
Mining for Misconfigured Machines in Grid Systems

Noam Palatin, Arie Leizarowitz
Math Dept.

Technion – Israel

{noamp,la}@tx.technion.ac.il

Assaf Schuster, Ran Wolff
CS Dept.

Technion – Israel

{assaf,ranw}@cs.technion.ac.il

ABSTRACT
Grid systems are proving increasingly useful for managing the batch
computing jobs of organizations. One well-known example isIn-
tel, whose internally developed NetBatch system manages tens of
thousands of machines. The size, heterogeneity, and complexity of
grid systems make them very difficult, however, to configure.This
often results in misconfigured machines, which may adversely af-
fect the entire system.

We investigate a distributed data mining approach for detection
of misconfigured machines. Our Grid Monitoring System (GMS)
non-intrusively collects data from all sources (log files, system ser-
vices, etc.) available throughout the grid system. It converts raw
data to semantically meaningful data and stores this data onthe
machine it was obtained from, limiting incurred overhead and al-
lowing scalability. Afterwards, when analysis is requested, a dis-
tributed outliers detection algorithm is employed to identify mis-
configured machines. The algorithm itself is implemented asa re-
cursive workflow of grid jobs. It is especially suited to gridsys-
tems, in which the machines might be unavailable most of the time
and often fail altogether.

Categories & Subject Descriptors
C.2.4 Distributed Systems; H.2.8 Database Applications—Data min-
ing

General Terms:
Algorithms, Management, Performance, Human Factors

Keywords:
Grid Systems, System Monitoring, Grid Information System,Dis-
tributed Data Mining, Outliers Detection

1. INTRODUCTION
Grid systems have developed, over the last fifteen years, as a

natural extension to both high-performance cluster technology and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

batch management systems. Their supreme flexibility and scalabil-
ity have proved crucial for the management of organizational com-
puting power in today’s data immersed and computationally inten-
sive business arena. Grid systems manage pools of heterogeneous
machines (e.g., servers and workstations) which can be harnessed
for the execution of jobs submitted by any user in the organization.
The number of machines controlled by a single system can some-
times reach tens of thousands — e.g., Condor [7], with up to 20,000
machines at U. Wisconsin and NetBatch, with as many as 35,000
machines at Intel. These systems often manage computers located
in several geographically distant sites and organized in pools con-
taining up to thousands of machines each.

Grid systems are notoriously difficult to configure. Every instal-
lation of a grid system is slightly different because the organization
of each pool — the placement and number of services, for example
— reflects the network topology at the site. Furthermore, thema-
chines managed by a typical grid system can differ greatly. Finally,
many of the resources available to the different machines are time
varying (e.g., software licenses expire and storage space fills up
over time). Hence, the system administrators must configuremany
attributes, and each site might suffer very different problems. The
configuration task requires that administrators have a sound under-
standing of both the grid system’s internals and their own site’s
organization. It is a complex and error-prone task.

Misconfigured machines, together with machines with faultyhard-
ware or buggy software, can lead to so-called’black holes’ (ma-
chines that accept many jobs and fail to complete any of them)
or to other irregular machine behavior. At worst, a misconfigured
machine can obstruct the work of the entire organization. A more
ubiquitous effect of misconfigured machines is the reduction of sys-
tem goodput— “the allocation time when a remotely executing
application uses the CPU to make forward progress” [2].

To identify misconfigured machines, most organizations rely on
user feedback and domain experts’ manual analysis of log files.
However, many problems pass unnoticed or unreported, render-
ing analysis nearly infeasible. Even when experts are awareof a
problem, the information essential for detecting a misconfigured
machine might be divided among different machines in the pool.
Within each such machine, the details required for the analysis of
the problem might be hidden in the vast number of configuration
attributes or event logs of the grid system and the multiple services
(NFS, DFS, JVM, etc.) that usually interact with a large system.
All of this makes manual analysis time consuming, error-prone,
and exhausting.

