
Matching Models of Different Abstraction Levels �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter IV

Matching Models of
Different Abstraction

Levels:
A Refinement

Equivalence Approach

Pnina Soffer, Haifa University, Israel

Iris Reinhartz-Berger, Haifia University, Israel

Armon Sturm, Ben-Gurion University of Negev, Israel

Abstract

This chapter deals with the reuse of models, which assists in constructing
new models on the basis of existing knowledge. Some of the activities that
support model reuse, such as model construction, retrieval, and validation,
may involve matching models on the basis of semantic and structural similar-
ity. However, matching for the purposes of retrieval and validation relates
to models of different abstraction levels, hence structural similarity is dif-

� Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

ficult to assess. This chapter proposes the concept of refinement equivalence,
which means that a detailed model is a refinement of an abstract model. It
emphasizes the use of refinement equivalence for the purpose of validating a
detailed application model against an abstract domain model in the context
of a domain analysis approach called application-based domain modeling
(ADOM). We discuss the structural characteristics of refinement operations
in object-process methodology (OPM) models, and present an algorithm that
detects refinement equivalence.

Introduction

The benefits of applying reuse at various stages of system design and imple-
mentation have been widely recognized. The reuse of software components
has been addressed for over 40 years, and the idea has been extended to other
and more abstract design artifacts, such as design models and specifications
(Eckstein, Ahlbrecht, & Neumann, 2001; Kim, 2001; Reinhartz-Berger, Dori,
& Katz, 2002; Zhang & Lyytinen, 2001), requirements models (Lai, Lee,
& Yang, 1999; Massonet & Lamsweerde, 1997; Sutcliffe & Maiden, 1998),
conceptual models (Pernici, Mecella, & Batini, 2000), enterprise models
(Chen-Burger, Robertson, & Stader, 2000), method engineering models
(Ralyte & Rolland, 2001), and others. When the reusable artifact is a model,
the purpose of reuse is to assist in constructing a new model, either within
the same domain, or within another domain by analogical reasoning.
Reuse is a major underlying motivation for the emergence of the domain
engineering discipline. Domain engineering supports the notion of a domain,
defined as a set of applications that use common concepts for describing re-
quirements, problems, and capabilities. The purpose of domain engineering
is to identify, model, construct, catalog, and disseminate a set of software or
business artifacts that can be applied to existing and future systems in a par-
ticular domain. A subfield of domain engineering is domain analysis, which
captures and specifies the basic elements of the domain and the relationships
among these elements, representing this understanding in a useful way. Domain
analysis is, therefore, a discipline that deals with creating reusable models of
a domain and reusing these models for creating specific applications.
Reuse environments of models in general, and domain analysis environ-
ments in particular, should provide support to at least part of the following

Matching Models of Different Abstraction Levels �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

activities: (a) construction of reusable models and their storage, possibly in
a repository, (b) retrieval of models (or parts of them) that meet the require-
ments of a developed application, (c) adaptation of the reusable models to
the current application needs, and (d) validation of the adapted models. These
activities may employ in some cases a model matching operation, which is
the focus of this chapter.
In the context of domain analysis, two types of reusable models can be used.
One is a generic domain model at a high level of abstraction that has to be
specialized in adaptation to the current needs. The second type is a complete
and detailed model, whose level of abstraction is the same as that of the
application. It may be reused as it is, or modified to the specific needs, but
without a change in its abstraction level.
The abstraction level of the reusable model affects the nature of the above
discussed activities. First, reusable models of a high abstraction level are
constructed by abstracting a collection of domain applications and analyzing
their commonalities and variation points. Model matching may be employed
for detecting the common aspects of the collection of application models that
are being generalized.
Second, the role of a repository is of much importance for low-level reusable
models since a large number of these may be stored, and each may include
slightly different details. In contrast, high-level domain models specify com-
mon aspects of domain applications; hence, a large number of such models
is not required.
Third, in general, the retrieval of a model can be either index based or model
based. Index-based retrieval uses indices that characterize the models, while
model-based retrieval matches an input model (query) given by the user
with the models stored in the repository (Mili, Mili, & Mili, 1995). While
index-based retrieval is relatively simple and quick, model-based retrieval
is more accurate, relying on a higher volume of information rather than on
a classification represented by indices. Retrieval of a high-level model is
relatively simple due to the low number of models and the clear distinction
between them, hence, index-based retrieval is appropriate. Retrieval of a
low-level detailed model is more complicated since there may be a number
of different models for a given domain, and retrieval seeks the one that
matches partial information available about the particular current needs.
Model-based retrieval, relying on all the information captured in a model,
enables the selection of the model that best fits the user’s query. It may use
a preliminary partial model or some facts about the modeled domain as an

� Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

input query, and retrieve a detailed model (or detailed models) that matches
the input model.
Fourth, the adaptation of a high-level model to the current needs is an in-
stantiation operation, yielding an application model that should match the
domain model. This matching should be verified by a validation activity.
The adaptation of a detailed model can be done by modification (which can
be controlled through defined variation points) or by integration with other
models. Validation in this case should follow the variation points and check
that their specified constraints are not violated.
In summary, model matching can be used for the activities of constructing
a reusable model, retrieving it, and validating an application model against
the reusable one. When model matching is used for retrieval, the expected
output is a similarity measure, while when it is used for construction or vali-
dation, the focus is on identifying specific matches and mismatches between
the models.
This chapter deals with the assessment of structural similarity between two
models of a different abstraction level. Soffer (2005) addressed this issue
emphasizing its relevance for the retrieval of a detailed model. Here we
address the scenario of validating an application model against a domain
model. Addressing this scenario, we decided to rely on an existing domain
analysis approach in order to relate to concrete details rather than taking a
generic view, which might overlook the complexity of the task. The domain
analysis approach we use is application-based domain modeling (ADOM;
Reinhartz-Berger & Sturm, 2004; Sturm & Reinhartz-Berger, 2004), which
facilitates the instantiation of an application model from a domain model
and its validation against the domain model.
According to ADOM, when a domain model is instantiated to an application
model, the entities in the resulting application model are classified as instances
of the entities in the domain model. Furthermore, the application models may
include multiple instances of domain-model entities, as well as additional
entities. Hence, an application model can be considered as a refinement of the
domain model. The validation of an application model against the relevant
domain model employs model matching for verification purposes.
Due to the difficulty of assessing structural similarity with respect to models
of different abstraction levels, we seek for refinement equivalence rather than
structural similarity.
Refinement equivalence is a situation where a detailed (application) model
can be perceived as a refinement of a more abstract (domain) model. To this

Matching Models of Different Abstraction Levels �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

end, we first need to establish an understanding of the nature of the refinement
of models. The chapter discusses several types of refinement operations and
indicates their structural characteristics, demonstrated by using the object-
process methodology (OPM) as a modeling language. Understanding the
consequences of model refinement is the basis for an algorithm that identifies
structural equivalence of two models.
The remainder of the chapter is organized as follows. The next section briefly
introduces the OPM modeling language and provides an overview of the
ADOM approach. The following section discusses different refinement op-
erations and illustrates their outcome in an OPM model. Then we describe a
rule-based algorithm for identifying structural equivalence of OPM models
in the context of validating an application model against a domain model.
Following that, a review of related work is presented, and finally a conclud-
ing discussion.

