The details of the process steps, inputs and
outputs, as appear in Figure 1, are discussed in this
section.

2.1 The Enterprise Requirements

The enterprise requirements provide the basis for
both the selection of the software package and the
alignment process. For these two purposes,
completeness is not necessarily a desired property of
the requirements (Feblowitz and Greenspan, 1998;
Finkelstein et. al., 1996; Maiden and Ncube, 1998;
Ncube and Maiden, 1999; Soffer et. al., 2001). Since
the system implementation involves changes in the
enterprise in adaptation to processes supported by
the system, the requirement specification should aim
at providing the enterprise with the flexibility and
adaptability to these available processes, while
assessing their suitability. Complete system and
interface specification may result in rigidity that
would render an exact matching solution within the
software package infeasible.

Based on this premise, the requirements can be
classified into four different types of information
(Soffer et. al., 2001):
Core system interfaces, whose detailed design is of
considerable importance to the enterprise. This is a
relatively small set of specified inputs and outputs,
typically required for business processes involving
interaction with external agents (e.g., reporting to
the tax authorities).
Core business processes, which must not be
changed through the alignment process. The details
of these processes are unique, as they generate the
competitive advantage of the enterprise. These may
include logistic processes, which support an
outstanding supply mechanism, or quality assurance
processes, which ensure an exceptional quality level.
Business rules, which express the enterprise goals
(or certain external restrictions that must be
followed) and control the business processes. These
rules provide the underlying logic, which remains
invariant to changes in the business processes in the
course of the alignment process.
Information objects, which are manipulated by the
specified business processes, controlled by the
business rules, and participate in the specified
interfaces.

Since both the system model and the enterprise
requirements model relate to business issues, they
should be represented in the same modeling
language to enable their matching. Rolland (1999,
2000) and Rolland and Prakash (2000) suggest that a
map representation be applied in both cases. We
apply Object-Process Methodology (OPM) (Dori,
2002), which has been evaluated and found adequate
for representing both the requirements and the
enterprise system. The evaluation was based on an
ontological model of the requirements for evaluating
OPM’s expressive power (Soffer et. al, 2001), and

on the ERP-adapted CREWS framework (Rolland
and Prakash, 2000), evaluating its content, structure,
and notation (Soffer et. al., 2003).

Object-Process Methodology, described in detail
in Dori (2002), employs two equally important
classes of entities: objects and processes, which are
connected by structural and procedural links. While
many modeling methods require the use of a set of
models, each with its diagramming symbols and
conventions, to describe different aspects of the
system, OPM uses a single graphic tool, the Object-
Process Diagram (OPD) set, to model the major
system’s aspects, structure and dynamics. Simplicity
of the model is achieved by an abstracting-
refinement zooming mechanism that controls the
visibility of the system details. Zooming in and out
of entities (objects and processes) enables a top-
down analysis, which yields a hierarchical OPD set
that specifies the structure and behavior of the
system at a spectrum of abstraction levels.

The requirements model, rather than being a
hierarchical OPD set, is a set of independent OPDs,
each representing a single requirement. This way the
requirements are expressed independently of each
other, so that each one is matched separately with
the system model.

2.2 The Enterprise System Model

The enterprise system model is a vehicle for
aligning the system with the enterprise requirements.
As such, it should represent the entire scope of
options and business process variants supported by
the system and represent dependencies among
alternative options. It is obtained once through a
reverse engineering process, and may serve as a
reference as long as the modeled system has not
changed. The reverse engineering process, whose
details are in Soffer et. al. (2003), is aimed at
capturing the alternative processes and options,
which are controlled by the system’s parameters at
different application levels. The process follows
these levels, identifying the parameter-controlled
optionality at each level and representing it in a top-
down manner.

In the OPM representation, alternative processes
are represented by different specializations of a
generic process. The details of each entity (object or
process) in an OPD may be revealed through
refinement in lower-level OPDs, which may, in turn,
include other alternative specializations of its
entities. The refinement mechanism allows for exact
specification of the enterprise system at any level of
detail.