The dominant approach for automatizing misconfiguration de-
tection in enterprise computing systems is a rule-based expert sys-
tem. A typical system employs the knowledge of domain experts
to construct a set of rules for identifying problems and taking ade-

quate corrective actions. However, expert systems have some limi-
tations: because the rules are constructed manually, theiraccuracy
and completeness are limited. Furthermore, experts’ time is scarce
and very expensive, and the rules are very difficult to maintain (e.g.,
when the system moves to a new version).

In contrast to expert systems, data mining algorithms extract
useful information from large data sets with limited, if any, prior
knowledge about the data. Therefore, we propose that a tool using
data mining techniques can outperform rule-based tools in miscon-
figuration detection. If most of the machines in a well maintained
pool are properly configured, normative behavior can be modeled
and misconfigured machines detected as outliers.

We implemented the Grid Monitoring System (GMS) – an exten-
sion to the Condor grid system which automatically detects oddly
behaving machines. The challenges in building GMS relate toboth
system architecture and data mining. On the system side, thechal-
lenges are the immensity of the data and the limited system re-
sources allocated for monitoring, along with the requirement that
the Condor system not be changed — i.e., reliance on existentdata
sources. We address the former problem by building a fully dis-
tributed information system in which data is not moved from its
origin — resulting in GMS overhead no greater than that required
by existing logging facilities. To make use of existing datasources
we implemented a mechanism that transforms the data from itsraw
form to an ontologically meaningful one.

On the algorithmic side, a distributed outlier detection algorithm
was implemented in which every participant (i.e., computerin the
grid system) can proceed at a different pace – based on its avail-
ability and the data it has. This allows outliers to be detected
even if most of the normative machines are not available. Theal-
gorithm was implemented using recursive calls for Condor work-
flows. Analysis is initiated by submitting a Condor job, and it pro-
gresses through the automated submission of further jobs. To the
best of our knowledge, our algorithm is the first distributeddata
mining algorithm that operates in a grid environment. Addition-
ally, it is one of the first applications of data mining for solving a
grid related problem.

We experimented with GMS in a pool of 42 heterogeneous ma-
chines, four of which were indicated by GMS to be misconfigured.
The information provided by GMS aided in the investigation of the
strange behavior resulting from 3 real misconfigured machines, and
in determining the causes of the problem. Further experiments ver-
ified that GMS is scalable and suitable for operation in a real-life
system.

The rest of this paper is organized as follows: The next section
presents a brief review of related works in the areas of automated
failure analysis and outlier detection, as well as a brief introduc-
tion to grid systems architecture. Section 3 describes the data, its
acquisition, and its preprocessing. Section 4 describes the analysis
of the data and the distributed outlier detection algorithm. Section
5 briefly describes system architecture and implementation. Sec-
tion 6 outlines our experiments. Finally, conclusions are drawn in
section 7.

2. PRELIMINARIES AND RELATED WORK

2.1 System Misconfiguration Detection
There are two general approaches to automated system manage-

ment: white-box and black-box. The white-box approach relies
on knowledge of the system and its behavior. A typical white-box
management system such as Tivoli’s TEC interprets system events
according to a set of rules. These rules specify exceptionalbehavior
patterns and appropriate responses to them.

In the black-box approach, problems are detected and diagnosed
with limited, if any, knowledge about the system. The approach is
used to try and learn which behaviors are abnormal. The blackbox
approach is implemented today in several systems. For example,
eBay (see Chenet al. [5]) experimented with a system that diag-
noses failures by training a degraded decision tree on the record
of successful and failed network transactions. The main disadvan-
tage of eBay’s system is that each transaction is described by just
six features. This is mainly because the system centralizesthe data
and processes it on-the-fly.

2.2 Outlier Detection
Hodge and Austin [6] define an outlier point as “. . . one that

appears to deviate markedly from other members of the samplein
which it occurs.” Of course, this definition leaves a lot to interpreta-
tion. This is not accidental, in the absence of a model for thedata,
the definition of an outlier is necessarily heuristic. Of themany
proposed heuristics, this paper focuses on unsupervised methods,
which are less demanding of the user. Specifically, we chooseto
focus on distance-based outlier detection methods, in which the
main responsibility of the user is to define a distance metricon
the domain of the data.

