
J Grid Computing
DOI 10.1007/s10723-007-9069-5

A Local Facility Location Algorithm for Large-scale
Distributed Systems

Denis Krivitski · Assaf Schuster · Ran Wolff

Received: 1 September 2005 / Accepted: 18 January 2007
© Springer Science + Business Media B.V. 2007

Abstract In a facility location problem (FLP) we
are given a set of facilities and a set of clients, each
of which is to be served by one facility. The goal
is to decide which subset of facilities to open, such
that the clients will be served at a minimal cost.
In this paper we investigate the FLP in a setting
where the cost depends on data known only to the
clients. This setting typifies modern distributed
systems: peer-to-peer file sharing networks, Grid
systems, and wireless sensor networks. All of them
need to perform network organization, data place-
ment, collective power management, and other
tasks of this kind. We propose a local and efficient
algorithm that solves FLP in these settings. The
algorithm presented here is extremely scalable,
entirely decentralized, requires no routing capa-
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bilities, and is resilient to failures and changes in
the data throughout its execution.
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1 Introduction

The facility location problem (FLP) deals with
finding an optimal subset of facilities that will be
open to serve clients. The set of open facilities
should minimize the cost function—the cost in-
curred by serving each client and that incurred
by opening each facility. This clients-facilities
metaphor can be used to model many practical
optimization problems occurring in large scale
distributed systems. Examples of such systems are
peer-to-peer networks, Grid computing, and wire-
less sensor networks.

Consider a scenario that may occur in large
Grids. These are used for the execution of user
jobs on thousands of computers. Grid systems
have many resources that are shared by many, or
all, of the jobs. These include the job queue, the
resource collector, and possibly large reference
data files that are used by many jobs. All these
resources can be replicated so as to allow better
scalability, reliability, and response time. How-
ever, such replication does not come for free. It re-
quires both costly synchronization among replicas
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and the allocation of valuable resources (e.g.,
computers with large disks that can accommodate
the reference tables). Hence, the problem of se-
lecting resources for the different replicas, so that
the system achieves best overall throughput, can
also be represented as a facility location problem.

A more straightforward use of facility location
may be found in data-Grid systems. Data-Grids
are concerned with controlled sharing and man-
agement of large amounts of distributed data. In
many cases, for example in AstroGrid (which is
a data-Grid designed to hold and process astro-
nomical survey data, for more information see
[26]), data stored in the system needs to be mined.
In addition to being distributed among thousands
of computers, the data stored in those systems is
constantly updated. FLP, being a close relative to
clustering, can be used to extract knowledge from
this data.

A more traditional application for decentral-
ized facility location can be found in battery oper-
ated wireless sensor networks. In these networks
the major challenge is to find an efficient way
by which data gathered by the sensors can be
routed to a control station using as little energy
a possible. In order to save energy, sensors would
not transmit such data directly, but rather relay it
from one sensor to its neighbors until it reaches
the control station. Assume a network enhanced
with a few dozen high powered relay stations
capable of communicating directly with the con-
trol station. Obviously these could dramatically
increase the energy efficiency of the sensors. If the
routers themselves are resource limited (e.g., the
number of communication channels is bounded,
or these relays are battery operated as well), then
it would make sense to select a handful of them
to be active, and shut down the rest. The optimal
selection would take into account the bandwidth
requirement and the battery limitation of each
sensor. Thus, it is a facility location problem where
the energy cost of a solution is the sum of costs for
all sensors and all active relays.

