
 1

Aligning an ERP System with Enterprise
Requirements: An Object-Process Based Approach

Pnina Soffer1, Boaz Golany2 and Dov Dori2

1Haifa University, Carmel Mountain, Haifa 31905, Israel
2Technion – Israel Institute of Technology, Technion City, Haifa 32000, Israel

Abstract

One of the main problems in ERP implementation projects is how to align an off-the-shelf

software package with the business processes of the enterprise implementing it. The paper

proposes a requirement-driven approach, which benefits from reusing the business process

design without being restricted by predefined solutions and criteria.

 The approach applies an iterative alignment process, which employs an algorithm that

matches a model of the enterprise requirements with a model of the ERP system capabilities.

The algorithm identifies possible matches between the two models and evaluates the gaps

between them despite differences in their completeness and detail level. It provides the

enterprise with a set of feasible combinations of requirements that can be satisfied by the ERP

system as a basis for making implementation decisions. We use Object Process Methodology

(OPM) to model both the ERP system and the enterprise requirements, and utilize the pair of

resulting OPM models as input for the matching algorithm. The alignment algorithm has been

tested in an experimental study, whose encouraging results demonstrate the ability of the

approach to provide a satisfactory solution to the problem of aligning an ERP software

package with an enterprise business model.

Key words: Enterprise Resource Planning, Requirement-driven, Similarity, Business Process

Design.

Corresponding author: Boaz Golany. Phone: +972-4-8294512, Fax: +972-4-8235194

Email addresses: spnina@is.haifa.ac.il, golany@ie.technion.ac.il, dori@ie.technion.ac.il

 2

1. Introduction

During the past decade, Enterprise Resource Planning (ERP) systems have become the

leading type of information systems in industrial enterprises. ERP implementation raises

several critical issues, reviewed by [1]. One such issue is the alignment of an off-the-shelf

software package with the business processes of the enterprise implementing it. An ERP

system is designed to serve a large variety of enterprises. As such, it has many options for

supporting various business processes used in different types of enterprises. The system

configuration, defined by the values assigned to the system’s control parameters during the

implementation, determines the exact operations and processes supported by the system in the

specific enterprise [4, 17, 22].

The implementation of an ERP system is often accompanied by a Business Process

Reengineering (BPR) that changes the way the enterprise operates [22]. Unlike traditional

BPR, referred to as “fundamental rethinking” [20], when applying some ERP package, the

business processes need to be designed within the framework of the target ERP system,

preferably without resorting to extension of the system’s capabilities.

The alignment problem, also known as “gap analysis”, exists virtually in every ERP

implementation project. While an initial gap analysis is performed as part of the system

selection process, detailed gap analysis and alignment is performed during the system

implementation, and determines the customization and configuration of the system. Solving

this problem is critical to the success of an ERP implementation project, since it determines

the future processes of the enterprise and the way the ERP system will support them.

Adopting standard business processes may adversely influence the competitive advantage the

enterprise may be enjoying, and should therefore be carefully considered to ensure that the

enterprise does not lose it [7]. However, unnecessary software customizations may consume

resources that exceed the planned schedule and budget of the ERP implementation project and

may harm the system’s integrity, especially through future upgrades [2, 21].

 3

Common tools that support the alignment process take a solution-driven approach. The ASAP

method of Rapid SAP R/3 implementation, SAP's Business Engineer [4, 16] and Baan's DEM

[30, 43] refer to predefined “best practice” models and configurations. Based on the premise

that the enterprise has to adapt itself to the package rather than the other way around, one of

the “best practice” solutions is to selected and adopted “as is” or, at best, with minimal

changes. The selection of a solution to be reused is based on predefined reuse criteria, which

vary from a rough logistic characterization of the enterprise to a detailed questionnaire,

addressing a variety of issues. The actual requirements of the enterprise are not explicitly

considered in this process. Rather, they exist only as part of the human knowledge and

reasoning underlying the solution selection. Gaps between the enterprise needs and the system

are basically ignored or solved by requiring the enterprise to adapt to an available solution.

This solution-driven approach speeds up the implementation, reduces its cost and provides a

high quality, bug-free solution. However, these benefits are worthwhile only if and when the

enterprise indeed finds a solution that suits its needs. In cases where one or more core

processes of the enterprise are unique to the extent that they are not satisfactorily addressed

by the predefined reuse criteria, the alignment process cannot be supported. Rather, it is

typically done in an ad-hoc, intuitive manner, which requires considerable efforts. Due to the

high complexity of ERP systems, even a small deviation from a given configuration is risky,

and requires an extensive verification effort [16].

Despite the common wisdom that suggests that enterprises can and should standardize their

processes in alignment with “best practice” solutions [7, 22], research reports indicate that it

is not always the case in practice. [5], who measured requirements reuse in SAP R/3

implementations, found that full reuse was not achieved, although in some cases the rate of

reuse was remarkably high. [6] analyzed the application practice of the ASAP method, and

reported that the lack of change impact analysis in the observed projects led software

customizations that became unanticipatedly complex and exceeded the planned schedule.

 4

This paper proposes a requirement-driven approach to the alignment problem. Ideas and

aspects related to requirement-driven approaches are presented and discussed in [33, 34, 35,

36, 38, 40,41]. By facilitating the reuse without imposing a predefined set of reuse criteria, a

requirement-driven approach provides a systematic support for both standard enterprises and

unique ones. While the requirement-driven approach presented in [33, 34, 35, 36] and the

related fitness relationship [37] provide a systematic basis for human reasoning, the

requirement-driven alignment process presented in this paper employs an automated matching

algorithm between the enterprise requirements and the ERP system capabilities. Empirical

results demonstrate the feasibility of the approach and its potential capability of providing a

satisfactory solution to the alignment problem.

A requirement-driven alignment approach emphasizes the enterprise requirements rather than

the ERP system’s capabilities and standard solutions. The requirements themselves serve as

reuse criteria. These are matched against the capabilities of the ERP system in order to

identify the required solution parts and the remaining gaps. The approach enables a systematic

examination of the ERP capabilities beyond the predefined “best practice” solutions. It

addresses the ERP options as a set of components or building blocks to be assembled for a

suitable solution. Hence, though unable by itself to increase the flexibility of the existing

system, it utilizes this flexibility up to its limits.

The matching is carried out between two models, one representing the enterprise requirements

and the other – the ERP system capabilities. These two models should therefore have

common modeling conventions that would serve as a basis for the issues addressed. In our

approach, both models relate to business concepts. This is a natural way for an enterprise to

express its needs and is also applied by solution-driven tools. Furthermore, it is especially

important to express the system capabilities in business terms if we are to adapt the enterprise

to the software package rather than the other way around.

While the ERP system capabilities are modeled once, the resulting model can be used

repeatedly for any number of implementation projects. The requirements model, in contrast,

needs to be constructed for each implementation separately. Moreover, it cannot be expected

 5

to remain static through the alignment process. Rather, the alignment is an iterative process,

where requirements are matched against the system model, reformulated on the basis of the

matching results, and matched repeatedly, until a satisfactory solution is obtained. The initial

requirements model is formed on the basis of a prior gap analysis, performed in the course of

the package selection. The result of this prior analysis, which is an initial mapping of the

enterprise entities to the entities that exist in the ERP system, sets the terminology and entity

names in the requirements model. The reformulation of some requirements is aimed at

refining them so they can be met by the available system capabilities, and may include

different entity mappings. In the course of this process, some requirements may be altered,

while others can possibly be abandoned. The requirements reformulation is the result of

human reasoning, and it is verified and complemented by an automated matching algorithm,

which matches the two models and computes their similarity.

The remainder of the paper is organized as follows: Section 2 introduces the modeling

concepts and discusses the inputs to the alignment process, which are the enterprise

requirements and the ERP system model. Section 3 develops the iterative alignment process

and the details of the matching algorithm. Empirical results are provided and analyzed in

Section 4, and a discussion in Section 5 summarizes the potential benefits and drawbacks of

our approach.

2. The Inputs to the Alignment Process

Since both the ERP system model and the enterprise requirements model relate to business

issues, they should be represented in the same modeling language to enable their matching.

[33, 34, 35, 36] suggest that a map representation be applied in both cases. We apply Object-

Process Methodology (OPM) [12] to model both the ERP system and the enterprise

requirements. The choice of modeling language is justified in our earlier work. In [41] an

ontological evaluation framework, based on a requirements ontology, is presented and applied

for evaluating OPM’s expressive power as a requirements specification language. Selection

criteria for ERP modeling languages are presented in [40], applied to OPM, and assess its

 6

suitability for this purpose as well. We first provide a brief introduction to OPM and then

discuss the enterprise requirements and the ERP system model in OPM terms

2.1 Object-Process Methodology

Object-Process Methodology, described in detail in [12], has been applied for various

purposes, such as computer integrated manufacturing [9], image understanding [10],

modeling research and development environments [25], algorithm specification [44],

document analysis and recognition [8], and modeling electronic commerce transactions [11].

