Mining for Misconfigured Machines in Grid Systems

Noam Palatin, Arie Leizarowitz
Math Dept.
Technion — Israel

{noamp,la}@tx.technion.ac.il

ABSTRACT

Grid systems are proving increasingly useful for managdiegiatch
computing jobs of organizations. One well-known examplmis
tel, whose internally developed NetBatch system managesde
thousands of machines. The size, heterogeneity, and critypdé
grid systems make them very difficult, however, to configdieis
often results in misconfigured machines, which may adversel
fect the entire system.

We investigate a distributed data mining approach for dietec
of misconfigured machines. Our Grid Monitoring System (GMS)
non-intrusively collects data from all sources (log filggtem ser-
vices, etc.) available throughout the grid system. It casveaw
data to semantically meaningful data and stores this datthen
machine it was obtained from, limiting incurred overhead af
lowing scalability. Afterwards, when analysis is requdsta dis-
tributed outliers detection algorithm is employed to idigninis-
configured machines. The algorithm itself is implemented e
cursive workflow of grid jobs. It is especially suited to gsgis-
tems, in which the machines might be unavailable most ofithe t
and often fail altogether.

Categories & Subject Descriptors

C.2.4 Distributed Systems; H.2.8 Database Applicationgtanin-
ing

General Terms:
Algorithms, Management, Performance, Human Factors

Keywords:

Grid Systems, System Monitoring, Grid Information Syst@&is-
tributed Data Mining, Outliers Detection

1. INTRODUCTION

Assaf Schuster, Ran Wolff
CS Dept.
Technion — Israel

{assaf,ranw}@cs.technion.ac.il

batch management systems. Their supreme flexibility andtsita

ity have proved crucial for the management of organizatioom-
puting power in today’'s data immersed and computationatigni-

sive business arena. Grid systems manage pools of hetexmgen
machines (e.g., servers and workstations) which can beetsed

for the execution of jobs submitted by any user in the orgation.

The number of machines controlled by a single system can-some
times reach tens of thousands — e.g., Condor [7], with up 0D
machines at U. Wisconsin and NetBatch, with as many as 35,000
machines at Intel. These systems often manage computetedoc

in several geographically distant sites and organized aispoon-
taining up to thousands of machines each.

Grid systems are notoriously difficult to configure. Evergtai-
lation of a grid system is slightly different because theamigation
of each pool — the placement and number of services, for eleamp
— reflects the network topology at the site. Furthermore ntlae
chines managed by a typical grid system can differ greathally,
many of the resources available to the different machinediire
varying (e.g., software licenses expire and storage splsaiffi
over time). Hence, the system administrators must confignaiey
attributes, and each site might suffer very different peaid. The
configuration task requires that administrators have acdander-
standing of both the grid system’s internals and their owe'ssi
organization. It is a complex and error-prone task.

Misconfigured machines, together with machines with faludtyd-
ware or buggy software, can lead to so-calleidck holes’ (ma-
chines that accept many jobs and fail to complete any of them)
or to other irregular machine behavior. At worst, a miscanfgl
machine can obstruct the work of the entire organization. gkan
ubiquitous effect of misconfigured machines is the redunaticsys-
tem goodput— “the allocation time when a remotely executing
application uses the CPU to make forward progress” [2].

To identify misconfigured machines, most organizationg oel
user feedback and domain experts’ manual analysis of log. file
However, many problems pass unnoticed or unreported, rende
ing analysis nearly infeasible. Even when experts are anihge
problem, the information essential for detecting a misguméd

Grid systems have developed, over the last fifteen years, as amachine might be divided among different machines in thd.poo

natural extension to both high-performance cluster teldgyoand

Permission to make digital or hard copies of all or part of tiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

KDD'06, August 20-23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/000855.00.

Within each such machine, the details required for the aislyf
the problem might be hidden in the vast number of configunatio
attributes or event logs of the grid system and the multipteises
(NFS, DFS, JVM, etc.) that usually interact with a large sgst
All of this makes manual analysis time consuming, errompro
and exhausting.