Overview of Adom and Opm

This section starts with a brief introduction to OPM, then provides an over-
view of the ADOM approach in general and the ADOM-OPM dialect in
particular.

Object-Process Methodology

OPM, whose details are provided in Dori (2002), has been applied for vari-
ous purposes at different development phases and tasks, such as conceptual
requirements modeling (Soffer, Golany, Dori, & Wand, 2001), enterprise
resource planning (ERP) system modeling (Soffer, Golany, & Dori, 2003),
Web application design (Reinhartz-Berger et al., 2002), real-time systems
specification (Peleg & Dori, 1999), algorithm specification (Wenyin & Dori,
1998), and others.
OPM incorporates two equally important classes of entities: objects and
processes. While object-oriented methods encapsulate processes in objects,
and business-process modeling methods represent activities detached from
the objects they affect, OPM unifies the system structure and behavior into
a single representation. It uses a single graphic tool, the object-process dia-

� Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

gram (OPD) set, as a single view of all the system aspects, both structural
and dynamic. Structure is expressed by objects connected with structural
relations, such as characterization (e.g., between an object and its attributes),
aggregation (part of), specialization (is-a), and general tagged structural
relations (specifying any other relation named by a tag). The behavior of a
system is represented by a set of procedural links, which can be classified
into three classes of links: enabling links, transformation links, and trigger-
ing links. Enabling links (e.g., instrument links) relate an object to a process
when the presence of the object is required for the process to occur, but this
occurrence does not affect the object state or value. Transformation links
(e.g., effect links) relate an object to a process that changes the object state
or value (including its creation and destruction). Triggering links (e.g., event
links) relate a transformation of an object (reflected in its state or value) to
a process it triggers.
Similar to other modeling languages (e.g., DFD), OPM allows the refinement
of a model by zooming into processes and unfolding the structure of objects
to enable a top-down analysis. The resulting model is a hierarchical OPD set,
which specifies all the aspects of a system at a spectrum of detail levels.
A part of OPM notation is given in Figure 1.

Figure 1. OPM notation

Matching Models of Different Abstraction Levels �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Application-Based Domain Modeling

ADOM is a generic domain analysis approach, facilitating the creation of
domain models, their instantiation for creating application models, and the
validation of the resulting application models. Being influenced by the clas-
sical framework for metamodeling presented in OMG (2006), the ADOM
approach is based on a three-layered architecture: application, domain, and
language. The application layer, which corresponds to the model layer (M1),
consists of models of particular systems, including their structure and be-
havior. The language layer, which corresponds to the metamodel layer (M2),
includes metamodels of modeling languages, such as UML (unified model-
ing language), OPM, and so forth. The intermediate domain layer consists
of domain models. The ADOM approach enforces constraints among the
different layers; in particular, the domain layer enforces constraints on the
application layer, while the language layer enforces constraints on both the
application and domain layers.
Including language metamodels as an upper layer, the ADOM approach is
language independent. However, in practice, language-specific ADOM dia-
lects must be used. Such dialects include ADOM-UML (Reinhartz-Berger
& Sturm, 2004; Sturm & Reinhartz-Berger, 2004) and ADOM-OPM (Sturm,
Dori, & Shehory, 2006), which is the dialect used in this chapter, too.
ADOM-OPM extends OPM with two new features: (a) a multiplicity indicator,
which is attached to entities at the domain layer and constrains the number
of entities of that kind that can appear in a particular application model in
that domain, and (b) a role, which is a stereotype-like element emphasizing
additional semantics for an OPM entity. Roles are used within application
models, classifying entities as instances of domain-model entities. These two
features establish the relationships between domain and application models.
When an application model is created, its entities are assigned roles that
correspond to the entities of the domain model, and the links among them
are bound to preserve the corresponding link structure of the domain model.
Additional entities can appear in the application model (without assigned
roles) as long as they do not violate the domain constraints.
Validating an application model against the domain model entails checking
that (a) the multiplicity constraints, specified by the multiplicity indicators,
are not violated, that is, the number of entities in the application model that
are classified with a certain role complies with the multiplicity indicator of
the domain-model entity, and (b) the link structure of the application model

� Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

is equivalent to the link structure of the domain model, considering their
corresponding entities.

Refinement Equivalence

This section discusses different refinement operations and provides observa-
tions that characterize their structural impact in an OPM model in order to
establish an in-depth understanding of model refinement in general. It should
be noted that for the purposes of model retrieval and validation, matching may
address models at different abstraction levels. The retrieval of a complete and
detailed model requires its matching against a preliminary or partial input
model, which is at a higher abstraction level than the retrieved model. Simi-
larly, the validation of an application model against a domain model requires
the matching of a low-level detailed (application) model against a high-level
(domain) model. However, model matching as addressed in the literature
so far has mainly dealt with models whose abstraction levels are identical.
Two common similarity aspects (or measures) that are usually checked are
entity similarity and structural similarity. Entity similarity assessment (also
called semantic similarity) aims at identifying entities that are semantically
similar in the models that are being matched. It may employ mechanisms
of various accuracy and complexity levels, ranging from the identification
of identical entity name and type (Soffer, Golany, & Dori, 2005), through
thesaurus-based affinity measurement (Castano, De Antonellis, Fogini, &
Pernici, 1998; Ralyte & Rolland, 2001), to concept hierarchy-based distance
measurement (Chen-Burger et al., 2000; Lai et al., 1999). Structural similarity
assessment, on the other hand, typically follows the links among the entities
in one model and searches for parallels in the other model (Chen-Burger et
al.; Massonet & Lamsweerde, 1997; Ralyte & Rolland; Sutcliffe & Maiden,
1998). This is sometimes termed neighboring-entities search. According to
these two similarity assessments, two models are considered matching if
they include the same entities and the same links to some extent. However,
in case the models that should be matched are not at the same level of ab-
straction, then one cannot expect both models to have the same structure and
set of links. Rather, while a high-level model specifies a set of entities and
relationships among them, the low-level model includes the same entities
(or their instances) along with other entities. Therefore, the model structure

Matching Models of Different Abstraction Levels �

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

might be different, including all the other entities that exist in the detailed
model and the links among them.
Since the instantiation of a domain model to an application model is a specific
case of refinement, specific implications with respect to the application model
validation shall be indicated. The most notable characteristic of this specific
case is that entities of the application model are classified as instances of enti-
ties in the domain model. Hence, semantic similarity assessment techniques
(e.g., Palopoli, Sacca, Terracina, & Ursino, 2003; Ralyte & Rolland, 2001)
are not needed for matching these models.
We view an OPD as a directed and labeled graph whose nodes are entities
(objects and processes) and edges are both structural and behavioral links
among the entities. A refinement operation inserts new nodes and edges into
an existing graph. These additional parts may replace existing edges, thus
they may form paths between nodes that were directly linked in the original
graph.
We shall examine and characterize the results of two types of refinement
operations: refinement of structure and refinement of behavior. Specifically,
we aim at identifying conditions under which a path can be considered
equivalent to a given link.

