
k-Anonymous Decision Tree Induction

Arik Friedman, Assaf Schuster, and Ran Wolff

Technion – Israel Institute of Technology
Computer Science Dept.

{arikf,assaf,ranw}@cs.technion.ac.il

Abstract. In this paper we explore an approach to privacy preserving
data mining, which relies on the k-anonymity model. The k-anonymity
model guarantees that no private information in a table can be linked
to a group of less than k individuals. We suggest extended definitions
of k-anonymity, that allow to determine the k-anonymity of a data min-
ing model. Using the definitions we present decision tree induction al-
gorithms that are guaranteed to maintain k-anonymity of the learning
examples. Experiments show that embedding anonymization within the
decision tree induction provides better accuracy than anonymizing the
data first, and inducing the tree later.

1 Introduction

In recent years, the effectiveness of data mining tools in revealing the knowledge
locked within huge databases has raised the concern about its impact on the
privacy of individuals. Two main approaches to privacy preserving data mining
were suggested: The data transformation approach – e.g., [2] – tries to modify the
data so as to hide the sensitive part of it while retaining interesting pattern. The
cryptographic approach – e.g., [5, 11, 18] – uses cryptographic tools to prevent
information leakage during the computation of the data mining model. The
latter approach only applies to distributed data mining and does not prevent
leakage due to the model itself (see, [8]).

k-Anonymity is a definition for privacy which was conceived in the context of
databases and which has come a long way in the public arena. Roughly speaking,
k-anonymity provides a “blend in the crowd” approach to privacy. It assumes
that the owner of a data table can separate the columns into public ones (quasi-
identifiers) and private ones. Public columns may appear in external tables, and
thus be available to an attacker. private columns contains data which is not
available in external tables and needs to be protected. The guarantee provided
by k-anonymity is that an attacker would not be able to link private information
to groups of less than k individuals. This is enforced by making certain that every
combination of public attribute values appears in at least k rows of the released
table, or in no row at all. k-Anonymity is today accepted by both legislators
and corporations, and considered as providing the kind of privacy required by
legislation (i.e., by HIPAA [17]).

2 Arik Friedman, Assaf Schuster, and Ran Wolff

Table anonymization is NP-Hard [13]. Thus, heuristic efficient anonymization
of tables is the concern of most work in the area [1, 3, 6, 7, 10, 16]. Specific care is
given to preserving as much of the original data as possible. Interestingly, some
of this work deals with preserving data which would be useful should the table
be data mined following its release [7, 3, 6]. Data mining is envisioned as the
main target application of released data.

This paper takes a direct approach for the combination of k-anonymity and
data mining. instead of asking how data can be anonymized such that it is useful
for data mining, we ask how can data be mined such that the resulting model is
guaranteed to provide k-anonymity. We specifically discuss this question in the
context of decision tree induction. Hence, we describe a decision tree induction
algorithm whose output is guaranteed not to compromise k-anonymity of the
data from which it was induced.

Our approach is superior to existing methods (i.e., [3, 6, 7]) which guarantee
k-anonymity of a data mining model by building it from a k-anonymized table.
This is for some reasons: Firstly, for sake of efficiency, these methods choose to
generalize one attribute at a time, and when they do, generalize all of the tuples
at once. This kind of anonymization was termed single-dimension recoding [9].
Secondly, these methods are driven by heuristic cost metrics (e.g., classification
metric – in essence the classification error over the entire data) which are not
optimal for data mining. consequently, we show that a decision tree induced using
our method is usually more accurate than that induced by existing methods.
Needless to say, both decision trees provide the same level of anonymity.

This paper makes the following contributions:

– It suggests extended definitions of k-anonymity, which allow to determine the
k-anonymity of a data mining model with respect to the learning examples.

– It demonstrates how the definitions of k-anonymity can be applied to deter-
mine the anonymity of a decision tree.

– It presents a decision tree induction algorithm which guarantees k-anonymous
output and which performs better than existing methods in terms of accu-
racy on standard benchmarks.

Additionally, the extension of k-anonymity, and of the related l-diversity, model
to data mining provides a new data transformation method for privacy preserving
data mining. Unlike previous data transformation methods, this new extension
has a clear model of the attacker and of the privacy guaranteed. Furthermore,
this method is backed by privacy related legislation.