The facility location problem (FLP) has been
extensively studied in the last decade. Like many
other optimization problems, optimal facility loca-
tion is NP-Hard [15, 17]. Thus, the problem is of-
ten subjected to a hill-climbing heuristic [6, 12, 18].
Hill-climbing is a simple and effective heuristic

search technique in which it is assumed that a
reasonable local optimum can be reasonably ap-
proached if on each search step the algorithm
greedily chooses the direction that maximally de-
creases cost. The strength of the method is in
its simplicity. It has been extensively tried for
optimum search in exponential domains in prob-
lems such as genetic algorithms, clustering, etc. A
rather surprising result by Arya et al. [1] states
that, for FLP, hill climbing achieves a constant
factor approximation of 3, and this factor is tight.
This means that the cost of the local optimum
computed by the hill-climbing heuristic is not
worse than thrice the cost of the globally optimal
solution. Moreover, as shown in [12], an algorithm
with approximation factor better than 1.463 does
not exits, unless N P ⊆ DT IME[nO(loglog(n))]. Al-
though, the facility location problem can also be
solved by primal-dual technique [15] and linear
programming relaxation [4] with better approxi-
mation factors, these techniques are less suitable
for large-scale distributed systems.

Approximability of the facility location prob-
lem in distributed environments has been stud-
ied in [24]. However, their algorithm advances
in globally synchronized rounds which makes it
unsuitable from large-scale systems. Moreover,
their algorithm uses linear programming relax-
ation to find the solution. To the best of our
knowledge, the hill-climbing approach to FLP has
never been studied specifically in a distributed
setting. Nevertheless, it is easy to see how FLP can
be parallelized in the shared memory model. In
addition, a related problem, the k-means cluster-
ing, which is also solved by a hill-climbing heuris-
tic, was widely addressed in the parallel settings
[7, 10, 11]. We note, however, that all previous
work on distributed clustering assumes tight co-
operation and synchronization between the peer
nodes containing the data and a central node that
collects the sufficient statistics needed in each step
of the hill-climbing heuristic. Such central control
is not practical in large-scale networks because
it imposes large bandwidth requirements and is
prone to errors even in the case of single failures.
Even more importantly, central control is unscal-
able in the presence of dynamically changing data
because any such change must be reported to the
center, for fear it might alter the result.
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In contrast, the most important features which
qualify an algorithm for a large-scale distributed
system are the following: the ability to efficiently
scale-up (there are peer-to-peer systems today
that consist of millions of peers), the ability to
perform in a router-less network (critical for wire-
less sensor networks), and the ability to calculate
the result in-network rather than to collect all
of the data to a central processor (which would
quickly exhaust bandwidth in both sensor and
peer-to-peer networks [13]). Most important of
all, because the data in a large-scale system usu-
ally changes before the computation is complete,
it is crucial that the algorithm efficiently prune
redundant messages and computation, as long as
the data changes do not affect the global output.
All these features typify local algorithms.

A local algorithm is one in which the com-
plexity of computing the result does not directly
depend on the number of participants. Instead,
each node usually computes the result using infor-
mation gathered from just few nearby neighbors.
Because communication is restricted to neighbors,
a local algorithm does not require message rout-
ing, performs all computation in-network, and in
many cases is able to locally overcome failures
and minor changes in the input (provided that
these will not change its output). Local algorithms
have been studied mainly in the context of graph
related problems [2, 3, 19–22, 25]. Most recently,
it has been demonstrated in [27] that local algo-
rithms can be devised for complex data analy-
sis tasks, specifically, data mining of association
in distributed transactional databases. The algo-
rithm presented in [27] features local pruning of
false propositions (candidates), in-network min-
ing, asynchronous execution, as well as resilience
to changes in the data and to partial failure.

In this work we develop a local algorithm that
solves a specific version of FLP in which uncapa-
citated resources (i.e., those which can serve any
number of clients) can be placed in any of the m
possible locations. Initiating our algorithm from
a fixed resource location, we show that the com-
putation needed to agree on single hill-climbing
step – shutting down an active resource or opening
a new one at a free location – can be reduced to
a group of majority votes. We then use a varia-
tion of the local majority voting algorithm pre-

sented in [27] to develop an algorithm which
locally computes the exact same solution a hill-
climbing algorithm would compute, had it been
given the entire data. Our algorithm demonstrates
that whenever the cost of a step is summed across
the different sensors, peers, or resources, a hill-
climbing heuristic can be computed using a local,
in-network algorithm.