Definition 1: Let A and B be entities, and let P be a path between A and B.
P is equivalent to a link of type l if and only if a link l between A and B can
be replaced by P through a refinement operation.
Notation: P ≅ l.

Refinement of Structure

The paths established when structure is refined can replace both structural
and procedural links that originally existed with the entity whose structure is
being refined. We shall examine these two categories of links and characterize
the path that replaces them in a refined model.

Structural links: When more structural details are revealed, a direct struc-
tural link in the abstract model can be replaced by a path including structural
links and entities. This is demonstrated in the example shown in Figure 2, in
which a characterization link between Warehouse and Number of Locations

10 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

in the abstract model (a) appears as a path including both specialization and
characterization links in the refined model (b). The refinement indicates that
only a warehouse in which inventory locations are managed is characterized
by the attribute Number of Locations.
In general, a path including a number of structural links can always be
abstracted to a specific link type independently of the order in which these
links appear.

Definition 2: Let L be a set of link types. l ∈ L is dominant with respect to
L if and only if P ≅ l is true for every path P that includes l together with
any r ∈ L.
Notation: DL = l.

Considering the example of Figure 2, it is clear that D{Specialization, Characterization}
= Characterization as inheritance maintains characteristics along the hierar-
chy. Another example of this dominance is the attribute Number of Wheels,
which characterizes a vehicle as well as a car, which is a specialization of
a vehicle.

Observation 1: Let A and B be entities and P be a path from A to B. Let L
be the set of link types included in P. If DL = l, then P ≅ l.

Figure 2. Example of refinement involving a structural link

Matching Models of Different Abstraction Levels 11

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Observation 1 is a direct result of the definition of dominance with respect to
a set of link types. It is useful for identifying equivalence regarding paths that
include structural links since dominance can easily be established considering
these link types, as in the above example. As another example of establish-
ing dominance, consider the attribute Power that characterizes Engine. It
characterizes the engine as well as the car of which the engine is part. Hence,
characterization is dominant with respect to aggregation as well.

Procedural links: When a procedural link exists between an entity whose
structure is being refined and another entity, the resulting path in the refined
model consists of both structural and procedural links. As an example, Figure
3a shows an abstract model including an effect link between Engineering
Change Processing and Item Technical Data. A refined model (Figure 33b)
shows that Item Technical Data is composed of Bill of Material and Rout-
ing, which are affected by Engineering Change Processing. A third part of
Item Technical Data, Technical Specification, remains intact as it is not even
connected to the process.

In general, a refined model may specify the interaction of a process with
attributes, parts, or specializations of an entity, whereas an abstract model
simply specifies an interaction with the entity.

Figure 3. Example of a procedural link in structure refinement

12 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Observation 2: Let A, B, and C be entities. Let P be a path from A to B so
that A is linked to C and C is linked to B by a procedural link of type l. If the
link from A to C is (Characterization) ∨ (Aggregation) ∨ (Specialization),
then P ≅ l.

The proof of Observation 2 is by a simple demonstration that such refine-
ment is possible (e.g., Figure 3). Note that Observation 2 does not imply the
dominance of procedural links with respect to structural links since there
may be paths that cannot be abstracted to a procedural link. For example, in
Figure 3b, the path between Engineering Change Processing and Technical
Specifications is not equivalent to the effect link included in it.

Refinement of Behavior

In general, the refinement of behavior is more difficult to identify than the
refinement of structure for reasons that are explained below. Nevertheless,
this difficulty is partly overcome when dealing with ADOM’s classified
entities. We shall first address the general case of refinement when no entity
classification is used, and then explain how it becomes easier when ADOM-
related models are addressed.
The behavior of a system or a domain is captured by processes. A process
can be refined into a sequence of activities (subprocesses) that comprise it.
Such a sequence is modeled as a path leading from an initial state (or input
objects) to a final state (or output objects). The subprocesses in a refined
process may interact with other objects besides the ones the higher level
process interacts with, but these objects can be considered internal, meaning
that in the abstract view of the process, the interaction is not observed. For
example, consider two people who perform a task together. The interaction
and allocation of work between them is internal in the sense that it is not of
interest to others as long as the job is done.
The difficulty in identifying a refined process lies in the fact that unlike the
refinement of structure, in which a link is replaced by a path, when a process
is refined, an entity is replaced by a path (or several paths). Therefore, the
initial and final states are the only reference points available. However, this
information is not always sufficient for a conclusive identification of refine-
ment equivalence. Consider a process of a high level of abstraction (e.g.,
building a house), having an initial state (existing plans, resources) and a

Matching Models of Different Abstraction Levels 13

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

final state (a house built). This process can be refined into many different
processes, all having the same initial and final states and subset of interac-
tions (stakeholders, authorities, building materials) as the abstract one. Yet,
while being all equivalent to the abstract model, these refined processes are
not equivalent to one another. As a detailed example, consider the abstract
process of Supplying Customer Order in Figure 4a, which can be refined into
the two different processes in Figure 4b and c. These two refined processes
have identical initial and final states, Open Customer Order and Delivered
Customer Order, respectively, as does the abstract process. However, while

Figure 4. An abstract model and two possible refinements

14 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

both processes can be considered equivalent to the abstract model, they are
not equivalent to one another (in their internal division into subprocesses,
additional inputs and outputs, etc.). It is therefore easier to formulate a neces-
sary condition rather than a necessary and sufficient condition for refinement
equivalence of processes.

Observation 3: Let m1 be a model portion in which process A transforms an
initial state s1 into a final state s2. Let E1 be the set of entities directly linked
to A in m1. Let m2 be a model portion that refines m1. Then m2 consists of
a path P and a set E2 of entities that are directly linked to the entities of P so
that P is from an initial state s1 to a final state s2 and E1 ⊆ E2.