The dominant approach for automatizing misconfiguration de
tection in enterprise computing systems is a rule-basedresps-
tem. A typical system employs the knowledge of domain espert
to construct a set of rules for identifying problems andnglkade-

quate corrective actions. However, expert systems have $ioriz
tations: because the rules are constructed manually,dbeiracy
and completeness are limited. Furthermore, experts’ tinsearce
and very expensive, and the rules are very difficult to mair(gag.,
when the system moves to a new version).

In contrast to expert systems, data mining algorithms ektra
useful information from large data sets with limited, if apyior
knowledge about the data. Therefore, we propose that a sorog u
data mining techniques can outperform rule-based tooldsoon-
figuration detection. If most of the machines in a well maimtd
pool are properly configured, normative behavior can be tedde
and misconfigured machines detected as outliers.

We implemented the Grid Monitoring System (GMS) — an exten-
sion to the Condor grid system which automatically detedtiyo
behaving machines. The challenges in building GMS relabmtb
system architecture and data mining. On the system sidehtie
lenges are the immensity of the data and the limited system re
sources allocated for monitoring, along with the requiretrtbat
the Condor system not be changed — i.e., reliance on exidteat
sources. We address the former problem by building a fully di
tributed information system in which data is not moved fram i
origin — resulting in GMS overhead no greater than that nexgli
by existing logging facilities. To make use of existing datairces
we implemented a mechanism that transforms the data framwits
form to an ontologically meaningful one.

On the algorithmic side, a distributed outlier detecticgoaithm
was implemented in which every participant (i.e., compiehe
grid system) can proceed at a different pace — based on itis ava
ability and the data it has. This allows outliers to be det@ct
even if most of the normative machines are not available. athe
gorithm was implemented using recursive calls for Condorkwo
flows. Analysis is initiated by submitting a Condor job, ahgrio-
gresses through the automated submission of further jobghel
best of our knowledge, our algorithm is the first distributda
mining algorithm that operates in a grid environment. Aidait
ally, it is one of the first applications of data mining fordoly a
grid related problem.

We experimented with GMS in a pool of 42 heterogeneous ma-
chines, four of which were indicated by GMS to be misconfigure
The information provided by GMS aided in the investigatidthe
strange behavior resulting from 3 real misconfigured mahiand
in determining the causes of the problem. Further expertisnesr-
ified that GMS is scalable and suitable for operation in a-liéal
system.

The rest of this paper is organized as follows: The next eecti
presents a brief review of related works in the areas of aateth
failure analysis and outlier detection, as well as a briéfoituc-
tion to grid systems architecture. Section 3 describes #he, ds
acquisition, and its preprocessing. Section 4 descriteanhlysis
of the data and the distributed outlier detection algoritt8action
5 briefly describes system architecture and implementatiec-
tion 6 outlines our experiments. Finally, conclusions a@ach in
section 7.

2. PRELIMINARIES AND RELATED WORK

2.1 System Misconfiguration Detection

In the black-box approach, problems are detected and diagno
with limited, if any, knowledge about the system. The apphos
used to try and learn which behaviors are abnormal. The Hlagk
approach is implemented today in several systems. For dgamp
eBay (see Chest al. [5]) experimented with a system that diag-
noses failures by training a degraded decision tree on ttwrde
of successful and failed network transactions. The maiadyisn-
tage of eBay’s system is that each transaction is descripgaisb
six features. This is mainly because the system centrafieedata
and processes it on-the-fly.

2.2 Outlier Detection

Hodge and Austin [6] define an outlier point as one that
appears to deviate markedly from other members of the saimple
which it occurs.” Of course, this definition leaves a lot teeipreta-
tion. This is not accidental, in the absence of a model fodtita,
the definition of an outlier is necessarily heuristic. Of thany
proposed heuristics, this paper focuses on unsupervisdibds
which are less demanding of the user. Specifically, we chtmse
focus on distance-based outlier detection methods, intwtiie
main responsibility of the user is to define a distance metnic
the domain of the data.