It employs a CASE tool that supports a variety of stages in the system lifecycle [13].

OPM’s building blocks are two equally important classes of entities: objects and processes,

which are connected by procedural links and structural relations. Most object-oriented

modeling methods and enterprise modeling methods require the use of a set of models (also

called views), each with its diagramming symbols and conventions, to describe different

aspects of the system. OPM, in contrast, uses a single graphic tool, the Object-Process

Diagram (OPD) set, to model the major system’s aspects, structure and dynamics. Using a

single view eliminates the model multiplicity problem from which object oriented modeling

methods suffer. Solving the model multiplicity problem requires considerable efforts to

integrate the various views into a coherent system model and to keep consistency among them

[29]. Single-view representation is also much more convenient when two models are being

matched.

While using a single model representation, OPM keeps simplicity through two abstracting-

refinement mechanisms that control the visibility of the system details. Unfolding of entities

(objects and processes) and zooming into them enables top-down analysis, yielding a

hierarchical OPD set, which specifies the structure and behavior of the system at a spectrum

of abstraction-refinement levels. To enable middle-out model construction, which is common

practice in many real-life systems analysis projects, the reverse operations, folding and out-

zooming are also possible.

 7

*** Take in Figure 1 ***

As an example, Figure 1(a) shows the process Purchase Order Handling, which zooms into

(includes) the processes Purchase Order Maintaining, Subcontracting, Purchased Goods

Receiving, and Purchase Order Closing. This process affects objects such as Purchase

Order and Inventory by Item, and is enabled by objects, such as Supplier and Item. In

Figure 1(b), the process Purchased Goods Receiving is unfolded, revealing three

specializations. The occurrence of the specialized processes Location Controlled Receiving

and No Location Controlled Receiving is conditioned by the states of the Boolean object

"Location Controlled?", which characterizes a Warehouse, while the Non-inventory Item

Receiving is conditioned by Item being a Non-inventory Item. Note, that for the sake of

brevity, some objects that appear in Figure 1(b), such as Inventory by Location, are omitted

from Figure 1(a). Each of the entities can be further refined (unfolded or in-zoomed) in other

OPDs. The entire OPD set constructed in this way constitutes a complete specification of the

system.

2.2 The Enterprise Requirements

The enterprise requirements provide the basis for both the selection of the ERP system and

the alignment process. For these two purposes, completeness is not necessarily a desired

property of the requirements [14, 15, 23, 27, 36]. This paper addresses the alignment of a

selected package rather than the selection of a package, and therefore relates to functional

requirements only, assuming that the role of non-functional requirements is mainly in the

selection phase. Since the alignment process involves changes in the enterprise, which is

required to adapt to processes supported by the ERP system, the requirement specification

should aim at providing the enterprise with the flexibility and adaptability to these available

processes, while assessing their suitability. Complete system and interface requirements may

result in rigidity that would render an exact matching solution within the software package

infeasible.

 8

Based on this premise, the requirements framework presented in [41] classifies the

requirements into four different types of information:

� Core system interfaces, whose detailed design is of considerable importance to the

enterprise. This is a relatively small set of specified inputs and outputs, typically required

for business processes involving interaction with external agents (e.g., reporting to the tax

authorities). The system interfaces are modeled in OPM as detailed inputs and outputs of

processes performed by the system.

� Core business processes, which must not be changed through the alignment process.

The details of these processes are unique, as they generate the competitive advantage of

the enterprise. These may include logistic processes, which support an outstanding supply

mechanism, or quality assurance processes, which ensure an exceptional quality level.

Business processes are modeled as such in OPM, including the processes and the objects

they involve.

� Business rules, which express the enterprise goals (or certain external restrictions

that must be followed) and control the business processes. The enterprise goals are

operationalized by the business rules, which provide the underlying logic that remains

invariant to changes in the business processes in the course of the alignment process.

Business rules are, actually, constraints posed on the business processes. An OPM

representation of a business rule shows only the necessary (partial) details of the process

and objects involved.

� Information objects, which are manipulated by the specified business processes,

controlled by the business rules, and participate in the specified interfaces. Information

objects, their structure and relationship are directly modeled in OPM.

 9

[41] provides formal definitions of these four elements, and discusses the relations between

them, the enterprise goals, and the system under consideration.

2.3 The ERP System Model

The ERP system model is a vehicle for aligning the system with the enterprise requirements.

As such, it should represent the entire scope of options and business process variants

supported by the system and represent dependencies among alternative options. Some ERP

packages, such as SAP and Baan, provide modeling tools and solution models as part of the

system [4, 43]. We decided not to use these models as a basis for our alignment approach,

since relying on a model that resides within a specific package would decrease the genericity

of the approach. Furthermore, while these models serve the purpose of ERP representation,

they are not necessarily suitable for specifying the requirements. (see, for example, the

evaluation of EPC, a language used by the SAP models, in [41]). Therefore, consistent with

the requirements model, the ERP system model we use is an OPM model. It is obtained

through a reverse engineering process, such as the one described in [40]. The resulting model

may serve as a reference as long as the modeled ERP system has not changed.

In the OPM representation, alternatives are represented by different specializations of a

generic process. In Figure 1, for example, Location Controlled Receiving, No Location

Controlled Receiving and Non-inventory Item Receiving are alternative purchase receiving

processes that the ERP system under consideration supports. The conditions specified for

each alternative process reveal their dependency on parameter values or states of a Boolean

object such as yes or no in the Boolean object "Location Controlled?". The details of each

entity (object or process) may be revealed through refinement in lower-level OPDs, which

may, in turn, include other alternative specializations of its entities. The refinement

mechanism allows for exact specification of the ERP system at any level of detail.

The structure of the OPD set can be presented as a graph, called the system model

hypergraph, where each OPD is a node with arcs connecting it to descendant OPDs that

expose details of one or more of the entities in the parent OPD. One or more arcs can go from

 10

each node to its descendant diagrams. Each OPD in the OPD set (except the root, i.e., the top-

level OPD) results from refining an entity of a parent OPD, and therefore has an incoming arc

connecting it to that parent. Since the origin entity may appear in several OPDs, more than

one arc may lead to each node. The hypergraph is therefore a directed graph (but not

necessarily a tree). Figure 2 is the system model hypergraph, whose top-level OPD is shown

in Figure 1(a). The names of the OPDs in the hypergraph and their descendants are provided

in Table 1.

***Take in Figure 2 ***

***Take in Table 1 ***

3. The ERP-Requirements Alignment

The ERP-Requirements alignment is an iterative process that receives as inputs the enterprise

requirements and ERP system model. In each iteration it employs an algorithm described

below for matching the two models.

3.1 The ERP-Requirements Matching Algorithm
The options that are available in an ERP system are highly dependent on each other. Hence, a

combination of features available in a specific configuration may not be available in other

configurations [22]. Identifying a set of requirements that are met by the system does not

guarantee that their combination is feasible in a single configuration. The system’s internal

dependencies form constraints on the feasible solution, which are not always clear to the

implementation team members. For example, in the Baan ERP system, it is possible to

allocate a specific inventory unit to a specific order (such an action is termed “hard

allocation”). However, this option is valid only if the warehouses are not location controlled,

that is, in a configuration where the state of the Boolean object “Location Control

Implemented?” is “no”. Separately verifying that the system is capable of handling

requirements of hard allocation and location control would yield a positive answer, despite the

 11

fact that their combination is not feasible. The matching algorithm aims at providing a

solution space, which enumerates the feasible combinations of requirements satisfied by the

system along with their matching scores.

3.1.1 Algorithm overview

The matching algorithm, depicted as a meta-model in the OPD of Figure 3, consists of two

main processes: Single Requirement Matching (SRM) and Bottom-Up Aggregation (BUA).

SRM examines each requirement separately and looks for matching diagrams within the

system model. It generates a matching score for each pair 〈R, E〉, where R is a requirement

OPD and E is an ERP system OPD. The SRM output serves as input to BUA, which

aggregates the matching scores up the system model hypergraph and identifies their feasible

combinations. These feasible combinations form a solution space, denoted herein as the

Matching Option Set.