Note that the initial and final states are not necessarily explicitly represented
in an abstract model, in which case the inputs and outputs of the process
should be considered in a similar manner to the states.
Observation 3 provides a necessary condition that might not be sufficient for
the identification of equivalence. When the lower level model is a result of an
instantiation operation of a domain model, its entities are assigned roles that
correspond to domain-model entities. In other cases, we need a way to relate
the subprocesses in a refined model to a process in the abstract model. For
that purpose, we note that it is likely that at least one of the subprocesses in
a refined model bears a name that can be identified as similar to the general
process’ name as appears in the abstract model. Such resemblance can be
detected by existing affinity detection techniques, which are not the focus
of this chapter. This can be explained by a tendency to name the process in
the abstract model after the main activity that constitutes the essence of the
process. In fact, such tendency is not unique to process models. Suggesting
a semiautomatic procedure for abstracting a database schema, Castano et
al. (1998) refer to a “representative” element of the detailed schema, whose
name should be given to the generalizing element in the abstracted schema.
When refining an abstract process to lower abstraction levels, details of other
activities are revealed. In the example of Figure 4, Supplying Goods to Cus-
tomer can be identified as similar to Supplying Customer Order.
In such cases, we expect the refined model to include a path from the initial
state to the similarly named process (or, in ADOM-based models, to the pro-

Matching Models of Different Abstraction Levels 15

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

cess whose role corresponds to the process in the domain model) and to the
final state. A path is also expected to relate the process to other entities that
interact with it in the higher-abstraction-level model. If such paths exist in a
detailed model, and if they are equivalent to the links of the abstract model,
than the detailed model can be considered as a refinement of the abstract one.
Observation 4 indicates a condition under which a path that may include a
number of processes and objects or states is considered as equivalent to a
specific type of procedural link.

Observation 4: Let A be an object or a state of an object, B be a process,
and P be a path between A and B. Let l be the procedural link by which A is
related to P, then P ≅ l.

Note that the direction of the path can be from the object to the process or
backward, depending on the specific links involved.
Observation 4 can be justified when abstracting the entire path (processes
and objects) to a process (named after its representative activity, B). The link
that determines the nature of the interaction between this abstracted process
and the object is the link relating the object to the path. In the example of
Figure 4b and c, the path from the state Open of Customer Order Status to
Supplying Goods to Customer is equivalent to the direct link from Open to
Supplying Customer Order in 4a.
Observation 4 provides a sufficient condition for identifying refinement
equivalence. However, this condition, though sufficient, is not a necessary
one. It is based on the assumption, discussed above, that the abstract process is
named after its main activity. This assumption is not necessarily always true.
For example, a production process can be refined into processes of cutting,
drilling, milling, and so forth. In such cases, the path between the initial and
final states in the abstract model has to be matched against the path in the
detailed model. That path can be decomposed into individual links for this
purpose. As explained above, when application-model processes bear roles
that classify them as corresponding to domain-model processes, the nam-
ing difficulty does not exist. Thus, Observation 4 can conclusively identify
refinement equivalence.

16 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Tracking Refinement Equivalence

The previous section identified conditions that enable the detection of refine-
ment equivalence. When an application model is validated against a domain
model, the following steps can be taken: (a) The names of the entities that
have a role assigned to them in the application model are replaced by their
roles, (b) satisfaction of the multiplicity constraints specified in the domain
model is determined, and (c) the links among the entities in the domain model
are matched by corresponding links in the application model. In case such
corresponding link is not found, an equivalent path is searched for between
the source entity and the destination entity of the link.
This section describes a rule-based algorithm that identifies refinement-
equivalent paths with respect to a given link type. The algorithm is basically
a path-searching algorithm applying rules, which follow the discussion and
observations of the previous section, to assure that the path found is indeed
equivalent to the link being matched.

Searching for an Equivalent Path

Consider a pair of OPDs <A, D>, where A is the application model and D is
the domain model being matched. Assume A is searched for a path between
two entities that are directly related in D. The steps of the search shall first
be informally described, and then specified formally. Each step of the search
partitions A into two sets of entities: One is the set of entities to which a path
from the source entity is already established, and the other is the set of entities
that are not yet explored. Starting from the source entity, each step follows a
link and moves one entity from the unexplored set to the set of entities that
are connected to the source. The choice of link to be followed is based on the
search rules, whose details are given below. The steps repeat until a direct
link is found from the connected set of entities to the destination entity, or
until all the links have been exhausted and it is clear that the searched-for
path does not exist. The algorithm seeks to establish the existence of a path
that is not necessarily the shortest path, hence no backtracking is performed
and the number of steps is at most the number of entities in A minus one.
The formal specification of the search applies the following notation.
s: the source entity of the link in D whose equivalent path is being searched
for in A:

Matching Models of Different Abstraction Levels 17

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

d: the destination entity of the link in D whose equivalent path is being
searched for in A:

• 	 LM(e1, e2): Let e1 and e2 be entities; then LM(e1, e2) is a Boolean variable
whose TRUE value indicates the existence of a direct link from e1 to e2
in model M (M is either the application model A or the domain model
D).

• 	 LinkM(S1, S2): Let S1 and S2 be nonoverlapping sets of entities in model
M; then LinkM(S1, S2) is an indicator expressing the existence of a direct
link from an entity in S1 to an entity in S2.

1 2MLink (S , S) =

0 otherwise
11 if e∃ ∈ 21 2S , S ,e ∈ 1 2Msuch that L (,) TRUEe e =




• 	 SM: the set of entities in model M
• 	 Ci(M, s): the set of entities in model M to which a path from s has been

found until the ith step of the search
• 	 Ui(M, s): The set of entities in model M whose relationship with s has

not yet been investigated by the ith step of the search

In the context of the application model, Ci(A, s) and Ui(A, s) partition SA so
that at each step i of the search, SA = Ci(A, s) + Ui(A, s) + {d}. In other words,
each entity in A belongs either to the set of entities that have already been
established as linked to s (including s itself) or to the set of entities whose
relationship with s is unknown yet, or to the set that holds d only.

Lemma: Let an application model A be searched for a path from s to d at
the ith step of the search. A path from s to d exists only if Max [LinkA (Ci(A,
s), {d}), LinkA (Ci(A, s), Ui(A, s))*LinkA (Ui(A, s),{d})] = 1.

Proof: Assume a path exists. It can lead from Ci(A, s) directly to d, then
LinkA(Ci(A, s),{d}) = 1. Otherwise, it leads from Ci(A, s) to some entity
e∈Ui(A, s) and from e to d. Then LinkA(Ci(A, s), Ui(A, s)) = 1 and LinkA(Ui(A,
s), {d}) = 1.