In GMS, we use the definition proposed by Angiulli et al. foe th
HilOut Algorithm [1]. By this definition the outlier score af point
is its average distance to its nearest neighbors. A distributed
version of the HilOut algorithm can be found in the liter&t(i3],
in the context of Wireless Sensor Networks (WSN). Grid syste
however, are different from WSNs in that the main challergsy t
pose is not reducing messaging but rather addressing tliedim
availability of resources. Thus, we describe a differestriiuted
scheme for HilOut, which is innovative in its own right.

2.3 Grid Systems

Grid systems manage and run user jobs on a collection of com-
puters called pools, which contain two main types of machiae-
ecution machineandsubmission machineand a handful of other
machines which provide additional system services. Sudaris
machines serve as proxy for the system users, who submit thei
jobs to the grid system through these machines, which them ma
age job execution. Execution machines share their compngt
capabilities with the pool according to the policies of thaaimine’s
owner. As both submission and execution machines pose sexjue
and requirements, the task of matching between jobs andinesch
requires a third component — the matchmaker. The matchmaker
collects information about all the pool participants, cédtes the
satisfiability of their demands, and notifies the submissiod the
execution machines of potentially compatible partners.e @st
grid service, of which GMS takes advantage, is the abilitplem
and execute workflows — groups of jobs which depend on one an-
other.

3. ACQUIRING, PREPROCESSING, AND
STORING DATA
The quality of any data mining process is known to be crilycal
dependent on data acquisition and preprocessing. Furtinertme

organization of the data is crucial in determining whichoaithms
can be used and, consequently, the performance of the proces

There are two general approaches to automated system raanageThis section outlines the main points of interest in the GMIS a

ment: white-box and black-box. The white-box approacheeeli
on knowledge of the system and its behavior. A typical whibe-
management system such as Tivoli's TEC interprets systemtgv
according to a set of rules. These rules specify exceptlmatadvior
patterns and appropriate responses to them.

proach to data acquisition, preprocessing, and orgaaizati

3.1 Data sources and acquisition

There are two main approaches to system data acquisitien: in
trusive and non-intrusive. Intrusive data acquisitionuiesp the

manipulation of the system for the extraction of data. Thae-no
intrusive approach, which is the one employed by GMS, psefer
using existing data sources. This is both because thoseesounm-
clude data about high level objects (jobs, etc.) and becthese
overhead incurred by monitoring is thus minimized. The sesr
used by GMS are:

e Log files: every component of the grid system is represented
by a daemon. Daemons log their actions in dedicated log
files, mainly for the purpose of debugging. This file also con-
tains timestamps, utilization statistics, error messagad
other important information. Log files are read as evenastise

e Utilities: Grid systems supply utilities which extract use
ful information about the state of each machine, the overall
status of the pool, machine configurations, and information
about the jobs. Utilities are used through sampling — they
are called periodically and can be matched against log file
data, primarily by using time-stamps.

e Configuration files: Each grid system has configuration files
which contain hundred of attributes. These files are read
(once) and the data is stored in reference tables.

3.2 Preprocessing

Preprocessing of data in GMS mainly takes the form of convert
ing raw data into semantically meaningful data. This is dbpe
translating it into ontological terms. The use of ontolagie data
mining has been discussed widely in the literature and haeth
main benefits. First, it increases the interpretabilityhef butcome.
Second, it enriches the data with background informatiolmirdl
it allows data reduction by focusing on those parts of tha da¢
ontology architect deems more important. Additionallgnfra sys-
tems design perspective, the use of ontology allows thetddte
virtualized, resulting in easy porting of the higher levélse ana-
lytical part) of GMS from one grid system to the another.

The ontology used in GMS follows the principles suggested by
Cannatarcet al. [4]. It is hierarchical, with the highest level of
the hierarchy containing the most general concepts. Eatlesé
concepts is then broken down into more subtle concepts, attil
the lowest levelground conceptsr basic conceptare considered.
The relation between levels is that an upper level concetefised
by the assignment of its values to lower level concepts.