In GMS, we use the definition proposed by Angiulli et al. for the
HilOut Algorithm [1]. By this definition the outlier score ofa point
is its average distance to itsm nearest neighbors. A distributed
version of the HilOut algorithm can be found in the literature [3],
in the context of Wireless Sensor Networks (WSN). Grid systems,
however, are different from WSNs in that the main challenge they
pose is not reducing messaging but rather addressing the limited
availability of resources. Thus, we describe a different distributed
scheme for HilOut, which is innovative in its own right.

2.3 Grid Systems
Grid systems manage and run user jobs on a collection of com-

puters called pools, which contain two main types of machines: ex-
ecution machinesandsubmission machines, and a handful of other
machines which provide additional system services. Submission
machines serve as proxy for the system users, who submit their
jobs to the grid system through these machines, which then man-
age job execution. Execution machines share their computational
capabilities with the pool according to the policies of the machine’s
owner. As both submission and execution machines pose requests
and requirements, the task of matching between jobs and machines
requires a third component — the matchmaker. The matchmaker
collects information about all the pool participants, calculates the
satisfiability of their demands, and notifies the submissionand the
execution machines of potentially compatible partners. One last
grid service, of which GMS takes advantage, is the ability toplan
and execute workflows – groups of jobs which depend on one an-
other.

3. ACQUIRING, PREPROCESSING, AND
STORING DATA

The quality of any data mining process is known to be critically
dependent on data acquisition and preprocessing. Furthermore, the
organization of the data is crucial in determining which algorithms
can be used and, consequently, the performance of the process.
This section outlines the main points of interest in the GMS ap-
proach to data acquisition, preprocessing, and organization.

3.1 Data sources and acquisition
There are two main approaches to system data acquisition: in-

trusive and non-intrusive. Intrusive data acquisition requires the

manipulation of the system for the extraction of data. The non-
intrusive approach, which is the one employed by GMS, prefers
using existing data sources. This is both because those sources in-
clude data about high level objects (jobs, etc.) and becausethe
overhead incurred by monitoring is thus minimized. The sources
used by GMS are:

• Log files: every component of the grid system is represented
by a daemon. Daemons log their actions in dedicated log
files, mainly for the purpose of debugging. This file also con-
tains timestamps, utilization statistics, error messages, and
other important information. Log files are read as event streams.

• Utilities: Grid systems supply utilities which extract use-
ful information about the state of each machine, the overall
status of the pool, machine configurations, and information
about the jobs. Utilities are used through sampling — they
are called periodically and can be matched against log file
data, primarily by using time-stamps.

• Configuration files: Each grid system has configuration files
which contain hundred of attributes. These files are read
(once) and the data is stored in reference tables.

3.2 Preprocessing
Preprocessing of data in GMS mainly takes the form of convert-

ing raw data into semantically meaningful data. This is doneby
translating it into ontological terms. The use of ontologies in data
mining has been discussed widely in the literature and has three
main benefits. First, it increases the interpretability of the outcome.
Second, it enriches the data with background information. Third,
it allows data reduction by focusing on those parts of the data the
ontology architect deems more important. Additionally, from a sys-
tems design perspective, the use of ontology allows the datato be
virtualized, resulting in easy porting of the higher levels(the ana-
lytical part) of GMS from one grid system to the another.

The ontology used in GMS follows the principles suggested by
Cannataroet al. [4]. It is hierarchical, with the highest level of
the hierarchy containing the most general concepts. Each ofthese
concepts is then broken down into more subtle concepts until, at
the lowest level,ground conceptsor basic conceptsare considered.
The relation between levels is that an upper level concept isdefined
by the assignment of its values to lower level concepts.