18 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Assume a path does not exist. Then LinkA(Ci(A,s),{d}) = 0 and the follow-
ing are true:

1.	 If LinkA(Ci(A, s), Ui(A, s)) = 1, then LinkA(Ui(A, s),{d}) = 0.
2.	 If LinkA(Ui(A, s),{d}) = 1, then LinkA(Ci(A, s), Ui(A, s)) = 0.

Note that the above lemma is one sided; that is, it does not imply that if Max
[LinkA (Ci(A, s), {d}), LinkA (Ci(A, s), Ui(A, s))*LinkA (Ui(A, s),{d})] = 1,
then a path exists. Rather, this is a necessary condition for the existence of
such a path.
The initial state of the search is C0(A, s) = s, U0(A, s) = SA – {s, d}. At each
step, if the condition specified in the lemma is satisfied, one entity is moved
from Ui(A, s) to Ci(A, s) by following a link, implying that a relation of this
entity to s is established. The steps repeat until either a path is found, that
is, LinkA(Ci(A, s),{d}) = 1, or the condition of the lemma is not satisfied;
that is, the searched-for path does not exist. The search rules ensure that the
found path is equivalent to the link being searched for.
Figure 5 specifies the equivalence path search algorithm. This algorithm
employs the following operations.

Fold_Structure (entity): A folding operation of structural relations in OPM
is an abstraction operation in which a detailed OPD portion, including struc-
tural relations such as characterization, aggregation, and specialization, is

Figure 5. Equivalent path search algorithm
Current = s
Fold_Structure (d)
Exclude_Links
Do while (LinkA(Ci(A, s),Ui(A, s))*LinkA(Ui(A, s),{d}) = 1)
AND (LinkA(Ci(A, s),{d}) <> 1)

If Link_Type is procedural then Fold_Structure(Current)
Exclude_Links
Verify_Equivalence
If Link_Type is structural then Compute_Cardinality
Select_Entity

End Do
If (LinkA(Ci(A, s),{d}) = 1) AND (Path_Cardinality =

Link_Cardinality) AND (Condition) then Path_Found =
TRUE

Else Path_Found = FALSE

Matching Models of Different Abstraction Levels 19

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

replaced by an OPD portion of a higher abstraction level. The entities that
provide the structure details of the entity being folded (which is the param-
eter of this operation) are not shown in the abstracted OPD. Other entities,
which are originally related to the structure details, are related directly to
the folded entity.
This operation is employed only when the link, whose equivalent path is
searched for, is a procedural link. Its role is to replace paths created through
refinement of structure by their equivalent procedural links on the basis of
Observation 2.

Exclude_Links: This operation excludes links that cannot be included in
the path. Links can be excluded from the search for three reasons. The first
reason is that they cannot be part of the path according to the search rules,
in which case they are excluded at the beginning of the search. The second
reason is that their direction is opposite of the search direction. At every
step of the search, the unidirectional links from the entities of Ui(A, s) to the
entities of Ci(A, s) are excluded from the search. The last reason applies to
inheritance (is-a) links, which may be included in a path in both directions,
from the special to the general as well as the other way. When going up the
relation, the links to other specializations of the general entity cannot be
included in the path.

Select_Entity: At every step of the search, all the links from the entities of
Ci(A, s) to the entities of Ui(A, s) are arranged according to priorities defined
by the search rules. The first link according to this order is selected and the
entity it relates to is moved to Ci(A, s) and becomes the Current entity.

Verify_Equivalence: The search rules specify for a given link the link type
that must be included in the path and its required position (at the source, at
the destination, or anywhere in the path). If the required position is at the
source or destination of the path, then all the links from s or to d (respectively),
which are not of the mandatory type (i.e., are not of the type that must be in
that position in the path in order to preserve the nature of the interaction), are
excluded from the search at the first step by the Exclude_Links operation.
As a result, a Boolean variable Condition is assigned a TRUE value. If the
required position is anywhere in the path, the Condition is verified by a set
of indicators ECe, defined next.

20 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Let e be an entity in Ci(A, s); then ECe = 1 if and only if a link of the manda-
tory type is in the path from s to e.
Starting at ECs = 0, and letting e be moved from Ui(A, s) to Ci(A, s) through
a link of type t from an entity a∈Ci(A, s), then:

1 if (EC 1) or (is of mandatory type)
EC

0 otherwise
a

e

t=
= 


When a path is found, ECd = 1 implies that it includes at least one link of the
mandatory type (according to the conditions specified by the search rules),
in which case Condition = TRUE.

Compute_Cardinality: This operation is performed only when structural
relations are searched for. The cardinality of a link is defined as <SL, SU,
DL, DU>, where SL is the source lower participation constraint, SU is the
source upper participation constraint, DL is the destination lower participation
constraint, and DU is the destination upper participation constraint.
Let e be an entity in Ci(A, s); then the aggregated cardinality of the path from
s to e is denoted by <SLe, SUe, DLe, DUe>, where s holds <1, 1, 1, 1>.
Let a be moved to Ci(A, s) through a link whose cardinality is <SL, SU, DL,
DU> from entity e∈Ci(A, s), then SLa = SLe * SL, SUa = SUe * SU, DLa =
DLe * DL, DUa = DUe * DU.
For example, assume an item is supplied by zero to three suppliers, a sup-
plier has one to two contact persons, and a supplier can supply one or more
(1...m) items. The aggregated cardinality of the path between an item and a
purchasing contact person is <1, m, 0, 6>.

Search Rules

The search for an equivalent path employs rules of two types: link selection
rules and equivalence conditions. Both rule types are defined for each type
of link in OPM. A link selection rule defines the types of links that can be
included in an equivalent path and provides searching priorities for the search
algorithm. It is applied by the Exclude_Links operation, which excludes all
the irrelevant links from the search, and by the Select_Entity operation, which

Matching Models of Different Abstraction Levels 21

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

uses the priorities given for selecting the entity to be moved from Ui(A, s) to
Ci(A, s). An equivalence condition defines conditions for a path to be equiva-
lent to a link of a certain type. It is employed by the Verify_Equivalence and
Exclude_Links operations. Conditions may specify link types that must be
included in a path and their required positions that can be at the source of
the path, at its destination, or at any point in the path.
A link selection rule is of the following form:

Link Selection (Link Type): {Set of Types}

Link Type is the type of link to which the path is to be equivalent, while Set
of Types is an ordered set of link types. All the link types in the set can be
included in a path, which is equivalent to Link Type. Their order in the set
determines the priority in which the search algorithm considers links in the
examined OPD when searching for a path.
On the basis of Observation 1, the Set of Types specified for structural link
types satisfies DS = l, where l is the Link Type and S is the Set of Types.
For example, the link selection rule for aggregation, which is a structural link
that denotes a whole-part relation and is dominant with respect to specializa-
tion (is-a) relations only, is:

Link Selection (Aggregation): {Aggregation, Specialization}

For procedural link types, the Set of Types is defined on the basis of Observa-
tion 4. According to this observation, the link that determines the equivalence
is the one related to the source or destination object without restrictions on
the types of links in the path. Hence, the Set of Types for procedural link
types includes all the types of links in OPM.
The order of the types in the Set of Types always sets the relevant Link Type
as the first priority for the search algorithm. For procedural link types, it lets
the algorithm prefer procedural links over structural ones.
An equivalence condition is of the following form:

Equivalence Condition (Link Type): Mandatory Type must be located at Required Position in the

path

22 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Mandatory Type is a link type that is necessarily included in the path in order
to preserve the nature of the interaction, where Required Position is the exact
position where it should appear (the possible values are at Source Position,
at Destination Position, and Anywhere).
Mandatory Type is, with one exception, the Link Type itself. The exception
is an invocation link, which represents the triggering of a process by the
completion of another process. This can also be modeled as an event created
by the first process and triggering the second one. In this case, an event link
replaces the invocation link.
For structural link types, the Required Position is Anywhere, since the link
selection rules ensure the dominance of the specific link type with respect
to the links in the path. Hence, their position in the path is of no importance
as long as they are present. For procedural link types, the Required Position,
according to Observation 4, depends on the link type. Links whose direction
is from the object to the process (e.g., instrument links) require the Manda-
tory Type at the source of the path, while links that lead from the process to
the object (e.g., result links, which are unidirectional effect links) require the
Mandatory Type at the destination of the path.
For example, below are the equivalence conditions for aggregation links
(i.e., structural links that denote whole-part relations) and instrument links
(i.e., procedural links that denote input objects that are not changed by the
process; these links are directed from the object to the process).

Equivalence Condition (Aggregation): Aggregation must be located Anywhere in the path

Equivalence Condition (Instrument Link): Instrument Link must be located at Source Position in

the path

As explained above, the two types of rules are based on Observation 1, which
addresses structural links when structure is refined, and on Observation 4,
which addresses procedural links when behavior is refined. Observation 2,
which addresses procedural links when structure is refined, is not applied as
part of the rule base, but is taken into account by the Fold_Structure opera-
tion performed by the search algorithm.

Matching Models of Different Abstraction Levels 23

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Exemplifying the Equivalent-Path Search Algorithm

The algorithm steps are illustrated by an example given in Figure 6: Figure
6a is part of a domain model, while Figure 6b is an application model that
should be matched against the domain model. The domain model specifies
the main concepts as well as their multiplicity constraints. For example, Pro-

Figure 6. Refinement Equivalence Example

(b)

(a)

24 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

duction Order and Issuing to Production are indicated as mandatory single
entities (the 1..1 at the right lower corner of the entities), meaning they must
be instantiated exactly once in any application model of the domain, while
Production Order BOM and Item Stock are indicated as mandatory multiple
entities (the 1..m at the right lower corner of the entities), meaning they must
appear at least once in any application model in the domain. Correspondingly,
some of the application-model entities have roles (at their left upper corner)
that relate them to the domain-model entities, while others are additional ap-
plication-specific entities. Note that the number of role-classified entities in
the application model is consistent with the multiplicity indicators specified
in the domain model for each role.
None of the procedural links specified in Figure 6a appears as a direct link
in Figure 6b. Nevertheless, they are all matched by equivalent paths in the
application model. The domain model specifies that a process of Issuing to
Production affects the Production Order and the Item Stock, and uses the
Production Order BOM (which specifies the required materials). In the ap-
plication model, a process of Releasing Production Order precedes Issuing

Figure 7. Search Algorithm 1st Step

Matching Models of Different Abstraction Levels 25

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Item (whose role is Issuing to Production), using Item Inventory (whose role
is Item Stock) information as well as the item ID and quantities specified by
PO BOM Lines, which are parts of the PO BOM (both have a role of Produc-
tion Order BOM). The process of Releasing Production Order creates Order
Documents (a set of documents, specifying details of the production order, to
be used in the production process) and a Kitting List, which is a list of items
to be prepared in kits before they can be issued to production. The Issuing
Process uses the Kitting List and affects the Item Inventory.
We shall follow the steps of the search algorithm for tracking an equivalent
path that matches the instrument link from Production Order BOM to Is-
suing to Production in the domain model of Figure 6(a) in the application
model of Figure 6(b). Two entities in that model are classified with the role
of Production Order BOM. However, since one is part of the other, we will
use the whole as the source of the searched path, as illustrated in Figures 7
to 10. The search in Figures 7 to 10 is performed after the names of the enti-
ties have been replaced by their roles (whenever they have one), according
to the first validation step.

Figure 8. Search Algorithm 2nd Step

26 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Step 1 (see Figure 7): C0(A, s) includes the source entity, Production Order
BOM (highlighted). The source entity is the Current entity, and a Fold_
Structure(Current) operation is performed. As a result, its structural details
are not seen, and the instrument links originally related to these details are
now related directly to Production Order BOM itself. U0(A, s) includes all
the other entities in the model, except the source entity, Production Order
BOM, and the destination entity, Issuing to Production (highlighted). C0(A,
s) is linked to U0(A, s), which is linked to the destination entity, thus the
condition of the lemma is satisfied.

Step 2 (see Figure 8): Following the instrument link, C1(A, s) includes Re-
leasing Production Order in addition to Production Order BOM. Note that
the equivalence condition of an instrument link requires that the first move
should be through an instrument link, and it is satisfied. Two instrument links
that lead to Releasing Production Order are excluded from the search by the
Exclude_Links operation since their direction is opposite of the path direction.
C1(A, s) is still linked to U1(A, s), which is linked to the destination entity.

Figure 9. Search Algorithm 3rd Step

Matching Models of Different Abstraction Levels 27

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Step 3 (see Figure 9): Following the effect link, Order Documents is included
in C2(A, s). Note that this is a random choice from the three effect links that
lead from Releasing Production Order. C2(A, s) is still linked to U2(A, s),
which is linked to the destination entity.

Step 4 (see Figure 10): Following the next effect link from C2(A, s), Kit-
ting List is now added to C3(A, s). C3(A, s) is now linked to the destination
entity, thus establishing a path that meets the equivalence conditions, and is
therefore equivalent to the direct link of the domain model.