Besides translation into ontological terms, GMS preprsices
also addresses missing values. We treat missing valuesatbat
never available in some architectures as a value in theirrayt,
and purge altogether records that contain missing valuesnof
porarily unavailable concepts.

3.3 Data Organization

The data in GMS is fully distributed. The reasons for thistaee
desire to restrict to a minimum the GMS overhead while noyais
is taking place, and the need for scalability with the numdier
machines. Regarding the latter, itis enough to note thaatbeage
data rate at an execution machine can top one kilobyte pendec
Accumulating this data over a 24 hour sliding window in a 0,00
machine pool would yield more than one hundred gigabyteawf r
data, an amount requiring specialized resources for mamexgaf
centralized. However, if the data remains distributed,atrunt

4. DATA ANALYSIS

4.1 General approach

Two major assumptions guide our approach to detecting misco
figured machines: First, we assume that the majority of nmashi
in a well-maintained pool are properly configured. Secorel ag-
sume that misconfigured machines behave differently frameropt
similar machines. The first of these assumptions limits qur a
proach to systems that are generally operative, and psetliat
it would fail if most of the resources are misconfigured. The-s
ond assumption limits the usefulness of GMS to misconfigumat
that affect the performance of jobs (and not, e.g., systeaurgg).

Our choice of an algorithm is strongly influenced by two com-
putational characteristics of grid systems. First, fumthipping
in grid systems is, by far, cheaper than data shipping —it jgays
to process the data where it resides rather than ship it esewor
processing. This, together with the difficulty in storinghtralized
data (as discussed in the previous section), motivategribdied
outlier detection algorithm. Second, machines in a gridesysare
expected to have very low availability. Thus, the algorithas got
to be able to proceed asynchronously and produce resuklts loais
the input of only some of the machines.

Finally, our approach is influenced by characteristics efdhta
itself: It takes many features to accurately describe avestich
occur in grid systems, and those events are very heterogeneo
This means that the data is extremely sparse and its ditnibu
intricate. To overcome data sparsity, one can focus on joak t
are associated with a particular application getting chirgut pa-
rameters. In our implementation, we emulate this kind of hgb
executing standard benchmarks with random arguments.

4.2 Notation
Let P = {P1, P», ...} be a set of participants in the algorithm,

and letS; = {le 22,... \ be the input of participan;,. Each

IRl

input tuplex{ is taken from an arbitrary metric spaBe on which

the metricd : D x D — R™ is defined. We denotsy the union

of the inputs of all participants. In rest of this paper weuass the

distances between points iy are uniqué. Among other things,
this means that for each C S the solution of the HilOut outlier
detection algorithm is uniquely defined.

For any arbitrary tuple we define thesupportof Z, [Z]S], , to be
the set ofim points in.S which are the closest t8. For two sets of
pointsS, R C D we define the support @t from S to be the union
of the support fromS for every point inR. We denoted (z,S)
the average distance af from the points inS. Consequently,
d (&, [Z]S],,) denotes the average distancezdfom its m nearest
neighbors inS. For any sef5 of tuples fromD, we defineAy, ., (S)
to be the topk outliers as computed by the (centralized) HilOut al-
gorithm when executed ofi. By definition of HilOut, these arg
points fromS such that for allt € Ay ., (S), 7 € S\ Ak,m (5)
we haved (7, [7]S],,) > d (7, [715],,)-

4.3 Algorithm

The basic idea of the Distributed-HilOut algorithm is to eav
the participants construct together a set of input pofisfrom
which the solution can be deduceflc has three important quali-

per execution machine — a mere hundred megabytes — can beties: First, it is eventually shared by all of the particifsarSecond,

supported by off-the-shelf, even free, databases such &y

the solution of HilOut, when calculated frost;, is the same one
which is calculated fronSy — Ak, m (Scg) = Ak,m (Sn). Third,