In a series of experiments employing networks
of up to 1,000 simulated processors, we prove that
our algorithm has good locality, incurs reasonable
communication costs, and quickly converges to
the correct answer whenever the input stabilizes.
We further show that when faced with constant
data updates, the vast majority of sensors con-
tinue to compute the optimal solution. Most im-
portantly, the algorithm is extremely robust to
sporadic changes in the data. So long as these
do not change the global result, they are pruned
locally by the network.

The rest of this paper is organized as follows.
We first describe our notations and formally de-
fine the problem. Then, in Section 3, we give our
version for the majority voting algorithm origi-
nally described in [27]. Section 4 describes a lo-
cal facility location algorithm as an example of
a hill climbing algorithm. In Section 5 prelimi-
nary experimental results are described. Section 6
ends the paper with some conclusions and open
research problems.

2 Notations, Assumptions, and Problem
Definition

The input to the facility location problem consists
of an input points database, where each point
represents a client, DB = {p1, p2, . . . , pn}, a set
M of m possible locations, a cost function d :
DB × M → R

+, and a configuration (a set of open
facilities) cost function D : 2M → R

+. The task
of a facility location algorithm is to find a set of
open facilities C ⊆ M, such that the total cost of C
and the cumulative distance of points from their
nearest facility in C, D (C) +

∑

pi∈DB

min
c∈C

d (pi, c), is

minimized. Note that relative difference in con-
figuration costs vs. cumulative distance of points
will influence the number of open facilities in the
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optimal solution. We leave the user the flexibility
to decide on this relative difference.

To relate these definitions to the sensor net-
works example in the introduction, consider a
database that includes a list of events that oc-
curred in the last hour. Each event has a heuris-
tic estimate of its importance. Furthermore, each
sensor evaluates its hop distance from every relay
and multiplies this by the heuristic importance of
each event to produce its cost. Finally, the cost
of each configuration is the number of active re-
lays. Given this input, a facility location algorithm
will compute the best combination of relays such
that the most important events need not travel
far before they reach the nearest relay, and not
too many relays are active. The less important
events, we assume, will be suppressed either in
the sensor which produced them, or in-network by
other sensors.

Given a large number N of nodes, which
can communicate with one another by sending
messages, a distributed facility location algorithm
would compute the same result even though the
database is partitioned among the nodes. The
database DB is partitioned into N mutually exclu-
sive databases

{
DB1, . . . , DBN

}
, each of which is

stored in a separate node. A local facility location
algorithm is a distributed algorithm whose perfor-
mance does not depend on N but rather corre-
sponds to the difficulty of the problem instance at
hand.

An anytime facility location algorithm is one
which, at any given time during its operation, out-
puts a set of open facilities such that the cost of
this ad hoc output improves with time until the
optimal solution is found.

The hill-climbing heuristic for facility location
begins from an initial set of open facilities (hence-
forth, initial configuration). Then it selects a single
facility and a single empty location such that by
doing one of the following: 1) moving the selected
facility to this free location, 2) closing the selected
facility, or 3) opening a new facility at the empty
location, the cost of the solution is reduced to the
largest possible degree. If such a step exists, the
algorithm changes the configuration accordingly
and iterates. If every configuration which can be
stepped into by closing, opening, or moving just
one facility has a higher cost than the current con-

figuration, the algorithm terminates and outputs
the current configuration as the solution.

This paper presents a local, anytime algorithm
which computes the hill-climbing heuristic for fa-
cility location. Note that this algorithm can easily
be applied to any other hill-climbing problem. To
do this, it is enough to describe the start point and
the mechanism by which the next possible steps
are created and their cost (or gain) evaluated. The
rest of the algorithm remains the same.