Note that Step 3 is actually redundant and could be avoided by a different
choice of link. Nevertheless, by addressing all the links of the Ci(A, s) set,
the algorithm is able to simply look one step ahead at a time and avoid a
recursive backtracking.
The complexity of the search algorithm is O(|SA|), where |SA| is the number
of entities in A. The search is performed for each link in D when the models

Figure 10. Search Algorithm 4th Step

28 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

are matched. Hence, the complexity of the matching is O(|SD|2*|SA|). Note
that |SD| is expected to be significantly smaller than |SA|.

Related Work

Model similarity has been addressed by several disciplines. The ones that
are relevant to this work are the disciplines of reuse and schema analysis
and matching. The difference in abstraction level between matched models
has not, to the best of our knowledge, been explicitly addressed in the reuse
literature. Kim (2001) presents an object-oriented model reuse application in
which an initial model, including classes and nonspecific links, serves as a
basis for retrieving an existing complete model. The retrieved model is then
modified and adapted to the current needs using modification rules, whose
details are not presented. No details are available about how a complete
model is retrieved and evaluated, how this retrieval considers the nonspecific
links of the input model, and how structurally different from each other the
models retrieved are.
Structural similarity plays an important role in the works that deal with ana-
logical reasoning (Massonet & Lamsweerde, 1997; Sutcliffe & Maiden, 1998),
where models designed for a certain domain are applied to other domains by
analogy. The retrieval is based on structural properties of the model and on
semantics, which is based on generalizations. In Sutcliffe and Maiden, the
models to be retrieved include a number of layers, each dealing with different
information types, going from an abstract layer to a detailed one. The match-
ing with the input information interactively follows these layers of specific
information types, and the user is required by the system to provide enough
information to discriminate between existing models. Hence, the structural
similarity deals with models of the same abstraction level. In Massonet and
Lamsweerde, while the entities of an input model are generalized to a higher
level in an is-a hierarchy, their link structure is expected to remain the same
and serves as a basis for structural similarity assessment.
Other works that apply reuse for method engineering (Ralyte & Rolland,
2001) and for enterprise modeling (Chen-Burger et al., 2000) use simple
structural similarity assessment along with semantic similarity based on
affinity (Ralyte & Rolland) or on a generalization hierarchy (Chen-Burger
et al.). The model used by Ralyte and Rolland includes multiple abstraction

Matching Models of Different Abstraction Levels 29

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

levels. Hence, there might be a match between the abstraction level of a query
model and one of the levels of the reusable models, but it is not explicitly
addressed and verified. None of the above reviewed works relates to model
matching for validation purposes as proposed in this chapter.
Schema-matching literature focuses on the semantic mapping of one schema
to the other. While semantic similarity in the reuse literature is mostly affinity
based, or in some cases relies on is-a hierarchies, semantic matching in the
schema-matching literature sometimes combines the affinity of terms with
structural considerations. Schema matching maps elements of one schema to
elements of another schema rather than compute similarity measures between
the two schemas. Hence, each pair of elements is thoroughly examined and
structural aspects, such as attributes and is-a relations, are taken into account
(Madhavan, Bernstein, & Rahm, 2001; Rahm & Bernstein, 2001; Rodriguez
& Egenhofer, 1999). In some cases, paths are sought where direct links do
not exist (Palopoli et al., 2003). Nevertheless, dealing with schemas means
dealing with a low level of abstraction. Some schemas may be more detailed
than others, and the techniques suggested are aimed at overcoming such
differences rather than at dealing with models that are basically at different
abstraction levels. Typical to this situation is the use of the term “structural
equivalence” of schemas (Algaic & Bernstein, 2001), which relates to a
consistent mapping of schema elements from one schema to another and
backward in the lowest abstraction level. It is defined as structural as opposed
to semantic equivalence, which relates to integrity constraints as well.
The similarity assessment of entities, presented by Rodriguez and Egenhofer
(1999), relates to parts, functions, and attributes of two entity classes. Their
similarity measure uses a function that provides asymmetric values for en-
tity classes that belong to different levels of abstraction. While addressing
single entity classes, they take contextual information into account for the
similarity measurement. However, context information of an entity cannot be
considered equivalent to a view of the entity as a part of a model, including
relationships with other entities.
A more holistic view of schema analysis, including a variety of techniques
for schema abstraction, matching, and reuse, is presented in Castano et al.
(1998). Schema abstraction is an operation in the opposite direction compared
to our discussion of refinement operations. The ERD schemas addressed limit
the discussion to structural links only, without addressing the representation
of behavior. Yet, their abstraction operation is consistent with our opposite-
direction refinement, and applying the algorithm presented here to their ex-

30 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

amples of detailed and abstract schema yields a match. A number of schema
similarity measures are presented there, dealing mainly with semantics and,
to a limited extent, model structure, particularly with attributes. Interestingly
enough, their fuzzy similarity measure is asymmetric and may indicate that
schema a matches schema b to a higher extent than in the other direction.
This is explained as being a result of differences in the abstraction level
between the two schemas.
Our approach can be classified according to the extensive classification of
schema-matching approaches presented by Shvaiko and Euzenat (2005).
It is a structure-level approach (computes mapping elements by analyzing
how entities appear together in a structure), syntactic (interprets the input in
function of its sole structure following some clearly stated algorithm), and
graph based (addressing children, leaves, and relations of entities). However,
this classification does not relate to differences in the abstraction level of
the matched schemas, and this issue is not addressed by any of the works
surveyed there.
In summary, the main contribution of this chapter as compared to related
earlier model-matching works is in explicitly addressing models of different
abstraction levels, representing both the structure and behavior of a domain
of applications.

Conclusion

The reuse of models requires activities that in many cases employ model
matching. In this chapter, we stressed that differences in the abstraction level
are likely to exist between models, specifically in the retrieval and validation
activities, and therefore refinement equivalence is a better measure than struc-
tural similarity. Refinement equivalence is identified when a detailed model
can be considered a refinement of a model of a higher abstraction level. In
this chapter we discussed the notion of refinement equivalence as an enabler
of validating a detailed application model against an abstract domain model
in the context of the ADOM approach for domain analysis.
The discussion of refinement operations and the observations that characterize
their impact on model structure, as well as the search algorithm, address OPM
models. However, ADOM is language independent and can be used with other
modeling languages as well. Other modeling languages are different mainly