'This assumption is easily enforced by adding a little ranuess
to the numeral features of each data point.

the support of the solution ofic from S¢ — [Ak,m (Sa) |Sc],,
— is the same as the support from the entire set of infSuts—
[Ak,m (Sc) |SN],,-

Since many of the participants are rarely available, thgmeo
sion of S¢ over time may be slow. Every time a participaft
becomes available (i.e., a grid resource can accept a jatedsto
the analysis), it will receive the latest updatesste and will have
a chance to contribute t8¢ from S;. By tracking the contribu-
tions of participants t&5x, an external observer can compute an
ad hoc solution to HilOut at any given time. Besides prowdior
temporal (sometimes lasting) non-availability of resesicthe al-
gorithm has two additional benefits: One, the sizeSeafis often
very small with respect t§'x, and the number of participants con-
tributing to S very small with respect to the overall number of
participants. Two,Ay .. (S¢) often converges quite quickly, and
the rest of the computation deals solely with the convergeofc
[Ak,m (Sc) |S¢c),,,- Ak,m (Sg) converges quickly because many
of the well-configured machines could be used to point outea sp
cific outlier.

The details of the Distributed HilOut algorithm are giverAh
gorithms 1 through 3. The algorithm is executed by a sequehce
recursive workflows. The first algorithm, Algorithm 1, is ripthe
user. It submits a workflow (Algorithm 2) to every resourcelia
pool and terminates. Afterwards, each of these workflowsngish
a job (Algorithm 3) to its designated resource and awaitgdhis
successful termination. If the job returns with an emptypautthe
workflow terminates. Otherwise, it adds the outputSte and re-
cursively submits another workflow — similar to itself — tocha
resource in the pool.

Algorithm 1 Distributed HilOut — User Side

Input: The number of desired outliersk and the number of
nearest neighbors to be considered for each outlier —
Initialization:

SetSg «— 0

For every P; submit a Distributed-HilOut workflow with argu-
mentsk;, k, andm

On request for output: Provide Ay ., (S¢) as the ad hoc out-
put.

Algorithm 2 Distributed-HilOut Workflow
Arguments: P;, k, andm
Submit a Distributed-HilOut Job t&; with arguments:, m, and
Sa
Wait for the job to return successfully with outpit
SetSg «— Sc UR
If R # 0 submit a Distributed-HilOut workflow for everip; #
P; with arguments?;, k, andm

If there are points fronb; which should be added 8¢, they
are removed front; and returned as the output of the job. This
happens on one of two conditions: 1. When there are pointsein t
solution of HilOut overS; U S¢ which come fromS; and notSg.

2. When there are points in the support fréinJ .S to the solution
as calculated ove$ alone, which are part of; and notSe.

Moving points fromsS; to S¢ may change the outcome of HilOut
onS¢. Thus, the second condition needs to be repeatedly evdluate
by P; until no more points are moved fro to Sg. Strictly for
the sake of efficiency, this repeated evaluation is encapeiin a
while loop; otherwise, the same repeated evaluation woesdlt
from the recursive call to Alg. 3.

Algorithm 3 Distributed HilOut Job

Job parameters: k, m, Sa

Inputat P;: S;

Job code:

SetQ — Ak,'m. (SG U Sl)

Do

-Q+— QU [.Ak,m (SG U Q) |SG U Si]m
While @ changes

SetR — Q\ S¢

SetS; — Si\ R

Return withR as output

5. THE GMS SYSTEM

Architecturally, GMS is divided into two parts. One part eth
data collector — takes charge of data acquisition while tiero
part — the data miner —is in charge of analysis. The dataatolle
is a stand-alone software component installed on the ressiihat
are to be monitored by GMS. The data miner, on the other hand,
is a grid workflow which executes jobs, exchanges data betwee
resources, and produces the outcome.