The organization of this paper is as follows: Section 2 outlines the extended
definitions of k-anonymity of data mining models. Section ?? demonstrates how
the definitions can be incorporated within decision tree induction algorithms to
guarantee k-anonymous output. Section 4 compares this new algorithm experi-
mentally to previous work. Conclusions are drown in Section 5.

k-Anonymous Decision Tree Induction 3

2 Extending k-Anonymity to Models

We start by extending the definition of k-anonymity beyond the release of tables.
Just as in the original k-anonymity model, we assume that the data owner can
determine which attributes are known to a potential attacker and can be used to
de-identify individuals, and which attributes are private knowledge. Additionally,
without loss of generality, we assume that each tuple in the database pertains
to a different individual.

Definition 1. [A Private Database] A private database is a collection of tuples
from a domain D = A×B = A1 × ...×Ak ×B1 × ...×B`. A1, . . . , Ak are public
attributes (a.k.a. quasi-identifiers) and B1, . . . , B` are private attributes.

We denote A = A1 × . . . × Ak the public subdomain of D. For every tuple
x ∈ D, the projection of x into A, xA, is the tuple in A that has the same
assignment to each public attribute as x. The projection of a table T onto A is
denoted TA = {xA : x ∈ T}.

Definition 2. [A Model] A model M is a function from a domain D to an
arbitrary output domain O.

Every model induces an equivalence relation on D, i.e., ∀x, y ∈ D, x ≡ y ⇔
M(x) = M(y). Respectively, the model partitions D into equivalence classes
such that [x] = {y ∈ D : y ≡ x}.

In our terminology, a decision tree is a function that assigns bins to tuples
in D. According to this, every bin within every leaf constitutes an equivalence
class. Two learning examples which fit into the same bin cannot be distinguished
from one another using the tree, even if they do not agree on all attribute values.

The users of the model are intended to be the data owner or the client. Both
know all the attribute values of the client’s tuple, and therefore, given the tuple
they can compute the function of the model. We now define the way the model
is perceived by an attacker, who only knows the values of public attributes in
some external table, but can nevertheless try to use the model.

Definition 3. [A Public Identifiable Database] A public identifiable database
TID = {(idx, xA) : x ∈ T} is a projection of a private database T to the public
subdomain A, such that every tuple of TA is associated with the identity of the
individual to whom the original tuple in T has pertained.

Given a tuple (idx, xA) ∈ TID, the private attribute values of x are unknown
to the attacker, and depending on those values there could be a number of
possible results for M(x). Consequently, there may be several equivalence classes
[x] to which an attacker can associate xA. We call this set of equivalence classes
the span of xA.

Definition 4. [Span] Given a model M , the span of a tuple a ∈ A is the set of
equivalence classes induced by M , which contain tuples x ∈ D whose projection
into A is a. Formally, SM (a) = {[x] : x ∈ D ∧ xA = a}. When M is evident from
the context, we will use the notation S(a).

4 Arik Friedman, Assaf Schuster, and Ran Wolff

Just like a model induces an equivalence relation on D, the spans induce an
equivalence relation on A, i.e., ∀x, y ∈ A, x ≡S y ⇔ S(x) = S(y). Respectively,
the spans partition A into equivalence classes such that [S(x)] = {y ∈ A : y ≡S

x}. Given a public identifiable database TID, we will use [S(x)]TID
= {(idy, yA) ∈

TID : yA ∈ [S(x)]} to denote tuples from TID associated with the equivalence
class [S(x)].

It is important to note here that tuples from D may belong to the same
equivalence class according to the model, while their projections on A may have
different spans. The decision tree in Figure 1 demonstrates this. The decision
tree was formed using the data in Table 1. The Marital Status attribute is public,
while the Sports Car and Loan Risk attributes are private. The tuples of Anna
and Ben belong to the same bin, because of the Sports Car and Loan Risk
attributes. The model ignores the value of the Marital Status attribute for these
tuples. On the other hand, an attacker, which has no access to the Sports Car
attribute values, is forced to consider routing Anna’s tuple to the leaf lUnmarried,
and routing Ben’s tuple to the leaf lMarried, in addition to routing each of them
to the leaf lNo. Therefore, the decision tree implies just two spans: {lMarried/good,
lMarried/bad, lno/good, lno/bad} for John, Ben, and Laura, and {lUnmarried/good,
lUnmarried/bad, lno/good, lno/bad} for Lisa, Robert, and Anna.