Besides translation into ontological terms, GMS preprocessing
also addresses missing values. We treat missing values thatare
never available in some architectures as a value in their ownright,
and purge altogether records that contain missing values oftem-
porarily unavailable concepts.

3.3 Data Organization
The data in GMS is fully distributed. The reasons for this arethe

desire to restrict to a minimum the GMS overhead while no analysis
is taking place, and the need for scalability with the numberof
machines. Regarding the latter, it is enough to note that theaverage
data rate at an execution machine can top one kilobyte per second.
Accumulating this data over a 24 hour sliding window in a 1,000
machine pool would yield more than one hundred gigabytes of raw
data, an amount requiring specialized resources for management if
centralized. However, if the data remains distributed, theamount
per execution machine — a mere hundred megabytes — can be
supported by off-the-shelf, even free, databases such as MySQL.

4. DATA ANALYSIS

4.1 General approach
Two major assumptions guide our approach to detecting miscon-

figured machines: First, we assume that the majority of machines
in a well-maintained pool are properly configured. Second, we as-
sume that misconfigured machines behave differently from other,
similar machines. The first of these assumptions limits our ap-
proach to systems that are generally operative, and predicts that
it would fail if most of the resources are misconfigured. The sec-
ond assumption limits the usefulness of GMS to misconfigurations
that affect the performance of jobs (and not, e.g., system security).

Our choice of an algorithm is strongly influenced by two com-
putational characteristics of grid systems. First, function shipping
in grid systems is, by far, cheaper than data shipping — i.e.,it pays
to process the data where it resides rather than ship it elsewhere for
processing. This, together with the difficulty in storing centralized
data (as discussed in the previous section), motivates a distributed
outlier detection algorithm. Second, machines in a grid system are
expected to have very low availability. Thus, the algorithmhas got
to be able to proceed asynchronously and produce results based on
the input of only some of the machines.

Finally, our approach is influenced by characteristics of the data
itself: It takes many features to accurately describe events which
occur in grid systems, and those events are very heterogeneous.
This means that the data is extremely sparse and its distribution
intricate. To overcome data sparsity, one can focus on jobs that
are associated with a particular application getting varied input pa-
rameters. In our implementation, we emulate this kind of jobby
executing standard benchmarks with random arguments.

4.2 Notation
Let P = {P1, P2, . . . } be a set of participants in the algorithm,

and letSi =
n

~x1
i ,

~x2
i , . . .

o

be the input of participantPi. Each

input tuple ~xj
i is taken from an arbitrary metric spaceD, on which

the metricd : D × D → R
+ is defined. We denoteSN the union

of the inputs of all participants. In rest of this paper we assume the
distances between points inSN are unique1. Among other things,
this means that for eachS ⊆ SN the solution of the HilOut outlier
detection algorithm is uniquely defined.

For any arbitrary tuple~x we define thesupportof ~x, [~x|S]
m

to be
the set ofm points inS which are the closest to~x. For two sets of
pointsS, R ⊆ D we define the support ofR from S to be the union
of the support fromS for every point inR. We denoted̂ (~x, S)
the average distance of~x from the points inS. Consequently,
d̂

`

~x, [~x|S]m
´

denotes the average distance of~x from itsm nearest
neighbors inS. For any setS of tuples fromD, we defineAk,m (S)
to be the topk outliers as computed by the (centralized) HilOut al-
gorithm when executed onS. By definition of HilOut, these arek
points fromS such that for all~x ∈ Ak,m (S) , ~y ∈ S \ Ak,m (S)

we haved̂
`

~x, [~x|S]
m

´

> d̂
`

~y, [~y|S]
m

´

.

4.3 Algorithm
The basic idea of the Distributed-HilOut algorithm is to have

the participants construct together a set of input pointsSG from
which the solution can be deduced.SG has three important quali-
ties: First, it is eventually shared by all of the participants. Second,
the solution of HilOut, when calculated fromSG, is the same one
which is calculated fromSN —Ak,m (SG) = Ak,m (SN). Third,

1This assumption is easily enforced by adding a little randomness
to the numeral features of each data point.

the support of the solution onSG from SG — [Ak,m (SG) |SG]
m

— is the same as the support from the entire set of inputsSN —
[Ak,m (SG) |SN]

m
.