The data collector siphons data from many of the data sources
available on its machine and organizes the collected dédar@
lational tables according to the ontology scheme. The dat@m
is implemented using Condor DAGs. The Condor DAGman is a
workflow management engine. It supports execution of miytual
dependent Condor jobs and limited control structures. mimod
plementation, there are two dependencies: The system wibmi
job to a specified execution machine and then waits for itrmite
nate successfully. Then, if the job returns non-empty dutine
workflow will dictate that a number of new workflows be instan-
tiated — one for every execution machine. These new workflows
in turn, repeat the same process recursively. It should tedrtbat
the use of DAGs means that Condor itself takes charge of therse
side of the data mining algorithm.

6. EVALUATION

To validate the usefulness of GMS we conducted an experiment
in a pool of 42 heterogeneous Linux machines (84 virtual rimesh
in all): 10 dual Intel XEON 1800 MHz machines with 1GB RAM,
6 dual Intel XEON 2400 MHz with 2GB RAM, and 26 dual IBM
PowerPC 2200 MHz 64-bit machines with 4GB RAM.

We ran two benchmarks independently: BYTEmark — a bench-
mark that tests CPU, cache, memory, integer and floatingtper-
formance — and Bonnie, which focuses on I/O throughput. We se
multiple instances of these benchmarks as Condor jobs ty eve
machine in the pool, varying their arguments randomly acws
large range. In all, an order of 9,000 jobs were executed. Hafe t
independently ran Distributed HilOut on the two resultirgatets.
After preprocessing the dataset, we selected 56 attriputieich
describe job execution and the properties of the execut@chine.
Job execution attributes include, for example, runtimeilevtne
machine properties include attributes such as CPU arthitsc
memory size, disk space, and Condor version.

We used the following distance metrit First, all of the nu-
merical features were linearly normalized to the raf@e], so
that the weight of different attributes would not be influeddy
range differences. Given two points, the distance betweameni-
cal features was calculated using a weighted L2 norm — witfemo
weight allocated to job runtime indicators and to configorafea-
tures (memory size, etc.). This different weighting eneges the
algorithm to gather records of jobs which ran on similar niaest

[Rank | Machine| Score]

Four Main Contributing Attributes |

1 bh10 0.476 SWAPIN, SWAPOUT, AVGCPU_sYs, AVGCPU_USER

2 bh10 0.431 SwWAPOUT, SWAPIN, AVvGCPU_USER, MAXCPU_USER

3 i4 0.425 DiskUseDRoOT, MAXCPU_USER, AvGCPU.USER, BUFFEREDMEM
4 i4 0.422 DiskUSeDROOT, MAXCPU.USER, AVvGCPU.USER, AVvGCPULIDLE

5 bh13 0.422 LAUNCHERLEN, CPUMODEL, JOBLEN, AVvGCPU.USER
6-8 i4 ...

9 i3 0.421| AvGCPU_USER MAXCPU.USER, MAXROOTUSED%, AVGROOTUSED%

Table 1: The output of Distributed HilOut on BYTEmark data.

| Number of machines [Sn| | [Sc| | Percent|

10 751 | 190 25%
20 1470 | 336 23%
30 2290 | 428 19%

Table 2: Scalability with the number of machines and data
points — BYTEmark benchmark. k£ = 7.

| Number of machines [Sn| | [Sc| | Percent|

10 828 | 186 22%
20 1677 | 373 22%
30 2343 | 452 19%

Table 3: Scalability with the number of machines and data
points — Bonnie benchmark.k = 7.

and have similar runtime. Nominal features contributed zeithe
overall distance if their value was the same, and a constaet-0
wise. This is with the exception of the machine identifierisTteld
contributed a very large constant if it was the same and z#ro o
erwise. The reason is that we wanted neighbor points to betwn
different machines — so that our algorithm would detect ptioeal
machines rather than exceptional executions in the sambingac

Below, we describe three different experiments. We noteltba
tween experiments some of the misconfigured machines wesk fix
which explains the differences in the number of outlying hiaes,
data points, etc. Although experimentally undesirablés ih an
unavoidable outcome of working in a truly operational syst&i-
nally, we note that in all our experiments the number of neigh
(m) was set to five.