3 Local Majority Voting

Our facility location algorithm reduces the prob-
lem to a large number of majority votes. In this
section, we briefly describe a variation of the local
majority voting algorithm from [27] which we use
as the main building block for the algorithm.

We assume that communication among neigh-
boring nodes is reliable and ordered. This assump-
tion can be enforced by using standard numbering,
ordering and retransmission mechanisms. For sim-
plicity of explanation we assume an undirected
communication tree. Yet, this assumption is not
limiting. To extend the local facility location al-
gorithm to arbitrary communication graphs, Al-
gorithm 1 can be replaced by a majority voting
algorithm described in [5]. The idea of [5] is based
on variations of Bellman-Ford algorithms [9, 14]
for constructing communication trees. In addition,
we assume fail-stop failure and that when a node
is disconnected or reconnected its neighbors are
informed. Finally, the algorithm requires no more
time guarantees than what is necessary for detect-
ing failures.

Given a set of nodes V, where each u ∈ V con-
tains a zero-one poll with cu votes, su of which are
one, and given the required majority 0 < λ < 1,
the objective of the algorithm is to decide whether∑

u

su/
∑

u

cu ≥ λ. Equivalently, the algorithm can

compute whether � =
∑

u

su − λ
∑

u

cu is positive

or negative. We call � the number of excess votes.
We will now give some intuition about how

the algorithm works. Observe that only the sign
of � need to be determined, not the magnitude.
The omission of magnitude determination makes
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it possible to suppress many messages, and leads
to a local algorithm. The suppression happens in
the following manner. We look at every node as a
tree root which determines its output by summing
its local input with what children report about
their subtrees. Each node being a root informs
every child about changes in other sub-trees, but
makes it selectively. The root informs only those
children whose output my be altered due to new
information. Since suppressed messages would
not influence the output, correctness of the result
is preserved.

The decision whether a message can influence
the result of some subtree or not is done in the
following way. Assume with out loss of generality
that a neighbor of some node estimates � as
positive. Consider two scenarios, in the first the
message to the neighbor increases its estimate.
The estimate becomes farther from zero and thus
makes its sign harder to flip. Since the output of
the neighbor is the sign of its estimate, the output
can not be influenced by this message, and there-
fore such a message can be suppressed. In the
second scenario, the message decreases the neigh-
bor’s estimate. The estimate becomes closer to
zero, and thus its sign becomes easier to flip.
Therefore, such a message may have influence on
the output in the future and can not be suppressed.
And of course, in a case where a message flips
the neighbor estimate, it should not be suppressed
as well.

Finally, we explain why suppression of mes-
sages carrying positive votes does not give unfair
advantage to messages with negative votes. Con-
sider a scenario when a message carrying a large
amount of positive votes was suppressed and did
not reach node u, whose estimate is positive. But
another message with a small amount of negative
votes, having a potential to change u’s output, was
received by u and flipped its estimate. In this case,
had the positive message not been suppressed the
u’s output would still be positive. This apparent in-
correctness is resolved in the following way. Once
u’s output is flipped, the suppression condition is
reevaluated and the positive message is sent, be-
cause now a positive message has a potential to
influence a negative estimate. After the positive
message is received, u’s output is flipped back to
be positive.

The following local algorithm decides whether
� ≥ 0. Each node u ∈ V computes the number of
excess votes in its own poll δu = su − λcu. Further,
in δuv it stores the number of excess votes it
reported to each neighbor v, and stores the num-
ber of excess votes reported to it by v in δvu.
Node u computes the total number of excess votes
it knows of, �u, as the sum of its own excess
votes and those reported to it by the set Gu of
its neighbors: �u = δu +

∑

v∈Gu

δvu. It also computes

the number of excess votes it negotiated with
every neighbor: v ∈ Gu, �uv = δuv + δvu. When u
chooses to inform v about a change in the number
of excess votes it knows of, u sets δuv to �u − δvu,
which results in �uv being equal to �u. It then
sends δuv to v. When u receives a message from
v containing some δ, it sets δvu to δ – thus updating
both �uv and �u. Finally, node u outputs that
the majority is of ones if �u ≥ 0, and of zeros
otherwise.