Since many of the participants are rarely available, the progres-
sion of SG over time may be slow. Every time a participantPi

becomes available (i.e., a grid resource can accept a job related to
the analysis), it will receive the latest updates toSG and will have
a chance to contribute toSG from Si. By tracking the contribu-
tions of participants toSG, an external observer can compute an
ad hoc solution to HilOut at any given time. Besides providing for
temporal (sometimes lasting) non-availability of resources, the al-
gorithm has two additional benefits: One, the size ofSG is often
very small with respect toSN , and the number of participants con-
tributing to SG very small with respect to the overall number of
participants. Two,Ak,m (SG) often converges quite quickly, and
the rest of the computation deals solely with the convergence of
[Ak,m (SG) |SG]

m
. Ak,m (SG) converges quickly because many

of the well-configured machines could be used to point out a spe-
cific outlier.

The details of the Distributed HilOut algorithm are given inAl-
gorithms 1 through 3. The algorithm is executed by a sequenceof
recursive workflows. The first algorithm, Algorithm 1, is runby the
user. It submits a workflow (Algorithm 2) to every resource inthe
pool and terminates. Afterwards, each of these workflows submits
a job (Algorithm 3) to its designated resource and awaits thejob’s
successful termination. If the job returns with an empty output, the
workflow terminates. Otherwise, it adds the output toSG and re-
cursively submits another workflow — similar to itself — to each
resource in the pool.

Algorithm 1 Distributed HilOut – User Side
Input: The number of desired outliers –k, and the number of
nearest neighbors to be considered for each outlier –m
Initialization:
SetSG ← ∅
For everyPi submit a Distributed-HilOut workflow with argu-
mentsPi, k, andm
On request for output: ProvideAk,m (SG) as the ad hoc out-
put.

Algorithm 2 Distributed-HilOut Workflow
Arguments:Pi, k, andm
Submit a Distributed-HilOut Job toPi with argumentsk, m, and
SG

Wait for the job to return successfully with outputR
SetSG ← SG ∪R
If R 6= ∅ submit a Distributed-HilOut workflow for everyPj 6=
Pi with argumentsPj , k, andm

If there are points fromSi which should be added toSG, they
are removed fromSi and returned as the output of the job. This
happens on one of two conditions: 1. When there are points in the
solution of HilOut overSi ∪ SG which come fromSi and notSG.
2. When there are points in the support fromSi∪SG to the solution
as calculated overSG alone, which are part ofSi and notSG.

Moving points fromSi toSG may change the outcome of HilOut
onSG. Thus, the second condition needs to be repeatedly evaluated
by Pi until no more points are moved fromSi to SG. Strictly for
the sake of efficiency, this repeated evaluation is encapsulated in a
while loop; otherwise, the same repeated evaluation would result
from the recursive call to Alg. 3.

Algorithm 3 Distributed HilOut Job
Job parameters:k, m, SG

Input at Pi: Si

Job code:
SetQ← Ak,m (SG ∪ Si)
Do
– Q← Q ∪ [Ak,m (SG ∪Q) |SG ∪ Si]m
While Q changes
SetR← Q \ SG

SetSi ← Si \R
Return withR as output

5. THE GMS SYSTEM
Architecturally, GMS is divided into two parts. One part – the

data collector – takes charge of data acquisition while the other
part – the data miner – is in charge of analysis. The data collector
is a stand-alone software component installed on the resources that
are to be monitored by GMS. The data miner, on the other hand,
is a grid workflow which executes jobs, exchanges data between
resources, and produces the outcome.