6.1 Qualitative Results

| k[[S~n] | [Sc| | Percent]

3| 2290 | 304 13%
5| 2290| 369 16%
72290 | 428 19%

Table 4: Scalability with the number of outliers (k) —
BYTEmark benchmark, 30 machines.

|k [[S~] | [Scl | Percent]

3| 2343 | 287 12%
5| 2343 | 372 16%
7 | 2343 | 452 19%

Table 5: Scalability with the number of outliers (k) — Bonnie
benchmark, 30 machines.

on the machine. As a result, the user was only allocated a smal
percentage of the CPU time. After the system administratat s
the daemon down, the machine started to behave normally.

The third ranked machine was bh13. With that machine the algo
rithm indicated a mismatch of the CPU model and the time #$ak
to launch a job. As it turned out, this machine had a wrong BIOS
setup: It was configured with active HyperThreading, whickant
each CPU (the machine had two) was represented as two CPUs
with half the system resources (memory, etc.). Consequetl
launched jobs slower than other machines with same CPU model

The fourth ranked machine was i3. Here, GMS indicated a highe
than usual use of the root file system. We found the root fileesys
was nearly full. This led to the failure of the benchmark, #mas
to much shorter runtime than usual.

Although qualitative, we consider the validation procegghly
successful. Of the four highest ranked machines, three fwarel

We ran Distributed HilOut separately on the records of each to actually have been misconfigured. GMS contributed to tiz-a

benchmark. The outcome of the analysis was a list of suspact m

chines. Additionally, as shown in Table 1, the algorithmkeshfor
each outlier the main attributes that contributed to thé lsigore.
In both tests two machines, i3 and bh10, were indicated asomis
figured. Additionally, the test based on BYTEmark data iatkéd

ysis of all three by pointing out not only which machines teck
but also which attributes in the outlying machine diffemfréhose
in comparable machines. Further analysis of the miscoratour,
beyond using GMS, required no access of logs or configuration
files. On the flip side, the Bonnie benchmark missed two out of

that bh13 and i4 were also outlying. With the help of a system the three misconfigured machines. We attribute this to theowa

administrator, we analyzed the four machines that had tiieelsi
ranking.

The machine bh10 was ranked highest because of excessige swa

activity, but we were not able to recreate the phenomenonsand
concluded that it was temporary.

nature of this benchmark, which focuses on 1/O.

6.2 Quantitative Results

The goal of our second experiment was to evaluate the stalabi
ity of the Distributed-HilOut algorithm. Specifically, weanted to

The next highest ranked machine was i4, which contributez fiv examine what portion of the entire data s8t;, is collected into

of the top nine outlying points. In all of the outlying exeicuts,

Sc. To be scalableS: needs to grow sublinearly with the num-

the extraordinarily low user CPU was one of the outstanding a ber of execution machines and at most linearly with the nurobe

tributes. A quick check found that the CPU load of that maehin
was very high. The source of the high load turned out to be a net

work daemon (Infiniband manager) that was accidentallyallest

desired outliers .
Tables 2 and 3 depict the percentage of points — out of thé tota
points produced by 10, 20, or 30 machines — collected K#o

As the number of machines grows, that percentage declimes. |
large-scale setup with hundreds of execution machines xpece
the percentage to decline much further.

Figures 4 and 5 depict the percentage of points — out of the to-
tal points produced by 30 machines — that were collected when
the user chose to search for 3, 5, or 7 outliers. That pergerita
creases linearly. We conclude that our approach is indesddlde.

6.3 Interoperability

Our final set of experiments validated the ability of GMS te op
erate in a real-life grid system. We ran the Distributed Hiti@l-
gorithm with twenty of the well-configured machines shut dow
Then, when no more workflows were pending for the active ma-
chines, we turned the rest of the machines on. The purpos$gsof t
experiment was to observe GMS behavior in the presencelef fai
ure. We noted the progression of the algorithm in terms ofehell
(portion of the outcome correctly computed) and observeld the
recall in terms of outlier machines (Recall — M) and in ternfis o
data points (Recall — P). The data points are important lsecdar
the same outlier machines, several indications of its rhiabier
might exist, such that the attributes explaining the pnobtiffer
from one point to another.