Name Marital Sports Loan
Status Car Risk

Lisa Unmarried Yes good

John Married Yes good

Ben Married No bad

Laura Married No bad

Robert Unmarried Yes bad

Anna Unmarried No bad

Table 1. Mortgage company data

Sports Car

Marital Status

Yes No

Married Unmarried
1 good
0 bad

1 good
1 bad

0 good
3 bad

lMarried lUnmarried

lNo

l0

lYes

Fig. 1. A k-anonymous decision tree

The structure of the model, and potentially additional information about
the equivalence classes, depending on the specific data mining model in use,
provide knowledge about the distribution of private attribute values within any
equivalence class. However, tuples that have the same span are indistinguishable
for the attacker with respect to the model. Hence the attacker can link private
information only to groups of tuples with the same span.

Definition 5. [Linking attack using a model] A linking attack using a model M

and a public identifiable database TID is performed by dividing the individuals
described in TID to the different spans implied by M , i.e., by computing S(xA)
for each individual (idx, xA) ∈ TID. Individuals that share the same value S(xA)
are grouped together. Those individuals are now linked to any private information
disclosed on this span.

For instance, an attacker who knows the identity, gender and marital status
of each of the mortgage company’s clients in Table ?? can learn, by applying

k-Anonymous Decision Tree Induction 5

the model, that Donna, Emily and Fiona will be classified by means of leaf
3 [Female, Married]. This leaf constitutes the span of the relevant tuples. It
contains two equivalence classes: one, with a population of 3, of individuals
who are identified as bad loan risks, and another, with a population of 0, of
individuals who are identified as good loan risks. Therefore the attacker can link
Donna, Emily and Fiona to 3 bad loan risk classifications. This example stresses
the difference between anonymity and inference of private data. Anonymity
guarantees “blending in the crowd”, and depends only on the size of a group of
identifiable individuals, regardless of inferred private attribute values. Hence, so
long as the k constraint is 3 or less, this information alone does not constitute a
k-anonymity breach.

Definition 6. [k-anonymous model] A model M is k-anonymous with respect
to a public identifiable table TID if a linking attack on the tuples in TID using
the model M will not succeed in linking private data to fewer than k individuals.
In other words, a model M is k-anonymous with respect to TID if, for every
(idx, xA) ∈ TID, |[S(xA)]TA

| ≥ k.

3 Inducing k-Anonymous Decision Trees

This section presents an algorithm which only induces k-anonymous decision
trees. The algorithm is based on the well known ID3 algorithm (Quinlan, [14])
and on its extension to real valued attributes (C4.5, [15]). ID3 applies greedy
hill-climbing to construct a decision tree. Starting from a root that holds the
entire learning set, it chooses the attribute that maximizes the information gain,
and splits the current node into several new nodes. The learning set is then
devided among the new nodes according to the value each tuple takes on the
chosen attribute, and the algorithm is applied recursively on the new nodes.

The k-anonymity preserving equivalent of ID3, kADET (Algorithm 1), Uses
the same hill-climbing approach, with two changes: One, when considering all
possible splits of a node, kADET eliminates those splits which would lead to a
tree which breaches k-anonymity. Two, the algorithm is not recursive. Instead,
at every moment, all of the potential node-attibute pairs are considered in a
single priority queue and the best k-anonymity retaining one is picked. This is
because but k-anonymity is defined in terms of public spans, which may include
private spans associated with several decision tree nodes. A decision regarding
one decision tree node may, thus, influence other nodes.

3.1 kADET Algorithm

The input for kADET is a private database T , the identification of the public at-
tributes P , of the private ones Q, and of the class attribute C, and the anonymity
argument k. First, kADET computes the initial set of equivalence classes (bins)
and spans: a single span containing all of the bins and all of the tuples if the class
is private, and as many spans as bins, with each span containing a single bin and

6 Arik Friedman, Assaf Schuster, and Ran Wolff

its tuple population in case the class is public. If one of the spans contains less
than k tuples from T kADET returns null and terminates. Otherwise, kADET
creates the initial queue of possible splits, each of which contains the root node
and one of P or Q. The queue is ordered according to the gain from each split.
kADET then enters the algorithm’s main loop.