The resulting OPD set is very large, and consists
of hierarchically linked OPDs. These links are
managed by representing the OPD set at a meta-

Legend: General Structural Relation Aggregation

Process Instrument link Effect Link

 State Condition Link Event Link

 Object Characterization Generalization-Specialization

Figure 2: An OPM representation of a Purchase Order Handling process

level as a graph, called the system model
hypergraph. Each OPD of the system model is a
node in the hypergraph, with arcs connecting it to
descendant OPDs, which expose details of one or
more of the entities in the parent OPD. Each node in
the hypergraph is characterized by a logical
expression, which provides the logical dependencies
among the arcs originating in it. These arcs relate the
OPD of that node to the descendant OPDs that
specify its entities. Since some of these entities may
stand for alternative processes, the logical operator
between their corresponding arcs is XOR. Otherwise
the logical operator between the arcs is AND.

The hypergraph structure and related logical
expressions are illustrated by the following example:
Figure 2 is an OPD that shows a process of
Purchased Goods Receiving, which is related
by effect links to Purchase Order and Purchase
Order Line, and uses Item as an instrument. This
process has three specializations. The occurrence of
the specialized processes Location Controlled
Receiving and No Location Controlled
Receiving is conditioned by the states of the
Boolean object "Location Controlled?", which
characterizes a Warehouse, while the Non-
inventory Item Receiving is conditioned by

Item being a Non-inventory Item. Some entities
are further refined in other OPDs, listed in Table 1,
forming the hypergraph presented in Figure 3.
The logical expression among the arcs reflecting the
dependencies among the corresponding entities, can
now be defined. The three alternative processes,
Location Controlled Receiving, No Location
Controlled Receiving, and Non-inventory
Item Receiving, whose corresponding arcs are to
OPDs 2, 3, and 4 respectively, are related by a XOR
operator. While the processes Location
Controlled Receiving and No Location
Controlled Receiving are both related to the
objects Warehouse (whose outgoing arc is to OPD
7) and Inventory by Item (arc to OPD 8), the
object Inventory by Location (arc to OPD 9) is
related to Location Controlled Receiving only.
Other objects in the OPD, such as Item (arc to OPD
5), and Purchase Order (arc to OPD 6), are
related to all the alternative processes. Each such
relation is represented in the logical expression by
an AND operator. Therefore, the logical expression
that characterizes node 1 is:
5 AND 6 AND (4 XOR (7 AND 8 AND (3 XOR
(2 AND 9)))).

5

6

8

7

9

1

2 3 4

10

Figure 3: A part of a system model hypergraph, whose root holds the Purchase Goods Receiving OPD
presented in Figure 2

2.3 The Automated Matching
The automated matching of the requirements

model and the system model consists of two main
steps: Single Requirement Matching (SRM) and
Bottom-Up Aggregation (BUA). SRM examines
each requirement separately and looks for matching
diagrams within the system model. It generates a
matching score for each pair 〈R, E〉, where R is a
requirement OPD and E is a system OPD. The SRM
output serves as input to BUA, which aggregates the
matching scores up the system model hypergraph
and identifies their feasible combinations.
 Single Requirement Matching (SRM): assesses
the similarity between pairs of OPD portions, each
consisting of an OPD expressing a requirement in
the requirements model and its counterpart in the
system model. As discussed in Section 2.1, the
requirements are generally incomplete and represent
only the details that are essential to the enterprise,

while the system model is usually more detailed.
SRM is the part of the matching algorithm that is
designed to resolve this mismatch.

SRM computes a matching score for 〈R, E〉
based on two measures: Entity Similarity (ES) and
Relational Similarity (RS). ES is the proportion of
entities in R that have a matching entity in E, i.e., an
entity whose name and type are identical to those of
the entity in R. It is computed using a simple query,
which compares the entities of each of the system
model OPDs with the entities of a given
requirement, and counts the entities whose type and
name are identical. The query provides a set of
candidate matching pairs 〈R, E〉, whose ES score
exceeds a given threshold.