With respect to the recall, our expectations — fast convezge
regardless of the missing machines — were met. As tables & and
show, the recall progressed quickly. Furthermore, neangpete
recall of the patterns was achieved in both benchmarks, thiod a
the outlier machines were discovered. This means the asimani
tors were able to start analyzing misconfigured machine®stim
immediately, even if many of the machines were unavailablee
computational overhead was not very large even after wedtlLitme
missing machine on again (as described in table 6 and 7, libkow
double line) — in all, about forty workflows resulted in addits
to Sg.

7. CONCLUSION AND FUTURE WORK

We study the problem of detecting misconfigured machines in
large grid systems. Because these systems are heterogeaeioin
description of their operation is required for more acceieatalysis.
Moreover, their scale makes centralization of the data dsase
its manual analysis inefficient. We therefore suggest aibiiged
architecture which enables automatic analysis of the datdata
mining algorithms.

We implement a highly portable Grid Monitoring System (GMS)
that relies on an ontology for virtualization of the undértybatch
system and for enhancing data quality. We deploy our system o
a heterogeneous Condor pool and demonstrate its effeetigdry
discovering three misconfigured machines.

Outlier detection is just one of the algorithms which canrpe i
plemented on top of GMS and misconfiguration detection it jus
one of the possible applications of data mining for grid sys.
We intend to extend GMS for various applications.

[Time (h:mm) [[S¢|/[Sn| | Workflows | Recall - P| Recall - M|

0:00 0/4334 0 0/7 0/2
0:03 82 /4334 6 417 1/2
0:07 460 /4334 20 5/7 212
0:10 462 /4334 22 6/7 2/2
0:23 495 /4334 26 6/7 2/2
1:38 617 /4334 37 717 2/2
2:54 619/4334 39 717 2/2

Table 6: Interoperability — a grid pool with twenty of the ma-
chines disabled — BYTEmark benchmark.

| Time(h:mm)| [Sc|/|Sn]| | Workflows | Recall — P| Recall - M |

0:00 0/4560 0 0/7 0/3
0:05 112 /4560 4 217 1/3
0:07 417 /4560 16 417 2/3
0:10 475 /4560 22 517 3/3
0:15 478 /4560 24 717 3/3
0:17 484 /4560 27 6/7 3/3
0:31 494/ 4560 30 717 3/3
2:03 578 /4560 40 717 3/3

Table 7: Interoperability — a grid pool with twenty of the com-
puters disabled — Bonnie benchmark.

8. REFERENCES

[1] F. Angiulliand C. Pizzuti. Fast outlier detection in hig
dimensional spaces. Proc. of PKDD 2002.

[2] J. Basney and M. Livny. Improving goodput by co-schedgli
CPU and network capacitintl. Journal of High Performance
Computing Applicationsl3(3), 1999.

[3] J. W. Branch, B. Szymanski, C. Giannella, R. Wolff, and

H. Kargupta. In-network outlier detection in wireless sans

networks. InProc. of ICDCS July 2006.

M. Cannataro, A. Massara, and P. Veltri. The OnBrowser

ontology manager: Managing ontologies on the gridnth

Workshop on Semantic Intelligent Middleware for the Web

and the Grid 2004.

M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer.

Failure diagnosis using decision treesPimoc. of ICAG 2004.

Hodge V. and Austin J. A Survey of Outlier Detection

MethodologiesArtificial Intelligence Review22:85-126,

2004.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter

of idle workstations. IrProc. of ICDCS June 1988.

[4]

[5]

(6]

[7]

9. ACKNOWLEDGEMENT

This work was supported in part by the DataMiningGrid prbjec
—www. Dat aM ni ngGri d. org