*** Take in Figure 3 ***

3.1.2 Single Requirement Matching (SRM)

SRM assesses the similarity between pairs of OPD portions, each consisting of an OPD

portion expressing a requirement in the Requirement model and its counterpart in the system

model OPD. As discussed in Section 2, the requirements are generally incomplete and

represent only the details that are essential to the enterprise, while the system model is usually

more detailed. SRM is the part of the matching algorithm that is designed to resolve this

mismatch.

SRM computes a matching score for 〈R, E〉 based on two measures: Entity Similarity (ES)

and Relational Similarity (RS). ES is the proportion of entities in R that have a matching

entity in E, i.e., an entity whose name and type are identical to those of the entity in R.

ES〈R,E〉 = (Number of entities in R matched by entities in E)/(Number of entities in R)

 12

ES, the Entity Similarity, is computed using a simple query, which compares the entities of

each of the system model OPDs with the entities of a given requirement, and counts the

entities whose type and name are identical. The query provides a set of candidate matching

pairs 〈R, E〉, whose ES score exceeds a given threshold.

RS, the Relational similarity, which is assessed for each pair in this set, measures the

similarity of the link structure in a pair 〈R, E〉. An in-depth discussion of the principles

underlying RS and its computation appears in [39]. RS is computed by an exhaustive search

for matching of each link in R. Each link matching yields one of the following results:

(1) The link is matched by a link in E, which is of the same type and relates matching

entities for both the source and the destination of the link. The Link Match (LM) is then

assessed by comparing the cardinalities of the links in R and E. The cardinality of a link is

determined by participation constraints defined for its source and destination. The

cardinality comparison may yield one of the following: (a) The participation constraints

of both the source and destination are identical, in which case LM equals 1. (b) The

participation constraints of either the source or the destination are identical, in which case

LM equals a constant c1. (c) The participation constraints of both the source and

destination are different, in which case LM equals a constant c2. The constants c1 and c2

(0≤c2≤c1≤1) are defined by the user and reflect the extent to which he wants links of

different cardinalities to be considered as matching.

(2) The link has no match in E, in which case LM equals 0.

(3) The link is matched by a path in E, which is equivalent to its type and relates

matching entities for both the source and the destination of the link.

Path and equivalence: A path is a sequence of links and entities, connecting a source entity

to a destination entity. A path is considered equivalent to a link of specific type if it can be

abstracted to a link of this type. Equivalence is identified on the basis of equivalence rules,

defined for each link type in OPM. For a given link type, equivalence rules state link types

 13

that are allowed in a path, link types that must be in a path and in some cases their required

position: at the source of the path or at its destination.

The identification of a path equivalent to a given link addresses the mismatch in detail level of

the two models under consideration, as illustrated in Figure 4.

*** Take in Figure 4 ***

Figure 4(a) is a model of a requirement, where Delivered Quantity and Receipt Date, which

are attributes of a Purchase Order Line, are affected by the Purchase Receipt Registering

process, i.e., the registration of a purchase receipt. The ERP system OPD, given in Figure 4(b)

shows that the Purchase Receipt Registering process updates the attributes of a Purchase

Receipt object, which is structurally related to a Purchase Order Line. This structure allows

several receipts to be registered for a single purchase order line. The characterization links

between Purchase Order Line and its attributes in the requirement model OPD do not exist

in the system model OPD. Nevertheless, this has no practical implication on the acceptance of

the process by the enterprise, since from the user’s point of view the structural relation

between Purchase Receipt and Purchase Order Line is as good as having Delivered

Quantity and Receipt Date as attributes of Purchase Order Line. Therefore, SRM identifies

the path in E from Purchase Order Line to Delivered Quantity (as well as the path between

the former and Receipt Date) through Purchase Receipt as being equivalent to the

characterization link in the requirement model R.

 Aggregated cardinality: The aggregated cardinality is the cardinality between two entities

that are not linked directly, but through a path. The participation constraint of the source

entity of a path is the product of all the source participation constraints of its links, and the

destination participation constraint is the product of all the destination participation

constraints of its links. The product of many and many (m*m) is regarded as many. The

aggregated cardinality of a path, identified as equivalent to a link, serves as a basis for

computing the link’s LM.

 14

In the example of Figure 4(b), the aggregated cardinality of the path from Purchase Order

Line to Delivered Quantity is 1:m. Hence, the LM of the requirement characterization link,

whose cardinality is 1:1, equals c1.

The Relational Similarity (RS) of 〈R, E〉 is computed as the average of the LM of the links in

R.

Having defined Entity Similarity and Relational Similarity, the overall Matching Score (MS)

of a pair 〈R, E〉 is computed as a weighted sum of the two similarity measures, provided

neither of them equals zero.

MS〈R, E〉 = W1*ES〈R, E〉 + W2*RS〈R, E〉; ES〈R, E〉 > 0, RS〈R, E〉 >0, W1 + W2 = 1

Where W1 and W2 are weights assigned to ES and RS, respectively.

As an example, the computation of MS for the pair of requirement and ERP system OPDs in

Figure 4, applying equal weights W1 = W2 = 0.5, c1 = 0.6 and c2 = 0.5 for the LMs, is as

follows:

All the entities of Figure 4(a) have matching entities in Figure 4(b), therefore ES = 1.

Two of the four links of Figure 4(a) have exact matching links in Figure 4(b). The two

characterization links, whose cardinalities are 1:1, have equivalent paths in 4(b), whose

aggregated cardinalities are 1:m. Therefore RS = (1+1+0.6+0.6)/4 = 0.8.

The overall matching score, MS = 0.5*1 + 0.5*0.8 = 0.9, indicates that there is a high degree

of similarity between the requirement and the ERP model, but they are not identical.

Note, that the inequality RS ≤ ES always holds, since a required link can be found only

if both its source and its destination are included in the OPD. Hence, the higher W1 is

the higher MS is computed, while a higher W2 leads to a higher sensitivity of the MS to

structural differences, and disregards the existence of entities in the OPD if they are not linked

as required.

 15

Many earlier works that measure similarity of models apply entity as well as relational

similarity [18, 24, 26, 28, 32, 42]. Another approach to similarity measurement deals with an

edit distance, referring to the effort required to overcome the differences between the models

[3]. Relating to the classification of analogical reasoning mapping solutions [19], the SRM

preserves relational structure and semantic categories. As opposed to earlier works that apply

similarity measurement [31, 32], our Entity Similarity measure does not apply a thesaurus-

based affinity score, since the mapping of requirement entities to ERP system entities in an

ERP implementation bears consequences that extend far beyond pure semantic similarity. By

precise mapping of enterprise entities to ERP entities, the implementing engineer assigns

control mechanisms available in the software package to the processes under consideration.

Consider, for example, the terms “Production rate” and “Operation rate”, which may be found

related by a reasonable thesaurus. In Baan ERP system these two terms represent data of a

different meaning and role. Production rate is the number of units produced per hour, while

operation rate is the cost associated with a production operation. Expressing a requirement

using these precise terms requires domain knowledge. Relying on a thesaurus for identifying

“similarity” between ERP model terms and those that appear in the requirement may lead to

incorrect similarity assessment. Therefore, our approach is to let the user apply knowledge

and decide on the precise mapping of terms from the ERP model to the requirements. The

user may browse the system entities and select their names while modeling the requirements

to ensure that the terms in the requirement model comply with the terminology of the system

model.

The RS score of the SRM differs from relational similarity used in previous works [24, 32,

42] in the identification of an equivalent path, which allows matching links between entities

that are not directly related in the ERP system model. This approach provides a way for

resolving the mismatch in detail level between the two models.

Our similarity measure, unlike [3], does not account for edit cost, since “editing operations”

entail software customizations to the ERP system, which cannot be computed automatically

as part of the similarity measurement.

 16

3.1.3 Bottom-Up Aggregation

The Bottom-up Aggregation (BUA) process, which is the second part of the ERP-

requirements matching algorithm, provides the feasible combinations of the requirements,

whose matching scores have been computed by SRM (see Figure 3).

The following definitions and notations are used for specifying the BUA procedure.

Arc 〈o, t〉 – each arc in the ERP system model hypergraph is denoted by 〈o, t〉, where o is the

origin node and t is the destination node. The top-level node is denoted as the root node.

In the example given in Figure 2 and Table 1, the arc 〈3, 9〉 relates the OPD that specifies

Purchased Goods Receiving to the OPD specifying Inventory by Item.

Arc Level L(a) – Let a be an arc in the graph, then its level in the graph, denoted by L(a), is

the maximal number of arcs connecting its origin node to the root node in an a-cyclic route.