RS, the Relational similarity, which is assessed
for each pair in this set, measures the similarity of
the link structure in a pair 〈R, E〉, by an exhaustive
search for matching of each link in R. Each link in R

OPD n

1

2

3

4

5

6

7

8

9

10
Table 1: The OPDs related to the Purchase Goods Receiving process
umber OPD name Descendant OPDs

Purchased Goods Receiving 2, 3, 4, 5, 6, 7, 8, 9

Location Controlled Receiving 5, 6, 7, 8, 9

No Location Controlled Receiving 5, 6, 7, 8

Non-inventory Item Receiving 5, 6

Item

Purchase Order 5, 10

Warehouse

Inventory by Item 5, 7

Inventory by Location 5, 7

Supplier

may be:
(a) Matched by a link in E, which is of the
same type and relates matching entities for
both the source and the destination of the link.
(b) Matched by a path in E, which is equivalent
to its type and relates matching entities for both
the source and the destination of the link.
(c) Not matched.

A path is a sequence of links and entities,
connecting a source entity to a destination entity. A
path is considered equivalent to a link of specific
type if it can be abstracted to a link of this type.
Equivalence is identified on the basis of equivalence
rules, defined for each link type in OPM. For a given
link type, equivalence rules state link types that are
allowed in a path, link types that must be in a path
and in some cases their required position: at the
source of the path or at its destination. The
equivalent path identification enables matching a
requirement OPD and a system model OPD despite
the mismatch in their abstraction level.

The Relational Similarity (RS) of 〈R, E〉 is
computed according to the matching results of all
the requirement’s links. Thus the overall Matching
Score (MS) of a pair 〈R, E〉 is computed as a
weighted sum of the two similarity measures,
provided neither of them equals zero.
Bottom-Up Aggregation (BUA): The Bottom-up
Aggregation (BUA) process, which is the second
part of the automated matching, provides the
feasible combinations of the requirements, whose
matching scores have been computed by SRM.

The options that are available in an enterprise
system can be highly dependent on each other.
Hence, a combination of features available in a
specific configuration may not be available in other
configurations (Koch, 2001). Identifying a set of
requirements that are met by the system does not
guarantee that their combination is feasible in a
single configuration. The system’s internal
dependencies may form constraints on the feasible
solution. For example, in the Baan ERP system, it is
possible to allocate a specific inventory unit to a

specific order (such an action is termed “hard
allocation”). However, this option is valid only if the
warehouses are not location controlled, that is, in a
configuration where the value of the parameter
“Location Control Implemented?” is “No”.
Separately verifying that the system is capable of
handling requirements of hard allocation and
location control would yield a positive answer,
despite the fact that their combination is not feasible.
BUA aims at providing a solution space, which
enumerates the feasible combinations of
requirements satisfied by the system along with their
matching scores. It relies on the logical expressions
related to the nodes of the system model hypergraph
in order to achieve this goal.

The BUA, formally specified in Soffer (2002),
starts after the SRM has computed Matching Scores
for all the given requirements matched by OPDs of
the system model. The computed Matching Scores
are related to a set of nodes in the system model
hypergraph, whose OPDs match the requirements.

The BUA sorts the nodes of this set according to
their distance from the root node, starting with those
whose distance is maximal. At each step it goes one
level up and aggregates the Matching Scores for the
upper level, by placing them in the corresponding
positions of the logical expression of the upper-level
node. The logical expression of this node holds a
local matched requirements combination, which
specifies the feasible combination of requirements
matched by the OPD in the current node and all its
descendants. When going up to the next level, the
local combinations are aggregated again. This
procedure is repeated until the top-level diagram (the
root node of the hypergraph) is reached. Its
combined expression holds all the requirement
results aggregated up the system model hypergraph
and their logical relations, providing the matching
options of the enterprise system with respect to the
enterprise requirements.