The data collector siphons data from many of the data sources
available on its machine and organizes the collected data into re-
lational tables according to the ontology scheme. The data miner
is implemented using Condor DAGs. The Condor DAGman is a
workflow management engine. It supports execution of mutually
dependent Condor jobs and limited control structures. In our im-
plementation, there are two dependencies: The system submits a
job to a specified execution machine and then waits for it to termi-
nate successfully. Then, if the job returns non-empty output, the
workflow will dictate that a number of new workflows be instan-
tiated – one for every execution machine. These new workflows,
in turn, repeat the same process recursively. It should be noted that
the use of DAGs means that Condor itself takes charge of the server
side of the data mining algorithm.

6. EVALUATION
To validate the usefulness of GMS we conducted an experiment

in a pool of 42 heterogeneous Linux machines (84 virtual machines
in all): 10 dual Intel XEON 1800 MHz machines with 1GB RAM,
6 dual Intel XEON 2400 MHz with 2GB RAM, and 26 dual IBM
PowerPC 2200 MHz 64-bit machines with 4GB RAM.

We ran two benchmarks independently: BYTEmark – a bench-
mark that tests CPU, cache, memory, integer and floating-point per-
formance – and Bonnie, which focuses on I/O throughput. We sent
multiple instances of these benchmarks as Condor jobs to every
machine in the pool, varying their arguments randomly across a
large range. In all, an order of 9,000 jobs were executed. We then
independently ran Distributed HilOut on the two resulting datasets.
After preprocessing the dataset, we selected 56 attributes, which
describe job execution and the properties of the execution machine.
Job execution attributes include, for example, runtime, while the
machine properties include attributes such as CPU architecture,
memory size, disk space, and Condor version.

We used the following distance metricd: First, all of the nu-
merical features were linearly normalized to the range[0, 1], so
that the weight of different attributes would not be influenced by
range differences. Given two points, the distance between numeri-
cal features was calculated using a weighted L2 norm – with more
weight allocated to job runtime indicators and to configuration fea-
tures (memory size, etc.). This different weighting encourages the
algorithm to gather records of jobs which ran on similar machines

Rank Machine Score Four Main Contributing Attributes

1 bh10 0.476 SWAPIN, SWAPOUT, AVGCPU SYS, AVGCPU USER

2 bh10 0.431 SWAPOUT, SWAPIN, AVGCPU USER, MAX CPU USER

3 i4 0.425 DISKUSEDROOT, MAX CPU USER, AVGCPU USER, BUFFEREDMEM

4 i4 0.422 DISKUSEDROOT, MAX CPU USER, AVGCPU USER, AVGCPU IDLE

5 bh13 0.422 LAUNCHERLEN, CPUMODEL, JOBLEN, AVGCPU USER

6-8 i4
9 i3 0.421 AVGCPU USER, MAX CPU USER, MAX ROOTUSED%, AVGROOTUSED%

Table 1: The output of Distributed HilOut on BYTEmark data.

Number of machines |SN | |SG| Percent

10 751 190 25%
20 1470 336 23%
30 2290 428 19%

Table 2: Scalability with the number of machines and data
points – BYTEmark benchmark. k = 7.

Number of machines |SN | |SG| Percent

10 828 186 22%
20 1677 373 22%
30 2343 452 19%

Table 3: Scalability with the number of machines and data
points – Bonnie benchmark.k = 7.

and have similar runtime. Nominal features contributed zero to the
overall distance if their value was the same, and a constant other-
wise. This is with the exception of the machine identifier. This field
contributed a very large constant if it was the same and zero oth-
erwise. The reason is that we wanted neighbor points to belong to
different machines – so that our algorithm would detect exceptional
machines rather than exceptional executions in the same machine.

Below, we describe three different experiments. We note that be-
tween experiments some of the misconfigured machines were fixed,
which explains the differences in the number of outlying machines,
data points, etc. Although experimentally undesirable, this is an
unavoidable outcome of working in a truly operational system. Fi-
nally, we note that in all our experiments the number of neighbors
(m) was set to five.