The crux of the local majority voting algorithm
is in determining when u must send a message
to a neighbor v. More precisely, the question is
when can sending a message be avoided, despite
the fact that the local knowledge has changed.
In the algorithm presented here, node u would
send a message to a neighbor v in two cases:
when u is initialized and when the condition
(�uv ≥0∧�uv >�u) ∨ (�uv <0∧�uv <�u) evalua-
tes true. Note that u must evaluate this condition
upon receiving a message from a neighbor v (since
this event updates �u and the respective �uv),
when its input bit switches values, and when an
edge connected to it fails (because then �u is
computed over a smaller set of edges and may
change as a result). This means the algorithm is
driven by local events and requires no form of
global synchronization among all nodes.

The analysis in [27] reveals that the good per-
formance of the above algorithm, in terms of mes-
sage load and convergence time, stems directly
from its locality. The average (as well as the worst)
node would terminate after it has collected data
from just a small number of nearby neighbors –
its environment. The size of this environment
depends on the difference, in the nearby sur-
roundings of the node, between the average vote
and majority threshold. If the two differ by as
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much as 5%, then we can expect the size of the
environment to be limited to a few dozen nodes.
However, if the vote is close to a tie, then the
environment can be as big as the entire network.
In this case, the algorithm may take time pro-
portional to the network diameter to converge.
Nevertheless, we expect such global cases to be
rare or not even occur.

In order to use the local majority voting algo-
rithm for facility location we modify it slightly.
We add the ability to suspend and reactivate the
vote using corresponding events. A node whose
voting has been suspended will continue to receive
messages and to modify the corresponding local
variable, but will not send any messages. When
the vote is activated, the node will always check
if it is required to send a message as a result
of the information received while in suspended
state. Furthermore, we allow a bias towards one
vote, which is equivalent to starting the vote
with γ additional zeros (γ can be positive or
negative). This is done by changing the condition
for sending messages to (�uv ≥ γ ∧ �uv > �u) ∨
(�uv < γ ∧ �uv < �u) and outputting a majority
of ones if �u ≥ γ and of zeros otherwise. The
pseudo-code of the modified algorithm is given in
Algorithm 1.

4 Majority Based Facility Location

The local facility location algorithm, which we
now present, is based upon three fundamental
ideas: The first is to have every node speculatively
perform hill-climbing steps without waiting for a
conclusive decision as to which step is globally
optimal. Having performed such steps, the node
continues to validate whether they agree with the
globally correct ones. If there is no agreement,
then these speculative steps are undone and better
ones are chosen. The second idea is to choose
the optimal step not by computing the cost of
each step directly, but rather by voting. For each
pair of possible steps, each node votes for the
step it considers less costly. The third idea is a
pruning technique by which many of these votes
can be avoided altogether; avoiding unnecessary
votes is essential because, as we further explain
below, computing votes among each pair of op-

Algorithm 1 Local Majority Vote

Input of node u: the local poll cu, the local
support su, and the set of neighbors Gu

Global constants: the majority threshold λ, the
bias γ

Local variables: ∀v ∈ Gu : δuv, δvu, activeu.
Definitions: δu = su − λcu, �u = δu + ∑

v∈Gu δvu,
�uv = δuv + δvu

Initialization: activeu = true
∀v ∈ Gu: δuv = δvu = 0, SendMessage(v)
On activate: set activeu ← true
On suspend: set activeu ← f alse
On receive-message δ from v ∈ Gu: δvu ← δ

On notification of failure of v ∈ Gu:
Gu ← Gu \ {v}
On notification of a new neighbor v:
Gu ← Gu ∪ {v}
On any of the above events and on change in δu:
For all v ∈ Gu,
if (�uv ≥ γ ∧ �uv > �u) ∨ (�uv < γ ∧ �uv < �u)

then
– SendMessage(v)
Procedure SendMessage(v):
If activeu = true then
– δuv ← (�u − δvu), Send 〈δuv〉 to v

Output of u:
if �u ≥ γ then positive else negative

tional steps might be arbitrarily more complicated
than finding the best next step.