Note that the graph may contain cycles, but they do not affect the level of an arc. In the

example, L(〈9, 8〉) = 3, corresponding to the route 〈0, 3〉, 〈3, 11〉, and 〈11, 9〉 i.e., from the root

to Purchased Goods Receiving, Location Controlled Receiving, and Inventory by Item.

Originating Arc Set H(d) – Let d be a node in the graph, then H(d) = {a│ a = 〈d, t〉} is the set

of all the arcs originating in d.

In the example, H(3) = {〈3, 5〉,〈3, 6〉,〈3, 8〉,〈3, 9〉,〈3, 11〉,〈3, 12〉,〈3, 13〉,〈3, 14〉}.

Descendant Node Set J(d) – Let d be a node in the graph, then J(d) = {t│ 〈d, t〉 ∈ H(d)} is the

set of immediate descendant nodes of d.

In the example, J(3) = {5, 6, 8, 9, 11, 12, 13, 14}.

Arc Dependency Function Fd[V] – Let d be the origin node of n arcs and V=(v1,v2…vn) a

vector of strings attached to the arcs. Then the function Fd[V] : V → C, which uses the logical

operators AND, OR, and XOR to express the dependencies among the arcs originating in

node d, maps V to a logical expression combining these strings.

 17

Each arc relates the OPD embedded in d to an OPD specifying the details of one of its

entities, some of which represent alternative options of the ERP system. Therefore, the

dependencies that exist among the entities are also present among the respective arcs. The

function represents alternative options as having an OR or a XOR operator between them,

while a mandatory link is represented by an AND operator.

In the example, the OPD embedded in node 3 (Purchased Goods Receiving, specified in

Figure 1(b)) includes three alternative processes: Location Controlled Receiving, No

Location Controlled Receiving, and Non-inventory Item Receiving, whose corresponding

arcs are 〈3, 11〉, 〈3, 12〉, and 〈3, 13〉 respectively. The operator in Fd[V] that represents the

alternative relations between the arcs is XOR. While the processes Location Controlled

Receiving and No Location Controlled Receiving are both related to the objects

Warehouse (whose outgoing arc is 〈3, 8〉) and Inventory by Item (arc 〈3, 9〉), the object

Inventory by Location (arc 〈3, 14〉) is related to Location Controlled Receiving only. Other

objects in the OPD, such as Item (arc 〈3, 5〉), and Purchase Order (arc 〈3, 6〉), are related to

all the alternative processes. Each such relation is represented in F3[V] by an AND operator.

Therefore, if V holds the destination nodes of the arcs, i.e., V=(5, 6, 13, 8, 9, 12, 11, 14), then

F3[V] = 5 AND 6 AND (13 XOR (8 AND 9 AND (12 XOR (11 AND 14)))).

 18

Note that the alternative options may have different scopes, depending on the parameter that

controls them. In Figure 1(b), the object Location Control Implemented? is a parameter of

the ERP system, defining whether location control is applied throughout the system, while the

Boolean object "Location Controlled?" is a parameter that characterizes a warehouse and

may have different values for different warehouse instances. Therefore, the scope of the

alternative processes Location Controlled Receiving and No Location Controlled

Receiving is a single warehouse instance. Similarly, the scope of Non-inventory Item

Receiving is a single item instance. This is expressed in F3[V], by an index reflecting the

scope of an operator. The function accounts for the scope then becomes:

F3[V] = 5 AND 6 AND (13 XORItem (8 AND 9 AND (12 XORWarehouse (11 AND 14)))).

Local Matched Requirements Combination C(d) – Let d be a node in the graph and R={R1,

R2,…Rn} a set of requirements being matched against. Then C(d) is a logical expression

specifying the feasible combination of requirements matched by the OPD in d and all its

descendants.

C(d) is recursively constructed by the BUA algorithm, which starts after the SRM has

computed Matching Scores for all the given requirements with the OPDs of the ERP system

model. The computed Matching Scores constitute initial C(d), denoted as C1(d), for a set G of

nodes in the system model hypergraph, such that C1(d) is the combination of Matching Scores

MS〈R, d〉 for each d ∈ G.

The BUA sorts the nodes of G according to their distance from the root node, starting with

those whose distance is maximal. At each step it goes one level up and aggregates the results

for the upper level. While climbing the set of arcs 〈o,t〉 from all the descendant diagrams t up

to their mutual origin diagram o, C(o) is computed by assigning all the C(t) as a vector in

Fo[V]. C(o) is computed as:

C(o) = C1(o) AND Fo[V], where V = V=(v1,v2…vn), such that vi = C(t) for each t ∈ J(o).

 19

This procedure is repeated until the top-level diagram (the root node of the hypergraph) is

reached. Its combined result C(root) holds all the requirement results aggregated up the

system model hypergraph and their logical relations, providing the matching options of the

ERP system with respect to the enterprise requirements. The BUA is specified in Figure 5.

*** Take in Figure 5 ***

The complexity of the algorithm is O(n3), where n is the number of diagrams in the system

model. Each arc in the graph is visited at most once, and the number of arcs in the graph is

O(n²). The computation of C(d) is linear in the number arcs originating from node d, which,

for a completely flat graph, is O(n).

3.2 The Iterative Alignment Process
The alignment process involves iterations of reformulating the requirements and applying the

matching algorithm for their verification. Reformulating the requirements involves three types

of action: splitting, abandoning, and mapping.

Splitting entails splitting composite requirements into simpler ones. A composite requirement

includes at least two entities that may be revealed in lower-level OPDs. A process defined in a

requirement may not be defined as such in the system model, but all its sub-processes (steps)

exist as parts of other processes. In such cases, it may be possible to “assemble” the required

process as a sequence of these steps. In order to verify this possibility, each of the process

steps and its required interface should be examined as a separate requirement.

*** Take in Figure 6 ***

As an example, consider the requirement modeled in Figure 6. An attempt to match this

requirement with the system OPD in Figure 1(a) fails due to the absence of the required

process Returning to Supplier in the system OPD. However, this process does exist in the

system model as part of a lower level diagram, specifying the receipt of purchased goods. The

human that analyzes the match results, and finds that the relatively low matching score

obtained is due to this absence, should define a new requirement, including only of this

 20

process and the objects it relates to (Supplier, Inventory by Item, and Purchase Order line).

When the matching algorithm is applied again in the next iteration, the existence of the

process and its conformance to the original requirement are verified.

Abandoning requirements is the second way of reformulating requirements. When analyzing

the output of the matching algorithm, some requirements may be identified as not being

satisfied by the system, or as contradicting other requirements of higher priority. Depending

on their importance to the enterprise, a software customization may be considered.

Alternatively, if an unsatisfied requirement is of a lesser importance, or if some activities may

be handled manually without involving the ERP system, that requirement can be abandoned.

The third operation of requirement reformulation is applying a different mapping. Each time a

requirement is modeled and expressed using the system’s terminology, some decisions of

mapping the enterprise entities to entities of the system are made. The initial mappings

applied in the first iteration are the result of the prior analysis performed when the specific

ERP system has been selected. Different mapping decisions can be made in the next iterations

in attempt to resolve gaps that have been found, since different mappings may yield different

matches. Such mappings are applied frequently in manual alignments, where considerable

effort is required to verify their appropriateness. Two types of mapping are possible: (a)

Textual mapping, in which an entity is renamed in order to solve a naming mismatch. (b)

Substantial mapping, in which a requirement is redefined, while considering alternative

mechanisms of the system for achieving a certain goal.

Consider, as an example of a substantial mapping, a case in which the enterprise requires that

purchased goods be received as “inventory on hold”, i.e., inventory that cannot be used until it

is inspected and approved. When a system does not satisfy this requirement, an alternative

mechanism may be considered. Such a mechanism could be receiving the goods to a reception

warehouse, from which the goods cannot be issued, and transferring them to an ordinary

warehouse after they are approved. When considering such an option, the requirements are

reformulated, expressing the reception process and the required properties of the reception

warehouse.

 21

Substantial mapping requires the implementing team members to think creatively and to apply

a high level of expertise and knowledge of the system and its internal relations. Once

remapping is done, the requirement model is drawn from scratch, expressing the new entities

and logic defined. It is important to apply the new mappings to all the requirements. Due to

the complexity and integrative nature of ERP systems, the manual verification of the

consequences of a mapping decision is a difficult task. Every decision may affect many other

parts of the system, and each one of them must be checked and tested in order to ensure their

correct operation. Sometimes, the effects cannot be expected, and performing all the

necessary tests depends on the skills of the implementation team members.

In the iterative alignment process, new mapping decisions still rely on creative thinking, but

their verification is accomplished by the matching algorithm. The matching algorithm can

instantaneously scan the entire system model, identify the effects of the reformulated

requirement and potential contradictions with other requirements.