6.1 Qualitative Results
We ran Distributed HilOut separately on the records of each

benchmark. The outcome of the analysis was a list of suspect ma-
chines. Additionally, as shown in Table 1, the algorithm ranked for
each outlier the main attributes that contributed to the high score.
In both tests two machines, i3 and bh10, were indicated as miscon-
figured. Additionally, the test based on BYTEmark data indicated
that bh13 and i4 were also outlying. With the help of a system
administrator, we analyzed the four machines that had the highest
ranking.

The machine bh10 was ranked highest because of excessive swap
activity, but we were not able to recreate the phenomenon andso
concluded that it was temporary.

The next highest ranked machine was i4, which contributed five
of the top nine outlying points. In all of the outlying executions,
the extraordinarily low user CPU was one of the outstanding at-
tributes. A quick check found that the CPU load of that machine
was very high. The source of the high load turned out to be a net-
work daemon (Infiniband manager) that was accidentally installed

k |SN | |SG| Percent

3 2290 304 13%
5 2290 369 16%
7 2290 428 19%

Table 4: Scalability with the number of outliers (k) –
BYTEmark benchmark, 30 machines.

k |SN | |SG| Percent

3 2343 287 12%
5 2343 372 16%
7 2343 452 19%

Table 5: Scalability with the number of outliers (k) – Bonnie
benchmark, 30 machines.

on the machine. As a result, the user was only allocated a small
percentage of the CPU time. After the system administrator shut
the daemon down, the machine started to behave normally.

The third ranked machine was bh13. With that machine the algo-
rithm indicated a mismatch of the CPU model and the time it takes
to launch a job. As it turned out, this machine had a wrong BIOS
setup: It was configured with active HyperThreading, which meant
each CPU (the machine had two) was represented as two CPUs
with half the system resources (memory, etc.). Consequently, it
launched jobs slower than other machines with same CPU model.

The fourth ranked machine was i3. Here, GMS indicated a higher
than usual use of the root file system. We found the root file system
was nearly full. This led to the failure of the benchmark, andthus
to much shorter runtime than usual.

Although qualitative, we consider the validation process highly
successful. Of the four highest ranked machines, three werefound
to actually have been misconfigured. GMS contributed to the anal-
ysis of all three by pointing out not only which machines to check
but also which attributes in the outlying machine differ from those
in comparable machines. Further analysis of the misconfiguration,
beyond using GMS, required no access of logs or configuration
files. On the flip side, the Bonnie benchmark missed two out of
the three misconfigured machines. We attribute this to the narrow
nature of this benchmark, which focuses on I/O.

6.2 Quantitative Results
The goal of our second experiment was to evaluate the scalabil-

ity of the Distributed-HilOut algorithm. Specifically, we wanted to
examine what portion of the entire data set,SN , is collected into
SG. To be scalable,SG needs to grow sublinearly with the num-
ber of execution machines and at most linearly with the number of
desired outliers –k.

Tables 2 and 3 depict the percentage of points — out of the total
points produced by 10, 20, or 30 machines — collected intoSG.

As the number of machines grows, that percentage declines. In a
large-scale setup with hundreds of execution machines, we expect
the percentage to decline much further.

Figures 4 and 5 depict the percentage of points — out of the to-
tal points produced by 30 machines — that were collected when
the user chose to search for 3, 5, or 7 outliers. That percentage in-
creases linearly. We conclude that our approach is indeed scalable.

6.3 Interoperability
Our final set of experiments validated the ability of GMS to op-

erate in a real-life grid system. We ran the Distributed HilOut al-
gorithm with twenty of the well-configured machines shut down.
Then, when no more workflows were pending for the active ma-
chines, we turned the rest of the machines on. The purpose of this
experiment was to observe GMS behavior in the presence of fail-
ure. We noted the progression of the algorithm in terms of therecall
(portion of the outcome correctly computed) and observed both the
recall in terms of outlier machines (Recall – M) and in terms of
data points (Recall – P). The data points are important because, for
the same outlier machines, several indications of its misbehavior
might exist, such that the attributes explaining the problem differ
from one point to another.