The BUA steps are illustrated by the following
example: assume that four requirements specifying
the issues listed in Table 2 are matched against the
part of the system discussed in Section 2.2 (see

Requirement Description

a Supplier object structure

b Item object structure

c Inventory object structure

d Purchase receiving process

Table 2: Four example requirements

Step Node Distance
from root
(in arcs)

Local requirement combination

2 1 d(0.5)
3 1 d(0.8)
5 3 b(0.6)
9 2 c(1)

Initial
SRM
result

10 3 a(0.7)
6 2 b(0.6) AND a(0.7)
8 2 b(0.6)

BUA
first step

9 2 c(1) AND b(0.6)
2 1 d(0.5) AND [c(1) AND b(0.6)] AND [b(0.6) AND a(0.7)]

AND b(0.6)
3 1 d(0.8) AND b(0.6) AND [b(0.6) AND a(0.7)] AND b(0.6)

BUA
Second

step
4 1 [b(0.6) AND a(0.7)] AND b(0.6)

BUA
third step

1
(root)

0 b(0.6) AND [b(0.6) AND a(0.7)] AND [[[b(0.6) AND a(0.7)]
AND b(0.6)] XOR [b(0.6) AND [[d(0.8) AND b(0.6) AND [b(0.6)
AND a(0.7)] AND b(0.6)] XOR [[d(0.5) AND [c(1) AND b(0.6)]

AND [b(0.6) AND a(0.7)] AND b(0.6)] AND [c(1) AND
b(0.6)]]]]]

Table 3: BUA steps example

Figures 2-3 and Table 1).
The course of the BUA, given in Table 3, starts

when the SRM has identified system model OPDs
that match the given requirements (in nodes 2, 3, 5,
9, and 10 of the hypergraph) and computed their
Matching Scores, which are given in brackets by the
requirement (e.g., the OPD in node 2 matches
requirement d with MS=0.5). Starting at the bottom
of the hypergraph, the BUA aggregates the local
matched requirements combination one level up at
each step, by placing the results in the logical
expression of each node. For example, in the first
BUA step node 6 aggregates its two descendants,
nodes 5 and 10, thus its local requirement
combination is b(0.6) AND a(0.7). In the given
hypergraph all the node logical expressions consist
of AND operators, except for the root node, whose
logical expression, discussed in Section 2.2, is: 5
AND 6 AND (4 XOR (7 AND 8 AND (3 XOR (2
AND 9)))).

 The aggregated matched requirements
combination of the root, obtained in the third BUA
step, can be reduced to:

b(0.6) AND a(0.7) AND [d(0.8) XOR [d(0.5)
AND c(1)]], indicating the following:

• Requirements a and b, regarding the structure of
the Item and Supplier objects, are not fully
matched. These gaps may be solved by
reformulation activities, or require a
customization decision.

• Requirement c, regarding the structure of the
Inventory object, is fully matched by the

Inventory by Location OPD (number 9) in
the system model.

• Requirement d, regarding the Receiving process,
is partially matched by two system alternatives:
Location Controlled Receiving (number 2)
with an MS of 0.5 and Non-location
Controlled Receiving (number 3) with an MS
of 0.8. It seems that Non-location Controlled
Receiving is a better match (despite a minor
gap that should be resolved). However, this
process is not feasible in combination with the
Inventory by Location object, which satisfies
requirement c. Therefore, a combination gap is
identified. The implementation team should now
investigate the possibility of improving the
match of Location Controlled Receiving by
reformulation activities, or consider a software
customization.

2.4 Requirements reformulation

Reformulating the requirements involves three
types of action: splitting, abandoning, and mapping.

Splitting entails splitting composite
requirements into simpler ones. A composite
requirement includes at least two entities that may
be revealed in lower-level OPDs. splitting addresses
required processes, which are not standard process
defined in the system model, but all their sub-
processes (steps) exist as parts of other processes. In
such cases, it may be possible to “assemble” the
required process as a sequence of these steps. In
order to verify this possibility, each of the process

steps and its required interface should be examined
as a separate requirement.

Abandoning is the second way of reformulating
requirements. The automated matching may identify
some requirements as not being satisfied by the
system, or as contradicting other requirements of
higher priority. In such cases a software
customization may be considered. Alternatively, if
an unsatisfied requirement is of a lesser importance,
or if some activities may be handled manually
without involving the system, that requirement can
be abandoned.

Mapping – each time a requirement is modeled
and expressed using the system’s terminology, some
decisions of mapping the enterprise entities to
entities of the system are made. Different mappings
may yield different matches. Such mappings are
applied frequently in manual alignments, where
considerable effort is required to verify their
appropriateness.