*** Take in Figure 7***

The alignment process, illustrated as an OPD in Figure 7, starts with an initial Enterprise

Requirement Set, each represented as an OPD. These requirements are verified against the

system model by the ERP-Requirement Matching algorithm that generates the Matching

Option Set. The Matching Option Analyzing process determines whether further

reformulation of the requirements is needed. Specifically, it identifies the OPD whose MS is

maximal, analyzes the gaps reflected by the MS and the feasibility of combining it with other

selected OPDs (on the basis of the logical expression produced by the BUA). It then identifies

possible reformulations to resolve gaps and contradictions found. If reformulation is needed,

the process of Requirement Set Reformulating is carried out, triggering ERP-Requirement

Matching in another iteration of verifying the reformulated requirements. This sequence of

iterations repeats, until all the requirements are satisfied, when no untested reformulation

possibility is found, or when the implementation team manager decides that the results are

clear enough and enable decision making. Then the Matching Option Set and the Gap

Assessment serve for the Aligned Model Constructing process, which creates the Aligned

 22

Process Model, the required software Customizations List, and the final ERP-Enterprise

Mapping.

The Aligned Process Model is a specialization of the ERP system model, consisting of the

OPDs identified as satisfying the requirements. Some of these OPDs can be an “assembly” of

parts belonging to different OPDs in the initial system model. Others may include new

objects, processes and links, required as software customizations. In addition to the business

process design, the aligned process model provides the ERP configuration, i.e., the ERP

control parameter values, to support a set of specified processes.

The required software Customizations List is a list of gaps, assessed as significant, which

constitute a basis for software customization decisions. The details of the gaps in different

mapping scenarios provide a starting point for alternative customization designs.

The ERP-Enterprise Mapping corresponds to the selected solution as specified in the aligned

process model. This mapping serves for planning the conversion and migration of data from

the existing information system to the ERP system.

4. Validation

Validation was carried out in three experiments, whose aim was to establish the feasibility of

the approach. The feasibility assessment related to four criteria:

(1) Consistency of the results through controlled changes in the input models. Assuming

the matching scores reflect the level at which a given ERP system matches a given set

of requirements, a different ERP package, possessing a subset of the capabilities of

the current package, should achieve matching scores that are less than or (at best)

equal to the current ones. We note, however, that an experiment in the other direction,

i.e., extending the requirements, would not necessarily result in a consistent change in

the matching scores, since a “stronger” or an additional requirement may have a good

match in the ERP model.

(2) Sensitivity to the algorithm weights. The Matching Scores (MS) are computed as a

linear combination of weighted Entity Similarity (ES) and Relational Similarity (RS).

Changes in these weights would linearly change the matching scores. Sensitivity

 23

analysis of the solution to these weights would identify the range of weights in which

the selected solution is invariant.

(3) Validity of the solution obtained by the alignment process to real-life requirements,

when compared to the solution obtained manually in a real life project. The specific

validation criteria were: (a) the number of gaps identified by the process compared to

the number of gaps identified in real life. (b) the number of unreal gaps indicated by

the process. (c) the quality of the solutions provided by the process to identified gaps

compared to the solutions defined in real life. The quality of the solution could,

naturally, be based on human judgment only.

(4) Robustness to variations in the input requirements model. Whenever a domain is

modeled by different modelers, the models obtained are expected to be slightly

different, due to differences in the perception and modeling attitude of each

individual modeler. When the alignment process is to be applied in real life, the

implementation team members of each project should draw the requirements model.

It is therefore crucial that the individual modeling attitudes that affect the

requirements model should not influence the solution provided by the alignment

process significantly.

The feasibility of the approach according to these criteria was evaluated in three experiments.

As a preparatory step to these experiments, a system model had been constructed, by

modeling the purchasing and inventory module of the Baan ERP system using OPM. The

system model included 119 OPDs.

4.1 Experiment 1

The aim of this experiment was to test the consistency of the results through controlled

changes in the input models, according to the first validation criterion. It entailed a fixed set

of requirements repeatedly matched against the ERP system model, in which controlled

changes have been made.

4.1.1 Settings

The experiment procedure was as follows:

1. We applied the alignment process on a given set of 23 requirements and the ERP model.

2. We eliminated an arbitrarily chosen process in the ERP system model (thus relate to a

"different" and less powerful system). Naturally, the elimination of a process included all

its details in lower-level diagrams and all the objects that are its results. As an example,

eliminating the process of lot management included eliminating it from all the ERP model

 24

OPDs where it appeared (e.g., Receiving Purchased Goods), and eliminating the Lot

object and all its attributes from all the OPDs where it appeared.

3. We applied the alignment process again to the same set of requirements. The expected

result was one of the following: (a) The matching scores would remain the same as the

initial ones, implying that the eliminated process had not been included in the initial

solution. (b) At least one of the requirements’ matching scores, whose initial value had

been positive, would now be zero, implying that the eliminated process is the only

possible match for that requirement. (c) At least one of the requirement’s matching scores

would have a positive value that is less than its initial value. If the best-fit OPD for this

requirement is different than the initial one, then the eliminated process had been included

in the initial solution, and the matching process has identified an alternative ERP process

that matches the requirement to a lesser extent. Otherwise, the eliminated process had

been a part of the solution and no alternative has been found

 This procedure was repeated 5 times, eliminating a different process each time.

4.1.2 Results

The results, presented in Table 2, demonstrate that the expected consistency was achieved.

The table lists the eliminated processes, the affected requirements, and for each requirement

its initial and final best-fit ERP model OPD and matching score. In one case (supplier

discount management) the eliminated process was not included in the requirements, therefore

no effect has been made. In two other cases (alternative supplier management and outbound

data generation) the alignment process has identified alternative solutions that exist within the

ERP system and satisfy the requirements, although in one case (alternative supplier

management) the match is to a lesser extent than the original one.

*** Take in Table 2 ***

The capability of the alignment process in identifying alternative solutions for the

requirements supports our premise that ERP systems are basically more flexible than the “best

practice” solutions they often promote, and that our approach can utilize this flexibility up to

its limits.

4.2 Experiment 2

The aim of this experiment was to analyze the sensitivity of the solution to the algorithm

weights, according to criterion 2. As discussed in Section 3, since RS ≤ ES, the higher the ES

weight (W1) is, the higher the MS is. The change in the score is linear with respect to the

change in the weights. The interesting question here is whether different weights yield

 25

different solutions, that is, different system model OPDs are identified as best match for a

given requirement.

The experiment repeatedly matched a set of 23 requirements against the system model,

changing the weights in the matching scores.

*** Take in Table 3 ***

The results are presented in Table 3, that shows the best-fit OPD for each requirement and its

MS for different sets of weights. The table shows the linearity of MS with respect to the

weights, where the slope depends on the difference between MS and RS. Requirement 5, for

example, has a relatively high ES and a relatively low RS, therefore the change in weights

affects the MS significantly. Requirements 18 and 21, on the other hand, have equal ES and

RS, therefore the MS is invariant to the weights.

In most cases, despite of the changes in the MS, the best-fit OPD selected for the solution was

not changed. However, in requirements 7 and 9, high weights of ES (W1≥0.8) resulted in a

different best-fit OPD selection for the solution. Note, that high weights of RS did not distract

the selected solution.

It may, therefore, seem that it is preferable to use a high W2. Nevertheless, the low matching

scores obtained with a high W2 are not necessarily an accurate reflection of the match. For

example, requiring the process of Inserting Purchase Order to use the Supplier object is

represented by an Instrument link between the object and the process. However, one of the

attributes of Supplier in the ERP model, Order Balance, is affected when a purchase order is

inserted, thus the link in the system model is an effect link. This difference, while reflected in

the MS, does not violate the requirement in practice. Hence, applying a high RS weight might

result in distorted matching scores.

Note, that sensitivity analysis could address the controlled changes in the input as performed

in Experiment 1, that is, measuring the effect of the weights on the changes in MS when the

input model is changed. The linearity of the matching scores makes it straightforward to see

that this effect would be linear as well. Assume that for a given W1 we got MS, which is the

result of ES and LS. After changing the input model we got MS1, based on ES1=ES-α, and

RS1=RS-β. Now changing W1 to W1+δ, would yield MS2 = MS1+ δ(α – β), independently on

the initial W1.

4.3 Experiment 3

This experiment addressed the third and fourth validation criteria, validation against real-life

results, and robustness to variations in the requirement models. Prior to the experiment, the

 26

ERP system had been implemented in a telecommunication company employing 150 workers.