The main loop of kADET has the following steps: First, the most gainful
candidate split (node, attribute, gain) is popped out of the queue. If the node
regarded in this split was already splitted, the candidate is purged. Otherwise,
kADET tests whether spliting the node according to the suggested attribute
would breach k-annonymity. If it would then, again, this candidate is purged.
However, if the attribute can be generalized, then a new candidate is inserted to
the queue with the generalized attribute this time. Last, if k-anonymity is not
breached, the node is splitted.

To split a node several actions are performed: First, every bin of the parent
node is splitted between the decendents nodes, and the spans containing the
original bins are updated with the new list of bins. The decendent nodes are
initialized with the same list of spans their parent had, and are added to the
nodes lists of those spans. In case the splitting attribute is private, no further
action is required, because the attacker is not able to distinguish the new bins
from one another. However, if the splitting attribute is public, than any span
associated with the original node can be devided by the attacker into as many
spans as there are values to that attribute. Therefore, each of the updated spans
has to be splitted into new spans, which contains bins from one new decendent
node, and all of the bins associated with other nodes pointed to by the original
span. The population of the original span has to likewise be devided according
to the value the tuples take on the splitting attributes. Every new node points
to (is associated with) all of the spans which contain its bins. Nodes whose bins
are contained in the new spans, and which are not decendents of the original
node, are associated with all of the new spans. This is, as explained in Section
2, because tuples that are routed to them may end up in any of the new nodes,
if the private values are varied.

Figure 3 demonstrates an execution of a k-anonymous-ID3 algorithm, using
the data in Table 1 as input. Marital Status is a public attribute; Sports Car
and Loan risk are private attributes. The result of the execution is the decision
tree in Figure 1.

3.2 Correctness and Overhead Analysis

The key to proving correctness of the algorithm is showing that the population
of each model span, as computed by the algorithm, is the same one defined in
Section 2: the set of tuples which, varying private attribute values, may end in
the same set of bins. The proof is omitted here due to lack of space.

The computational overhead incurred by the algorithm, respective to that
of ID3, stems from the need to compute and track all of the different spans. At
worst, the number of those spans can reach the size of the public domain A. To
see how, consider a tree in which all of the top nodes split on private attributes,

k-Anonymous Decision Tree Induction 7

Algorithm 1 k-Anonymous Decision – kADET Tree

1: Input: T – private dataset, P – public attributes, Q – private attributes, C – the
class attribute, k – anonymity parameter

2: Data Structures: See figure 2

3: procedure Main

4: Create root node in Tree. Create one bin for each value of C and divide T

among the bins. Set the Class variable to the value with the largest bin.
5: if C ∈ Q then

6: Create one span for every value of C such that each span contains the index
of the corresponding bin, and its population is the tuples of that bin. For each span
set Nodes to {root} and set root.Spans to the list of all spans.

7: else

8: Create a single span. Set span.Bins to the list of all bins, the population of
the span to T , Nodes to {root} and root.Spans to the single span.

9: if ∃span ∈ SpanList such that |span.population| < k then return nil

10: for att ∈ P ∪Q do add (root, att, Gain [root, att]) to the Queue.

11: while QUEUE 6= ∅ do

12: Let (n, a, gain) = arg max
gain
{Queue}

13: if n.sons 6= ∅ then Continue

14: if Breach (n, a, k) then

15: if a has generalization a’ then insert (root, a′, gain [root, a′]) to QUEUE

16: Continue
17: Split (n, a)

18: procedure Breach(node, att)
19: if att ∈ Q then return true

20: for v ∈ att.values do

21: for span ∈ node.Spans do

22: if |{t ∈ span.population : t[att] = v}| < k then return false
return true

23: procedure Split(node, att)
24: for v ∈ att.values do

25: Let node.sons [v] be a new decendent node
26: Let node.sons [v] .Bins [b] be a new bin, which refines node.Bins [b] such

that node.sons [v] .Bins [b] .tuples← {t ∈ node.Bins [b] .tuples : t[att] = v}
27: Let node.sons [v] .Spans← node.Spans

28: for span ∈ node.Spans do replace each bin of the original node with its refine-
ments, computed above

29: if att ∈ P then

30: for v ∈ att.values and span ∈ node.Spans do

31: Remove span from every node n ∈ span.Nodes

32: Create a new span s such that s.Nodes contains
span.Nodes \ {node.sons [u] : u 6= v}, s.Bins contains span.Bins \
{bin ∈ node.sons [u] .Bins : u 6= v}, and s.population contains
{t ∈ span.population : t[att] = v}

33: Add s to node.sons [v] .spans

34: Add s to every node n ∈ span.Nodes \ node.sons

8 Arik Friedman, Assaf Schuster, and Ran Wolff

Fig. 2. kADET uses three data structures: The tree, a list of spans, and a priority
queue for candidate splits.