Mapping requires the implementing team
members to think creatively and to apply a high
level of expertise and knowledge of the system and
its internal relations. Due to the complexity and
integrative nature of enterprise systems, the manual
verification of the consequences of a mapping
decision is a difficult task. Every decision may affect
many other parts of the system, and each one of
them must be checked and tested in order to ensure
their correct operation.

In the iterative alignment process, new mapping
decisions still rely on creative thinking, but their
verification is accomplished by the automated
matching, which instantaneously scans the entire
system model, identifies the effects of the
reformulated requirement and potential
contradictions with other requirements.

2.5 The Aligned Process Model

The Aligned Process Model, which is the output
of the alignment process, is a specialization of the
system model, consisting of the OPDs identified as
satisfying the requirements. Some of these OPDs
can be an “assembly” of parts belonging to different
OPDs in the initial system model. Others may
include new objects, processes and links, required as
software customizations. In addition to the business
process design, the aligned process model provides
the system configuration, i.e., the control parameter
values, to support a set of specified processes. Two
other outputs are a list of recommended software
customizations and a complete system-enterprise
mapping, that corresponds to the selected solution as
specified in the aligned process model. This
mapping serves for planning the conversion and

migration of data from the existing information
system to the new enterprise system.

3 CONCLUDING DISCUSSION
The problem of identifying and analyzing the gaps
between a system and the requirements of an
enterprise, and aligning the system to the needs of
the enterprise, is at the heart of enterprise systems
implementation. Adequate solution to this problem
is crucial for a successful implementation and the
competitive edge of the implementing enterprise.

The approach presented in this paper for solving
this gap analysis and alignment problem provides a
systematic support for the alignment process in both
standard enterprises and unique ones. Unlike
solution-driven methods, which apply a predefined
set of criteria for the process selection, this approach
facilitates reuse on the basis of the enterprise
requirements. Therefore it benefits from reuse
without being restricted by a predefined set of
criteria and standard solutions.

The approach employs an automated matching,
which has been implemented in a prototype of a
support tool. Matching between a model of the
enterprise requirements and a model of the ERP
system capabilities, the tool addresses two difficult
problems. One is identifying a match between an
incomplete requirements model and a complete and
detailed system model. This is achieved by using a
relational similarity measure that, unlike previous
works (Massonet and Lamsweerde, 1997; Sutcliffe
and Maiden, 1998; Lai et. al., 1999), allows
matching links between non-neighboring entities,
i.e., entities that are not directly related in the system
model. The other problem is the existence of
dependencies among the system’s options, which
poses constraints on the feasibility of combining all
the satisfied requirements in a single configuration
of the system. This problem is solved by the solution
space that enumerates the feasible combinations of
requirements in the system.

The alignment process was tested in an
experimental study, whose details are provided in
Soffer (2002). The study applied the alignment
process to 35 requirements defined in a real-life
implementation project, matched them against a
partial ERP system model (including 119 OPDs),
and compared the recommendations that were
obtained with the real-life decisions. The
comparison demonstrated the viability of the
approach and the ability of the process to provide an
adequate solution to the problem. Despite some
difficulties that were spotted, the automated
matching successfully identified the major gaps
between the capabilities of the system and the

requirements of the enterprise, and provided the
information needed for decision-making.

The main difficulty that was detected in the study
is in the semantic matching of the entity names. As
explained in Section 2.4, due to the high level of
expertise required for making mapping decisions,
the iterative process relies on human reasoning for
naming the entities in the requirements model. These
names can be iteratively altered through other
mapping decisions. Nevertheless, it seems that the
naming task is too complex for human reasoning
alone. The participants in the study indicated that a
thesaurus support could be helpful, and save
iterations time.

Practical implications of using the approach,
such as the expected implementation time saving in
a real life project, are hard to estimate at this point.
However, the results of the study indicate that
compared to a manual alignment, which is currently
performed when standard solutions are not
applicable, significant time saving as well as a
higher quality solution can be achieved. A large-
scale study or an action research, in which the
alignment process would be applied in a real-life
project may provide better indications.

REFERENCES

Bingi, P., Sharma, M., and Godla J., 1999. Critical
Issues Affecting an ERP Implementation.
Information Systems Management, 16, 7-14.