Matching Models of Different Abstraction Levels 31

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

in the separation of structural and behavioral aspects of the modeled domain
(and applications). Yet, the notion of refinement equivalence is of relevance
to models independently of the modeling language. Some of the observa-
tions made in this chapter can easily be generalized and become applicable
to other modeling languages. For example, Observation 1, which deals with
the dominance of structural relations in a path, is not specific to OPM only.
Hence, when dealing with models that capture structural information only
(e.g., ERD, UML class diagrams), the algorithm can be applied using the
search rules that relate to structural links only, omitting the Fold_Structure
operation. Regarding the behavioral aspects, generalization is less straight-
forward. In multiview modeling languages, such as UML, consistency among
views might also need consideration.
An equivalent-path search algorithm is, naturally, language specific, and
apparently needs to be developed for each modeling language. However,
the algorithm presented here is mainly a path-searching algorithm, while
specific features of the OPM links are captured by the equivalence rules.
Hence, the main body of the algorithm might be applicable to other model-
ing languages while the unique features of the language might affect mainly
the equivalence rules.
The search algorithm that enables refinement-equivalence identification
has been implemented in a reuse application that supports business-process
alignment and gap analysis in the implementation of ERP systems (Soffer et
al., 2005). The application matches abstract enterprise requirement models
with a detailed model of the ERP system, and retrieves the parts that match
the requirements.
Future research should extend the refinement-equivalence concept and ap-
ply it to other modeling languages that serve in reuse applications, such as
UML.

References

Algaic, S., & Bernstein, P. A. (2001). A model theory for generic schema
management. In Proceedings of DBPL (LNCS 2397, pp. 228-246).
Berlin, Germany: Springer-Verlag.

32 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Castano, S., De Antonellis, V., Fogini, M. G., & Pernici, B. (1998). Concep-
tual schema analysis: Techniques and applications. ACM Transactions
on Database System, 23(3), 286-333.

Chen-Burger, Y. H., Robertson, D., & Stader, J. (2000). A case-based reason-
ing framework for enterprise model building, sharing and reusing. In
Proceedings of the ECAI Knowledge Management and Organization
Memories Workshop, Berlin, Germany.

Dori, D. (2002). Object process methodology: A holistic systems paradigm.
Heidelberg, Germany: Springer Verlag.

Eckstein, S., Ahlbrecht, P., & Neumann, K. (2001). Increasing reusability
in information systems development by applying generic methods. In
Advanced information systems engineering (LNCS 2068, pp. 251-266).
Berlin, Germany: Springer-Verlag.

Kim, Y. J. (2001). An implementation and design of COMOR system for
OOM reuse. In Active Media Technology, 6th International Computer
Science Conference (LNCS 2252, pp. 314-320). Berlin, Germany:
Springer-Verlag.

Lai, L. F., Lee, J., & Yang, S. J. (1999). Fuzzy logic as a basis for reusing
task-based specifications. International Journal of Intelligent Systems,
14(4), 331-357.

Madhavan, J., Bernstein, P. A., & Rahm, E. (2001). Generic schema marching
with Cupid. In Proceedings of the VLDB Conference, Rome.

Massonet, P., & Lamsweerde, A. V. (1997). Analogical reuse of requirements
frameworks. In Proceedings of the Third IEEE Symposium on Require-
ments Engineering (RE’97) (pp. 26-37).

Mili, H., Mili, F., & Mili, A. (1995). Reusing software: Issues and research
directions. IEEE Transactions on Software Engineering, 21(6), 528-
561.

OMG. (2006). Meta-object facility (MOF™), version 2.0.
Palopoli, L., Sacca, D., Terracina, G., & Ursino, D. (2003). Uniform techniques

for deriving similarities of objects and subschemes in heterogeneous
databases. IEEE Transactions on Knowledge and Data Engineering,
15(2), 271-294.

Peleg, M., & Dori, D. (1999). Extending the object-process methodology
to handle real time systems. Journal of Object Oriented Programming,
11(8), 53-58.

Matching Models of Different Abstraction Levels 33

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Pernici, B., Mecella, M., & Batini, C. (2000). Conceptual modeling and
software components reuse: Towards the unification. In Information
systems engineering: State of the art and research themes (pp. 209-220).
London: Springer-Verlag.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4), 334-350.

Ralyte, J., & Rolland, C. (2001). An assembly process model for method
engineering. In Advanced information systems engineering (LNCS
2068, pp. 267-283). Berlin, Germany: Springer-Verlag.

Reinhartz-Berger, I., Dori, D., & Katz, S. (2002). Open reuse of component
designs in OPM/Web. In Proceedings of the 26th Annual International
Computer Software and Applications (pp. 19-24).

Reinhartz-Berger, I., & Sturm, A. (2004). Behavioral domain analysis: The
application-based domain modeling approach. In Proceedings of the 7th
International Conference on the Unified Modeling Language (UML2004)
(LNCS 3273, pp. 410-424). Berlin, Germany: Springer-Verlag.

Rodriguez, M. A., & Egenhofer, M. J. (1999). Putting similarity assessments
into context: Matching functions with the user’s intended operations.
In Proceedings of CONTEXT’99 (LNAI 1688, pp. 310-323). Berlin,
Germany: Springer-Verlag.

Shvaiko, P., & Euzenat, J. (2005). A survey of schema-based matching ap-
proaches. Journal on Data Semantics, 4, 146-171.

Soffer, P. (2005). Refinement equivalence in model-based reuse: Overcom-
ing differences in abstraction level. Journal of Database Management,
16(3), 21-39.

Soffer, P., Golany, B., & Dori, D. (2003). ERP modeling: A comprehensive
approach. Information Systems, 28(6), 673-690.

Soffer, P., Golany, B., & Dori, D. (2005). Aligning an ERP system with en-
terprise requirements: An object-process based approach. Computers
in Industry, 56(6), 639-662.

Soffer, P., Golany, B., Dori, D., & Wand, Y. (2001). Modelling off-the-shelf
information systems requirements: An ontological approach. Require-
ments Engineering, 6(3), 183-198.

Sturm, A., Dori, D., & Shehory, O. (2006), Domain modeling with object-
process methodology. In Proceedings of the Eighth International Con-
ference on Enterprise Information Systems.

34 Soffer, Reinhartz-Berger, & Sturm

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Sturm, A., & Reinhartz-Berger, I. (2004). Applying the application-based
domain modeling approach to UML structural views. In Proceedings
of the 23rd International Conference on Conceptual Modeling (ER2004)
(LNCS 3288, pp. 766-779). Berlin, Germany: Springer-Verlag.

Sutcliffe, A., & Maiden, N. A. (1998). The domain theory for requirements
engineering. IEEE Transactions on Software Engineering, 24(3), 174-
196.

Wenyin, L., & Dori, D. (1998). Object-process diagrams as an explicit al-
gorithm specification tool. Journal of Object-Oriented Programming,
12(2), 52-59.

Zhang, Z., & Lyytinen, K. (2001). A framework for component reuse in a
meta-modelling-based software development. Requirements Engineer-
ing, 6(2), 116-131.