With respect to the recall, our expectations — fast convergence
regardless of the missing machines – were met. As tables 6 and7
show, the recall progressed quickly. Furthermore, nearly complete
recall of the patterns was achieved in both benchmarks, and all of
the outlier machines were discovered. This means the administra-
tors were able to start analyzing misconfigured machines almost
immediately, even if many of the machines were unavailable.The
computational overhead was not very large even after we turned the
missing machine on again (as described in table 6 and 7, belowthe
double line) — in all, about forty workflows resulted in additions
to SG.

7. CONCLUSION AND FUTURE WORK
We study the problem of detecting misconfigured machines in

large grid systems. Because these systems are heterogeneous, a rich
description of their operation is required for more accurate analysis.
Moreover, their scale makes centralization of the data as well as
its manual analysis inefficient. We therefore suggest a distributed
architecture which enables automatic analysis of the data via data
mining algorithms.

We implement a highly portable Grid Monitoring System (GMS)
that relies on an ontology for virtualization of the underlying batch
system and for enhancing data quality. We deploy our system on
a heterogeneous Condor pool and demonstrate its effectiveness by
discovering three misconfigured machines.

Outlier detection is just one of the algorithms which can be im-
plemented on top of GMS and misconfiguration detection is just
one of the possible applications of data mining for grid systems.
We intend to extend GMS for various applications.

Time (h:mm) |SG| / |SN | Workflows Recall – P Recall – M

0:00 0 / 4334 0 0 / 7 0 / 2
0:03 82 / 4334 6 4 / 7 1 / 2
0:07 460 / 4334 20 5 / 7 2 / 2
0:10 462 / 4334 22 6 / 7 2 / 2
0:23 495 / 4334 26 6 / 7 2 / 2

1:38 617 / 4334 37 7 / 7 2 / 2
2:54 619 / 4334 39 7 / 7 2 / 2

Table 6: Interoperability – a grid pool with twenty of the ma-
chines disabled – BYTEmark benchmark.

Time(h:mm) |SG| / |SN | Workflows Recall – P Recall – M

0:00 0 / 4560 0 0 / 7 0 / 3
0:05 112 / 4560 4 2 / 7 1 / 3
0:07 417 / 4560 16 4 / 7 2 / 3
0:10 475 / 4560 22 5 / 7 3 / 3
0:15 478 / 4560 24 7 / 7 3 / 3
0:17 484 / 4560 27 6 / 7 3 / 3

0:31 494 / 4560 30 7 / 7 3 / 3
2:03 578 / 4560 40 7 / 7 3 / 3

Table 7: Interoperability – a grid pool with twenty of the com-
puters disabled – Bonnie benchmark.

8. REFERENCES
[1] F. Angiulli and C. Pizzuti. Fast outlier detection in high

dimensional spaces. InProc. of PKDD, 2002.
[2] J. Basney and M. Livny. Improving goodput by co-scheduling

CPU and network capacity.Intl. Journal of High Performance
Computing Applications, 13(3), 1999.

[3] J. W. Branch, B. Szymanski, C. Giannella, R. Wolff, and
H. Kargupta. In-network outlier detection in wireless sensor
networks. InProc. of ICDCS, July 2006.

[4] M. Cannataro, A. Massara, and P. Veltri. The OnBrowser
ontology manager: Managing ontologies on the grid. InIntl.
Workshop on Semantic Intelligent Middleware for the Web
and the Grid, 2004.

[5] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer.
Failure diagnosis using decision trees. InProc. of ICAC, 2004.

[6] Hodge V. and Austin J. A Survey of Outlier Detection
Methodologies.Artificial Intelligence Review, 22:85–126,
2004.

[7] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter
of idle workstations. InProc. of ICDCS, June 1988.

9. ACKNOWLEDGEMENT
This work was supported in part by the DataMiningGrid project

– www.DataMiningGrid.org