Sports Car

Marital Status

Yes No

Married Unmarried
lMarried lUnmarried

lNo

l0

lYesSports Car

Yes No lNo

l0

lYes
l0

m0.population={John, Lisa, Ben,
 Laura, Robert,Anna}

{John,Lisa,Ben,Laura, Robert,Anna}
MS={m0} {John,Lisa,Robert}

MS={m0}
{Ben,Laura,Anna}
MS={m0}

{John}
MS={m1}

{Lisa,Robert}
MS={m2}m0.nodes={l0}

Possible Specifications:
{(Sports Car,l0),
 (Marital Status,l0))

 Possible Specifications:
{(Marital Status,lYes),
 (Marital Status,lNo)} {Ben,Laura,Anna}

MS={m1,m2}

m0.population={John, Lisa, Ben,
 Laura, Robert,Anna}

m0.nodes={lyes,lNo}

m1.population={John, Ben,Laura}
m1.nodes={lMarried,lNo}

m2.population={Lisa,Robert,Anna}

m2.nodes={lUnmarried,lNo}

Fig. 3. Inducing a 3-anonymous decision tree

until the number of leaves is equal to the number of public attributes; then,
every leaf is splitted according to a different public attribute. The number of
model spans in the tree is equal to the size of A.

While this overhead is indeed high, the source of the overhead is not ineffi-
ciency of the algorithm. Rather it the need to validate that every model span
is populated by more than k tuples. This same overhead would incur to any
anonymization algorithm that would compute this same scheme. Therefore, it is
inherent to the problem. In practice, the number of spans will be much smaller.
For example, when only the class attribute is private, the number of spans is the
number of leaves.

3.3 From ID3 to C4.5

C4.5 was introduced by Quinlan 3.1 in order to extend and improve ID3. It im-
plements better attribute scoring metrics (gain ratio instead of gain), error-based

k-Anonymous Decision Tree Induction 9

pruning, continuous attribute quantization, and treatment of missing values. All
these extentions, beside the change of the scoring function – which has no effect
of privacy – require careful analysis when likewise extending kADET.

Pruning C4.5 uses error-based pruning in two ways: Subtrees can be discarded
if they increase the error on a test-set; and nodes, including their subtrees,
can be placed under one of their branches. Using the first method is safe
– undoing a split unifies equivalence classes, and may unify spans, meaning
the population of a span can only increase. The second method, however,
may cause a k-anonymous tree to become non-k-anonymous. This is because
a span’s population may shrink if a public attribute is added to a path in
the tree. In our implementation we therefore avoided this technique.

Continuous attributes In the C4.5 algorithm, continuous attributes are han-
dled by creating binary splits. The algorithm considers all the possible split
points, and chooses the one with the best information gain. Implemented the
same approach, adding the constraint that a split point should not create a
k-anonymization breach.

Missing values Missing values extend the k-anonymity model in ways which
do not yet have an agreed upon model. It is not clear, for instance, whether
a value that is missing in the learning examples would be missing in the data
available to the attacker. We leave the extension of the k-anonymity model
to missing values for further research.

4 Evaluation

To conduct our experiments we implemented the algorithms using the Weka
package [19]. We use as a benchmark the Adults database from the UC Irvine
Machine Learning Repository [4], which contains census data, and has become
a commonly used benchmark for k-anonymity. The data set has 6 continuous
attributes and 8 categorial attributes. The class attribute is income level, with
two possible values, ≤ 50K or > 50K. After records with missing values have
been removed, there are 30,162 records for training and 15,060 records for testing.
For the categorial attributes we use the same generalization hierarchies described
in [6]. For the ID3 experiments we dropped the continuous attributes, because
of ID3 limitations. The experiment was performed on a 3.0GHz Pentium IV
processor with 512MB memory.

The anonymized decision trees algorithms use the training data to induce
an anonymous decision tree. Then the test data (in a non-anonymized form) is
classified using the anonymized tree. For all values of k the decision tree induction
took less than 4 seconds for ID3, and less than 10 seconds for C4.5.