The requirements in this project were defined textually, without applying any formal or

systematic RE process. We applied the alignment process using OPM representation of these

enterprise requirements in a post-hoc manner, and compared the obtained outputs with the

decisions made in the real life project. The OPM representation of the requirements was

created by different modelers in parallel, and the effect of the variations among these

representations on the solution was investigated.

A secondary objective of this experiment was to establish the effectiveness of each of the

reformulation operations and to measure its effect separately. To this end, we performed the

iterative process applying a single reformulation type in each iteration and measuring the

effect on the matching scores.

4.3.1 Settings

The textual enterprise requirements were given to four different graduate students who are

OPM experts and teach OPM in undergraduate courses. The modelers were instructed to

represent the requirements as OPM models without adding any information other than what is

in the text. They were also given a list of entities used in the system model, and instructed to

select entity names from this list in their model as much as possible. The alignment process

was then applied to each of these four models.

Since we wanted to isolate the effect of different reformulation operations, we did not follow

the entire iterative alignment process. Instead, we applied three iterations. The first iteration

used the initial requirement model, the second one applied only splitting of requirements, and

the third one applied only new mapping decisions. We applied the same set of mapping

decisions to the four requirement models. This ensured that any inconsistency in the results

was caused by the initial modeling differences only, and provided a rough evaluation of the

robustness of the matching to different modeling attitudes that may have been taken by

different modelers.

 27

The recommendations obtained by the resulting alignment were qualitatively compared with

the decisions made in the project. This comparison enabled us to understand the differences

between the results obtained when applying the four requirement models as well as their

sources. The alignment recommendations that resulted from the study were validated through

an interview with the project manager.

4.3.2 Results

The results of the experiment indicate that the alignment process is capable of providing a

solution and identifying the gaps between the requirements and the system’s capabilities, as

compared to manual decisions. Table 4 presents a comparison between the recommendations

made in the study regarding 13 significant gaps identified after the first two iterations and the

actual decisions made in the real project. Over 75% of these gaps were resolved in the real

project in a manner identical to that of the study. These include customization decisions,

mapping decisions, and abandoned requirements. The remaining 25% relate to requirements

that were abandoned in the manual decision-making and to one unreal gap. In what follows

we discuss the details of these findings with respect to our validation criteria.

*** Take in Table 4 ***

Identification of gaps: All the gaps that had been identified in the real project, which resulted

in software customizations, were also identified in the experiment. This indicates that the

alignment process is capable of detecting gaps between the requirements and the system’s

capabilities.

Unreal gaps: One of the 13 gaps indicated by the automated matching was not real, and was

caused by a situation, in which the details of a requirement are satisfied by a generic system

solution, which has a customizable control mechanism. In such cases, the matching algorithm

is not able to identify the match, since the structure of the requirement model is entirely

different than that of the ERP model. To resolve this problem the requirement may either be

remapped or verified manually.

 28

Quality of solution: comparing the recommendations made in the experiment with the real-

life decisions we relate to mapping decisions and to abandoned requirements.

• Mapping decisions: 46% of the gaps identified in the first two iterations were

resolved by mapping decisions in the third iteration. Out of these, 31% were identical

to the mapping decisions made in the real life project, while the remaining 15%

involved mappings to different entities. The mappings suggested in the experiment

were presented to the project manager, who confirmed they were good solutions that

could have been implemented in the project instead of the ones that were actually

selected.

• Recommendations to abandon requirements: these reflect unresolved gaps. In the

experiment, we recommended abandoning two requirements, where the ERP

solutions were very close to the requirements, but not identical. The decisions in the

real project matched our recommendation. In real life a number of additional

requirements were abandoned, where we recommended customizations. The actual

customization / abandoning decision involves other factors, such as cost and risk,

which are out of the scope of our alignment process

Robustness to differences in the initial model: In order to assess this robustness, we

performed the alignment applying four different models of the same set of requirements. Due

to different modeling attitudes and insufficient domain knowledge of the modelers, the initial

models were quite different from each other. Nevertheless, there was consistency in

identifying the main gaps. In the second iteration, where the requirements were split without

changing their content, the variance among the models increased, because the differences in

modeling attitudes increased the affected number of requirements. A high level of

consistency, reflected by low variance of the matching scores of the best-fit OPDs included in

the solution, was achieved after applying the mapping decisions in the third iteration. This

result indicates that the matching result is quite robust to differences in the initial model. The

variance of the matching scores in the four models along the three iterations is given in Table

5.

 29

*** Take in Table 5 ***

Analysis of the inconsistencies among the results of the four different modelers indicated their

main cause had been differences in modeling attitudes. The different attitudes reflect attempts

to apply different design logic to the requirements, rather than to model them as they are. An

example of a matching problem that arises due to different modeling attitudes is illustrated in

Figure 8. Two separate requirements, specifying the objects Purchase Requisition and

Purchase Order, are modeled in Figure 8(a) and Figure 8(b) respectively. One of the

modelers assumed that the two objects should point at each other, and modeled them as

illustrated in Figure 8(c) and Figure 8(d). This created dependency between the two

requirements. Since the Purchase Requisition object does not exist in the system, the

Purchase Order requirement could not be matched either. Based on these findings, we have

designed modeling guidelines, which facilitate the matching procedure. A modeling guideline

intended to prevent the problem illustrated in Figure 8 is: “Represent each requirement

separately, including all the specified details. Do not rely on details specified in other

requirements.” This guideline is expected to prevent the dependency illustrated in Figure 8(c)

and 8(d), since all the specified attributes of Purchase Order should be represented, the way

they are in Figure 8(b).

*** Take in Figure 8 ***

Other Lessons learned: These include understanding the effect of the different reformulation

operations and gaining indications as to the applicability of the approach in practice.

The effect of reformulation operations: The effect of splitting and mapping was isolated by

applying them in different iterations in the experiment. The results indicate that both these

reformulation types improved the matching scores, as reflected in the average matching

scores achieved at each iteration, presented in Table 5.

Applicability evaluation: Representing the requirements in OPM took approximately 15

hours. Applying the matching algorithm and analyzing the results took approximately 10

hours for each iteration. These figures can hardly serve for estimating the duration of the

alignment process in a real life project, since the study was carried out only on a single

 30

module of the ERP system, and served also for refining the methodology and the analysis

method. Nevertheless, the manual decision making regarding this specific module took six

weeks, and was performed by three full-time analysts and other stakeholders part time. It

therefore seems that significant time saving can be achieved by applying our approach. The

modelers who participated in the study noted that browsing in search for system terms to be

used in the requirements model was inconvenient and this slowed the modeling process.

5. Concluding discussion

The problem of identifying and analyzing the gaps between an ERP system and the

requirements of an enterprise, and aligning the system to the needs of the enterprise, is at the

heart of ERP systems implementation. Adequate solution to this problem is crucial for a

successful implementation and the competitive edge of the implementing enterprise.

The approach presented in this paper for solving this gap analysis and alignment problem

provides a systematic support for the alignment process in both standard enterprises and

unique ones. Unlike solution-driven methods, which apply a predefined set of reuse criteria

for the process selection, our approach facilitates reuse on the basis of the enterprise

requirements. This approach benefits from reuse without being restricted by a predefined set

of criteria and standard solutions.

A requirement driven approach to the alignment problem, matching requirements model with

an ERP model, is suggested also by [35, 36]. However, the matching applied there is based on

human reasoning while we apply an automated matching.

Matching between a model of the enterprise requirements and a model of the ERP system

capabilities, the matching algorithm addresses two difficult problems. One is identifying a

match between an incomplete requirements model and a complete and detailed system model.

The other problem is the existence of dependencies among the ERP options, which poses

constraints on the feasibility of combining all the satisfied requirements in a single

 31

configuration of the system. While our matching algorithm is designed for OPM models, the

two above problems are generic, inherited in the nature of the alignment process, and should

be addressed regardless of the modeling methodology.

The main limitations of our approach are the use of OPM, which is not a common standard in

industry, and the need to create a system model as a preparation to applying the approach

these limitations can also be viewed as strengths. The OPM representation, which requires a

set up effort in constructing a system model, has the advantage of a high expressive power

while preserving an ease of matching due to the single view taken. The set up effort, though

intensive, is a one-time effort and once the model is constructed it can be used for any number

of times. The OPM representation, as opposed to representation methods that exist in specific

packages, makes our approach generic and suitable for any ERP system rather than a specific

package.