Curran, T. A and Ladd, A., 1999. SAP R/3 Business
Blueprint: Understanding Enterprise Supply Chain
Management, 2nd ed., Prentice Hall, NJ.

Daneva, M. 1999., Measuring Reuse in SAP
Requirements: a Model-based Approach. In
SSR’99, Proceedings of the Fifth Symposium on
Software Reusability, ACM Press. 141-150.

Davenport, T. H., 1998. Putting the Enterprise into
the Enterprise system. Harvard Business Review
121-131.

Dori, D. 2002. Object Process Methodology – A
Holistic Systems Paradigm. Springer Verlag,
Heidelberg, New York.

Feblowitz, M.D. and Greenspan, S. J., 1998.
Scenario-Based Analysis of COTS Acquisition
Impacts, Requirements Engineering, 3, 182-201.

Finkelstein, A. C. W., Spanoudakis, G. and Ryan,
M., 1996. Software Package Requirements and
Procurement. In Proceedings of the 8th
International Workshop on Software Specification
and Design, IEEE Press Los Alamitos. 141-145.

Ghosh, J., 2000. SAP Project Management,
McGraw-Hill, New York.

Holland, C.P. and Light, B. A 1999. Critical Success
Factors Model for ERP Implementations. IEEE
Software, 16, 30-35.

Koch, C. 2001. BPR and ERP: Realising a Vision of
Process with IT. Business Process Management
Journal, 7, 258-265.

Lai, L. F., Lee, J., and Yang, S. J., 1999. Fuzzy
Logic as a Basis for Reusing Task-Based
Specifications. International Journal of Intelligent
Systems, 14, 331-357.

Light, B. 2001., The Maintenance Implications of
the Customization of ERP Software, Journal of
Software Maintenance: Research and Practice, 13,
415-429.

Maiden, N. A. M. and Ncube, C., 1998. Acquiring
COTS Software Selection Requirements. IEEE
Software, 15, 46-56.

Massonet, P. and Lamsweerde, A.V., 1997.
Analogical Reuse of Requirements Frameworks.
In RE’97, Proceedings of the Third IEEE
Symposium on Requirements Engineering, IEEE
Press Los Alamitos CA. 26-37.

Ncube, C. and Maiden, N. A. M. 1999., Guiding
Parallel Requirements Acquisition and COTS
Software Selection. In RE’99: Proceedings of the
IEEE International Symposium on Requirements
Engineering, IEEE Press Los Alamitos. 133-140.

Post, H. A. and Van Es, R. (Eds)., 1996. Dynamic
Enterprise Modeling: A Paradigm Shift in
Software Implementation. Kluwer, Dordrecht..

Rolland, C. 1999. Requirements Engineering for
COTS Based Systems. Information and Software
Technolog,y 41, 985-990.

Rolland, C., 2000. Intention Driven Component
Reuse. Information Systems Engineering: State of
the Art and Research Themes, Springer-Verlag,
Berlin. 197-208.

Rolland, C. and Prakash, N., 2000. Bridging the Gap
Between Organizational Needs and ERP
Functionality. Requirements Engineering 180-193.

Soffer, P., Golany, B., and Dori B., 2003. ERP
Modeling: a Comprehensive Approach,
Information Systems (to appear).

Soffer, P., Golany, B., Dori B. and Wand, Y., 2001.
Modelling Off-the-Shelf Information Systems
Requirements: An Ontological Approach.
Requirements Engineering, 6. 183-198.

Soffer P., 2002., A Methodology for Adapting an
ERP System to the Needs on an Enterprise, PhD
Thesis, Technion –Israel Institute of Technology.

Sutcliffe, A. and Maiden, N. A. 1998. The Domain
Theory for Requirements Engineering. IEEE
Trans. on Software Engineering, 24, 174-196.

Themistocleous, M., Zahir, I., and O’Keefe, R. M.,
2001. ERP and Application Integration. Business
Process Management Journal, 7. 195-204.

Van Es, R., 1998. Dynamic Enterprise Innovation,
Baan Business Innovation, The Netherlands.