4.1 Accuracy vs. Anonymity Tradeoffs

Our first goal is to assess the tradeoff between classification accuracy and the
privacy constraint.

10 Arik Friedman, Assaf Schuster, and Ran Wolff

10 25 50 75 100 150 200 250 500 750 1K 1.5K

17.4

17.7

18

18.3

18.6

18.9

19.2

19.5

k parameter

%
 e

rr
or

Anonymous ID3
DTS Anonymization
Id3 Baseline
C4.5 Baseline

Fig. 4. Classification error vs. k pa-
rameter for ID3

10 25 50 75 100 150 200 250 500 750 1K 1.5K
14

14.5
15

15.5
16

16.5
17

17.5
18

18.5
19

k parameter

%
 e

rr
or

Anonymous C4.5
DTS Anonymization
C4.5 Baseline

Fig. 5. Classification error vs. k pa-
rameter for C4.5

Figure 4 shows the classification error of the anonymous ID3 for various k

parameters, compared to the classification error achieved with ID3 and C4.5. In
spite of the anonymity constraint, the classifier maintains good accuracy. At k =
750 there is a local optimum when the root node is split using the Relationship
attribute. At k = 1000 this attribute is discarded because of anonymity breach,
and instead the Marital Status attribute is chosen, yielding better classification.

We compared our results with those obtained using the top-down specializa-
tion (TDS) algorithm presented in [6], which is aimed at producing anonymized
data that is useful for classification problems. The algorithm starts with the top
most generalization level, and iteratively chooses attributes to specialize based
on a metric that measures the information gain for each unit of anonymity loss.
The same generalization scheme is applied on all the tuples. We note that the
TDS uses both training and test data to choose a generalization. This may pro-
vide different generalization results, though not necessarily better or worse than
those obtained when generalizing the training data alone. TDS results also ap-
pear in Figure 4. In contrast to the TDS algorithm, our algorithm can apply
different generalizations on different groups of tuples, and it achieves an average
reduction of 0.6% in classification error with respect to TDS.

Figure 5 shows a similar comparison using all 14 attributes of the Adult
dataset, based on the anonymous C4.5 algorithm. The large size of the quasi-
identifier impacts the accuracy attained with the TDS generalization, and our
algorithm achieves an average reduction of 3% in classification error with respect
to TDS.

4.2 Privacy Risks and `-Diversity

k-anonymity makes no restriction regarding private attribute values. As a con-
sequence, it is possible that a k-anonymous model would allow the attacker a
complete inference of these values. In this section, our goal is to assess how
many individuals are prone to immediate inference attacks and show how such
inference can be thwarted.

k-Anonymous Decision Tree Induction 11

We look at the number of individuals (learning examples) for whom an at-
tacker may infer the class attribute value with full certainty. This is the number
of tuples associated with spans for which all the tuples share the same class.
Figure 6 shows the percentage of tuples exposed to such inference, as a function
of the parameter k. For the anonymous Id3, completely avoiding this kind of
inference requires high values of k, and even in those cases the attacker may still
be able to infer attribute values with high probability. The inference problem is
less acute in the case of the anonymous C4.5, because of pruning. The number
of exposed tuples drops to zero at k = 75, and is very low even for smaller values
of k.

10 25 50 75 100 150 200 250 500 7501000
0

5

10

15

20

25

k parameter

%
 E

xp
os

ed
ID3 % Exposed
C4.5 % Exposed

Fig. 6. % Exposed tuples

The `-diversity model [12] suggests solving the inference problem by requiring
a certain level of diversity in class values for every group of identifiable tuples.
For example, entropy `-diversity is maintained when the entropy of the class
values for every such group exceeds a threshold value log(`).

We altered our algorithms by replacing the MaintainsAnonymity function
with one that checks the entropy `-diversity constraint, ruling out splits in the
tree that violate this constraint. Note that the parameters for k-anonymity and
`-diversity are not comparable. In particular, as there are only two class values,
the best we can hope for is entropy 2-diversity. This is achieved when there
is equal chance for each class value, in which case we loss classification ability.
However, for ` < 2, entropy `-diversity allows us to limit the attacker’s confidence
in inference attacks. For example, to deny the attacker the ability to infer a class
value with confidence> 85%, we should keep the entropy higher than −0.85 ×
log 0.85 − 0.15 × log 0.15 = 0.61. This amounts to applying entropy `-diversity
with ` = 1.526 (log 1.526 = 0.61).