Two difficulties have been identified in the matching algorithm. One is that the scope of a

process and refinement into lower-level diagram do not have definite rules, and are

determined by the modeler based on individual judgment. It is therefore not necessarily

consistent with the system model. This difficulty can be resolved by splitting the requirements

to their basic ingredients. The second difficulty is in identifying the semantic similarity of

entity names. As discussed in Section 3, the matching algorithm does not apply affinity

measurement due to the high level of human reasoning required for mapping. While being

resolvable through mapping iterations in our alignment process, our observations in

Experiment 3 show that modelers find browsing for entity names tiresome and time

consuming. A possible solution is an interactive entity naming, where, while matching the

entities the algorithm would present the user possible entity names in the system for approval.

We have tested the alignment algorithm in three experiments that complement each other in

assessing the feasibility of the approach. The third experiment reported here was closest to

simulating the process in a real-life situation, and its results demonstrate the ability of the

process to provide an adequate solution to the problem. Still, being a single case study it can

 32

be considered as a demonstration rather than full validation. However, in combination with

the other two experiments, we were able to show that different input data would affect the

solution in a consistent and predictable direction, and that the selection of the algorithm

weights within a reasonable range would not change the solution obtained by the process. We

also showed that the solution is quite robust to variations in the requirements model.

Combining these findings leads to the conclusion that the viability of the approach has been

shown.

Practical implications, such as the expected implementation time saving in a real life project,

are hard to estimate at this point. However, the results of the third experiment indicate that

compared to a manual alignment, which is currently performed when standard solutions are

not applicable, significant time saving as well as a high quality solution can be achieved.

A large-scale study or an action research, in which the alignment process would be applied in

a real-life project may yield better indications. Before such a study can be conducted, several

improvements should be made to the support tool, especially regarding the semantic similarity

assessment. We also intend to develop a mechanism to support the creation of new mapping

decisions, in which “mapping opportunities” will be identified through generalization

hierarchies.

References
[1] Al-Mashari, M. Process Orientation through Enterprise Resource Planning (ERP): A

Review of Critical Issues. Knowledge and Process Management 2001; 175:185.

[2] Bingi, P, Sharma, M, Godla J. Critical Issues Affecting an ERP Implementation.

Information Systems Management 1999; 7:14.

[3] Bunke, H. Error Correcting Graph Matching: on the Influence of the Underlying Cost

Function. IEEE Transactions on Pattern Analysis and Machine Intelligence 1999;

917:922.

 33

[4] Curran TA, Ladd A. SAP R/3 Business Blueprint: Understanding Enterprise Supply

Chain Management. 2nd ed. NJ: Prentice Hall; 1999.

[5] Daneva M. Measuring Reuse in SAP Requirements: a Model-based Approach. In:

SSR’99, Proceedings of the Fifth Symposium on Software Reusability, New York:

ACM Press; 1999, p. 141-150.

[6] Daneva M. Using Maturity Assessment to Understand the ERP Requirements

Engineering Process. In: Proceedings of the IEEE Joint International Conference on

Requirements Engineering (RE’02), Los Alamitos CA: IEEE Press; 2002.

[7] Davenport TH. Putting the Enterprise into the Enterprise system. Harvard Business

Review 1998; 121:131.

[8] Dori D. Arc Segmentation in the Machine Drawing Understanding Environment. IEEE

Transactions on Pattern Analysis and Machine Intelligence 1995; 1057:1068.

[9] Dori D. Object-Process Analysis of Computer Integrated Manufacturing

Documentation and Inspection Functions. International Journal of Computer Integrated

Manufacturing 1996; 339:353.

[10] Dori D. Analysis and Representation of the Image Understanding Environment Using

the Object-Process Methodology. Journal of Object-Oriented Programming 1996; 30:8.

[11] Dori D. Object-Process Methodology Applied to Modeling Credit Card Transactions.

Journal of Database Management 2001; 4:14.

[12] Dori D. Object Process Methodology – A Holistic Systems Paradigm. Heidelberg, New

York: Springer Verlag; 2002.

[13] Dori D, Reinhartz-Berger I, Sturm A. OPCAT – A Bimodal CASE Tool for Object-

Process Based System Development. In: Proceedings of the Fifth International

Conference on Enterprise Information Systems Vol 3; 2003, p. 286-291.

 34

[14] Feblowitz MD, Greenspan SJ. Scenario-Based Analysis of COTS Acquisition Impacts.

Requirements Engineering 1998; 182:201.

[15] Finkelstein ACW, Spanoudakis G, Ryan M. Software Package Requirements and

Procurement. In: Proceedings of the 8th International Workshop on Software

Specification and Design, Los Alamitos CA: IEEE Press; 1996, p. 141-145.

[16] Ghosh J. SAP Project Management. New York: McGraw-Hill; 2000.

[17] Gibson N, Holland CP, Light B. Enterprise Resource Planning: A Business Approach

to Systems Development. In: Proceedings of the 32nd Hawaii International Conference

on System Sciences; 1999.

[18] Gomaa H, Kerchberg L, Sugumaran V, Bosch C, Tavakoli, I, O’Hara, L. A

Knowledge-based Software Engineering Environment for Reusable Software

Requirements and Architectures. Automated Software Engineering, 1996; 285:307.

[19] Hall RP. Computational Approaches to Analogical Reasoning: A Comparative

Analysis. Artificial Intelligence 1989; 39:120.

[20] Hammer M, Champy J. Reengineering the Corporation. New York: Harper Collins;

1993.

[21] Holland CP, Light BA. Critical Success Factors Model for ERP Implementations. IEEE

Software 1999; 30:5.

[22] Koch C. BPR and ERP: Realising a Vision of Process with IT. Business Process

Management Journal 2001; 258:265.

[23] Maiden NAM, Ncube C. Acquiring COTS Software Selection Requirements. IEEE

Software 1998; 46:56.

[24] Massonet P, Lamsweerde AV. Analogical Reuse of Requirements Frameworks. In:

RE’97, Proceedings of the Third IEEE Symposium on Requirements Engineering, Los

Alamitos CA: IEEE Press; 1997, p. 26-37.

 35

[25] Meyersdorf D, Dori D. The R&D Universe and Its Feedback Cycles: An Object-

Process Analysis., R&D Management 1997; 333:344.

[26] Mili H, Mili F, Mili A. Reusing Software: Issues and Research Directions. IEEE

Transactions on Software Engineering 1995; 528:561.

[27] Ncube C, Maiden NAM. Guiding Parallel Requirements Acquisition and COTS

Software Selection. In: RE’99: Proceedings of the IEEE International Symposium on

Requirements Engineering. Los Alamitos CA: IEEE Press; 1999, p. 133-140.

[28] Ostertag E, Hendler J, Prieto Diaz R, Braun RC. Computing Similarity in a Reuse

Library System: an AI-Based Approach. ACM Transactions on Software Engineering

and Methodology 1992; 205:228.

[29] Peleg M, Dori D. The Model Multiplicity Problem: Experimenting with Real-Time

Specification Methods. IEEE Transactions on Software Engineering 2000; 742:759.

[30] Post HA, Van Es R, editors. Dynamic Enterprise Modeling: A Paradigm Shift in

Software Implementation. Dordrecht: Kluwer; 1996.

[31] Rahm E, Bernstein PA. A Survey of Approaches to Automatic Schema Matching. The

VLDB Journal 2001; 334:350.

[32] Ralyte J, Rolland C. An Assembly Process Model for Method Engineering, In:

Proceedings of the 13th International Conference on Advanced Information Systems

Engineering (LNCS 2068). Berlin: Springer-Verlag; 2001, p. 267-283.

[33] Rolland C. Requirements Engineering for COTS Based Systems. Information and

Software Technology 1999; 985:990.

[34] Rolland C. Intention Driven Component Reuse. Information Systems Engineering:

State of the Art and Research Themes. Berlin: Springer-Verlag; 2000, p. 197-208.

[35] Rolland C, Prakash N. Bridging the Gap Between Organizational Needs and ERP

Functionality. Requirements Engineering 2000; 180:193.

 36

[36] Rolland C, Prakash N. Matching ERP System Functionality to Customer Requirements.

In: Proceedings Fifth IEEE International Symposium on Requirements Engineering.

Los Alamitos Ca: IEEE Press; 2001, p. 66-75.

[37] Salinesi C, Rolland C. Fitting Business Models to System Functionality Exploring th

Fitness Relationship. In: Proceedings of the 15th International Conference on Advanced

Information Systems Engineering (LNCS 2681). Berlin: Springer-Verlag; 2003, p. 647-

664.

[38] Soffer P. Aligning an Enterprise System with Enterprise Requirements: an Iterative

Process, In: Proceedings of the Fifth International Conference on Enterprise Information

Systems Vol 3; 2003, p. 147-155.

[39] Soffer P. Refinement Equivalence in Model-Based Reuse: Overcoming Differences in

Abstraction Level. Journal of Database Management (forthcoming).

[40] Soffer P, Golany B, Dori D. ERP Modeling: A Comprehensive Approach. Information

Systems 2003; 673:690.

[41] Soffer P, Golany B, Dori D, Wand Y. Modelling Off-the-Shelf Information Systems

Requirements: An Ontological Approach. Requirements Engineering 2001; 183:198.

[42] Sutcliffe A, Maiden NA. The Domain Theory for Requirements Engineering. IEEE

Transactions on Software Engineering 1998; 174:196.

[43] Van Es R. Dynamic Enterprise Innovation, The Netherlands: Baan Business Innovation

B.V.; 1998.

[44] Wenyin L, Dori D. Object-Process Diagrams as an Explicit Algorithm Specification

Tool. Journal of Object-Oriented Programming 1998; 52:9.

 37

Figure 1. An OPM representation of a Purchase Order Handling process

(a)

(b)

Legend: General Structural Relation Aggregation

Process Instrument link Effect Link

 State Condition Link Event Link

 Object Characterization Generalization-Specialization

 38

Figure 2: The system model hypergraph of the Purchase Order Handling module,

Top level OPD (OPD0) is detailed in Figure 1(a), OPDs of other sub-processes is provided in
table 1

5 6 14987

0

1 2 3 4

10
13

12

11

 39

Figure 3. An OPD of the matching algorithm

 40

Figure 4: An example of differences in the detail level between a requirement model, R (a),

and the system model, E (b)

(b)(a)

 41

Figure 5: The BUA Algorithm

 For every node Gd ∈ set C1(d) based on the SRM results.

** Initialization of C(d) **

 Set L1 as the maximal L(a) for all the arcs whose Gt ∈ .

** Sorting by the distance from the root node **

 Set (){ }Gt,LaLaS ∈== 11 ; Set (){ }Gt,LaLaS ∈<= 10 .

 ** The set of arcs whose destination is in G is divided to S1, the arcs whose level is L1, and S0,

its complementary **

 For every node d such that () ∅≠∩ dHS1

** Looping all the nodes whose originating arcs are in S1 **

4.1 Set () () (){ }dJt,tCdV ∈=

** Assigning C of the descendant nodes in V **

4.2 If Gd ∈ then C(d) = (C(d) AND ()[]dVFd)

 else C(d) = ()[]dVFd .

** Computing C(d) **

4.3 dGG ∪= .

** Adding the node to set G for the next iteration **

 Set (){ }Gd,SdHdM ∈∅=∩= 0 ; G = G-M.

** Removing the nodes whose up-going arcs have already been climbed **

 If L1 >0 then go back to step 2.

** Looping to a lower arc level.**

 42

.

 Figure 6: A requirement model example

 43

Figure 7: An OPD of the alignment process

 44

Figure 8: Model-based matching problem

(a) Purchase Requisition model

(c) Purchase Requisition model (d) Purchase Order model

(b) Purchase Order model

 45

Table 1: The OPDs in the Purchase Order Handling module

OPD number OPD name Descendant OPDs
0 Purchase Order Handling 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
1 Purchase Order Maintaining 5, 6, 7
2 Subcontracting 5, 6, 7, 8, 9, 10
3 Purchased Goods Receiving 5, 6, 8, 9, 11, 12, 13, 14
4 Purchase Order Closing 6
5 Item
6 Purchase Order 5, 7
7 Supplier
8 Warehouse
9 Inventory by Item 5, 8
10 Production Order 5
11 Location Controlled Receiving 5, 6, 8, 9, 14
12 No Location Controlled Receiving 5, 6, 8, 9
13 Non-inventory Item Receiving 5, 6
14 Inventory by Location 5, 8

 46

Table 2: Results of Experiment 1

Before elimination After elimination Eliminated
process

Requirement
OPD Score OPD Score

Explanation

Receipt and
inspection

28 0.77 28 0.75

Receipt
registering

30 0.55 30 0.39

Item object 117 0.56 117 0.5

Lot
management

Lot object 90 0.75 0

Lot management is a basic
ERP functionality. It has no
alternative. Its elimination
violated the lot object
requirement, and reduced the
match of other requirements.

Alternative
supplier by
item
management

Alternative
supplier
management

66 1 113 0.7 The mechanism of alternative
coding systems is identified as
a substitute to the original
match, although the score is
lower.

Supplier
discounts
management

 The issue was not addressed in
the requirements

Generate
outbound
data

Sub-
contracting

52 0.58 53 0.58 The match was not reduced,
since the alternative process,
of manually inserting
outbound data, received the
same score as the original
automatic one.

Purchase order
line inserting

24 0.5 24 0.27 Order history
management

Order history 72 0.7 0

No alternative was found.

 47

Table 3: Results of Experiment 2

W1=0.9
W2=0.1

W1=0.8
W2=0.2

W1=0.7
W2=0.3

W1=0.6
W2=0.4

W1=0.5
W2=0.5

W1=0.4
W2=0.6

W1=0.3
W2=0.7

W1=0.2
W2=0.8

W1=0.2
W2=0.8

Req

OPD MS OPD MS OPD MS OPD MS OPD MS OPD MS OPD MS OPD MS OPD MS

1 1 0.36 1 0.33 1 0.29 1 0.26 1 0.22 1 0.19 1 0.15 1 0.12 1 0.09

2 8 0.96 8 0.93 8 0.9 8 0.86 8 0.83 8 0.8 8 0.76 8 0.73 8 0.7

4 52 0.8 52 0.74 52 0.69 52 0.64 52 0.58 52 0.53 52 0.47 52 0.42 52 0.36

5 28 0.87 28 0.85 28 0.82 28 0.8 28 0.77 28 0.75 28 0.72 28 0.7 28 0.67

6 30 0.91 30 0.82 30 0.73 30 0.64 30 0.55 30 0.46 30 0.37 30 0.28 30 0.2

7 39 0.78 39 0.72 40 0.65 40 0.58 40 0.51 40 0.45 40 0.38 40 0.31 40 0.24

8 36 0.77 36 0.7 36 0.64 36 0.58 36 0.51 36 0.45 36 0.39 36 0.32 36 0.26

9 30 0.7 30 0.63 117 0.59 117 0.58 117 0.56 117 0.55 117 0.54 117 0.52 117 0.51

10 76 0.97 76 0.96 76 0.95 76 0.94 76 0.93 76 0.92 76 0.91 76 0.9 76 0.89

12 98 0.79 98 0.79 98 0.78 98 0.78 98 0.77 98 0.77 98 0.76 98 0.76 98 0.75

13 94 0.91 94 0.83 94 0.75 94 0.66 94 0.58 94 0.5 94 0.41 94 0.33 94 0.25

14 60 0.96 60 0.92 60 0.88 60 0.85 60 0.81 60 0.77 60 0.73 60 0.7 60 0.66

16 67 0.98 67 0.96 67 0.94 67 0.92 67 0.9 67 0.88 67 0.86 67 0.84 67 0.82

17 30 0.34 30 0.32 30 0.3 30 0.28 30 0.26 30 0.24 30 0.22 30 0.2 30 0.18

18 24 0.5 24 0.5 24 0.5 24 0.5 24 0.5 24 0.5 24 0.5 24 0.5 24 0.5

19 72 0.74 72 0.73 72 0.72 72 0.71 72 0.7 72 0.7 72 0.69 72 0.68 72 0.67

20 10 0.95 10 0.9 10 0.85 10 0.8 10 0.75 10 0.7 10 0.65 10 0.6 10 0.55

21 66 1 66 1 66 1 66 1 66 1 66 1 66 1 66 1 66 1

22 61 0.85 61 0.85 61 0.85 61 0.84 61 0.84 61 0.84 61 0.84 61 0.83 61 0.83

23 90 0.95 90 0.9 90 0.85 90 0.8 90 0.75 90 0.7 90 0.65 90 0.6 90 0.55

 48

Table 4: Summary of the comparison between Experiment 3 and the real project

 Project decision

Experiment

recommendation

Software

customization

made

Solution by

mapping

Abandon

requirement

Gap does

not exist

Software customization 15% 8% 8%

Solution by mapping 46%

Abandon requirement 15%

Identification difficulty 8%

Table 5: Average Matching Scores and variance of the four models in the three iterations

Iteration Average matching score Variance among models

Initial model 0.325 0.028

Splitting iteration 0.422 0.044

Mapping iteration 0.576 0.014