Following this discussion, Figures 7 and 8 display the tradeoff between the
confidence limit and the accuracy of the induced decision trees. So long as the
confidence threshold is high enough, it is possible to induce decision trees without
a significant accuracy penalty. The lowest achievable confidence level is 75.1%,

12 Arik Friedman, Assaf Schuster, and Ran Wolff

as it pertains to the class distribution in the root node. In the case of ID3,
every split of the root node results in a node with confidence> 85%. Therefore,
a confidence limit of 85% or lower prohibits the induction of a useful decision
tree. The additional attributes available to the C4.5 algorithm, allow to stretch
the boundary to a lower confidence threshold.

99 97 95 92.5 90 87.5 85 80
17.5

18

19

20

21

22

23

24

25

Confidence limit

%
 e

rr
or

Diverse ID3
ID3 Baseline
C4.5 Baseline

Fig. 7. Confidence level vs. error rate
for ID3, 9 Attributes

99 97 95 92.5 90 87.5 85 82.5 80 77.5
14
15
16
17
18
19
20
21
22
23
24
25

Confidence limit

%
 e

rr
or

Diverse C4.5
C4.5 Baseline

Fig. 8. Confidence level vs. error rate
for C4.5, 15 Attributes

5 Conclusions

In this paper we showed how decision tree induction algorithms can be modified
to guarantee that their output maintains k-anonymity. Using our definitions,
it is possible to introduce similar constraints in other data mining algorithms
as well. Another interesting use of this method is promoted by the ability to
construct a table which is equivalent to a data mining model. Such a table
would maintain k-anonymity, while preserving the data patterns evident in the
data mining model. This suggests that data mining algorithms can be used as
templates for pattern-preserving anonymization schemes.

References

1. Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina
Panigrahy, Dilys Thomas, and An Zhu. Approximation algorithms for k-anonymity.
In Journal of Privacy Technology (JOPT), 2005.

2. Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In
Proc. of the ACM SIGMOD Conference on Management of Data, pages 439–450.
ACM Press, May 2000.

3. Roberto J. Bayardo Jr. and Rakesh Agrawal. Data privacy through optimal k-
anonymization. In ICDE, pages 217–228, 2005.

4. C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of machine
learning databases, 1998.

k-Anonymous Decision Tree Induction 13

5. Wenliang Du and Zhijun Zhan. Building decision tree classifier on private data.
In Proc. of CRPITS’14, pages 1–8, Darlinghurst, Australia, December 2002. Aus-
tralian Computer Society, Inc.

6. Benjamin C. M. Fung, Ke Wang, and Philip S. Yu. Top-down specialization for
information and privacy preservation. In Proc. of ICDE’05, Tokyo, Japan, April
2005.

7. Vijay S. Iyengar. Transforming data to satisfy privacy constraints. In Proc. of
ACM SIGKDD’02, pages 279–288, 2002.

8. Murat Kantarcioǧlu, Jiashun Jin, and Chris Clifton. When do data mining results
violate privacy? In Proc. of ACM SIGKDD‘04, pages 599–604, New York, NY,
USA, 2004. ACM Press.

9. Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. In Proc. of SIGMOD’05, pages 49–60, New York, NY,
USA, 2005. ACM Press.

10. Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Mondrian multidi-
mensional k-anonymity. In Proc. of ICDE, April 2006.

11. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Proc. of
CRYPTO’04, pages 36–54. Springer-Verlag, 2000.

12. Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan
Venkitasubramaniam. `-diversity: Privacy beyond k-anonymity. In Proc. of ICDE,
April 2006.

13. Adam Meyerson and Ryan Williams. General k-anonymization is hard. In Proc.
of PODS’04, 2003.

14. J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
15. J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1993.
16. Latanya Sweeney. Achieving k-anonymity privacy protection using generalization

and suppression. International Journal on Uncertainty, Fuzziness and Knowledge-
Based Systems, 10(5):571–588, 2002.

17. US Dept. of HHS. Standards for privacy of individually identifiable health infor-
mation; final rule, August 2002.

18. Jaideep Vaidya and Chris Clifton. Privacy-preserving decision trees over vertically
partitioned data. In DBSec, pages 139–152, 2005.

19. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