Key to our algorithm is the observation that the
kernel problem of a hill-climbing facility location
algorithm – choosing the step that reduces the cost
of the solution as much as possible – is reducible to
majority voting. We use this observation, together
with the communication efficient local majority
voting algorithm described in Section 3 to devise
a local algorithm that computes the best among
the set of possible configurations (ones reachable
by moving just a single facility to a free location)
and the current configuration. If the current con-
figuration is the best possible one then it is a local
minima and the algorithm makes no further steps.
Otherwise, the algorithm steps to this best possi-
ble configuration and reiterates the computation.
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4.1 Speculative Computation of an Ad Hoc
Solution

Most parallel data mining algorithms use synchro-
nization to validate that their outcome represents
the global data

⋃
u DBu. We find this approach

impractical for large-scale distributed systems –
specifically if one assumes that the data may
change with time, making the global data impossi-
ble to determine. Instead, when performing local
hill climbing, we let each node proceed uphill
whenever it has computed the best step according
to the data it currently possesses. Then, we use lo-
cal majority voting (as we describe next) to make
sure that nodes which have taken erroneous steps
will eventually be corrected. In the event that a
node is corrected, a computation associated with
configurations that were wrongly chosen is put on
hold. These configurations are put aside in a des-
ignated cache in case additional data, accumulated
later, will prove them correct after all.

We term the sequence of steps selected by
node u at a given point in time its path through
the space of possible configurations and denote it
Ru = 〈

Cu
1 , Cu

2 , . . . , Cu
l

〉
. Cu

1 is always chosen to be
the first location in M. Cu

l is the ad hoc solution of
node u. u refrains from developing another config-
uration following Cu

l when no possible successor
step has lower cost.

Since the computation of all of the configura-
tions along every node’s path is concurrent, mes-
sages sent by the algorithm contain a context – the
configuration to which they relate. Since the com-
putation is also speculative, it may well happen
that two nodes u and v intermediately have dif-
ferent paths Ru and Rv . Whenever u receives a
message in the context of some configuration C 
∈
Ru, this message is considered out of context. It
is not accepted by u but rather is stored in u’s
out-of-context message queue. Whenever a new
configuration C enters Ru, u scans the out-of-
context queue and accepts messages relating to C
in the order in which they were received.

4.2 Locally Computing the Best Possible Step

For each configuration Cu
a ∈ Ru, node u computes

the best possible step as follows. First, it gener-

ates the set of possible successor configurations
Next

(
Cu

a

)
, such that each member of Next

(
Cu

a

)

adds one more location to Cu
a , removes one of

Cu
a ’s locations, or replaces one location in Cu

a
with a location from M \ Cu

a . Next, for every
Ci, C j ∈ Next(Cu

a), where i < j, node u initiates
a majority vote Majorityu

Cu
a
〈i, j〉 which compares

their costs and eventually outputs negative if the
global cost of Ci is lower than that of C j (as
we explain below). Correctness of the majority
vote process guarantees that the best configura-
tion Cibest ∈ Next(Cu

a) will eventually have negative
output for Majorityu

Cu
a
〈ibest, j〉 for all j > ibest,

and positive output of Majorityu
Cu

a
〈 j, ibest〉 for all

j < ibest. Hence, the algorithm will speculatively
choose Ci as the next configuration, whenever all
votes indicate that Ci is better.

To determine which of two configurations has
the better cost using a majority vote, we ini-
tialize Majorityu

C〈i, j〉 with the following inputs:
su =∑

p∈DBu cost (p, Ci) − cost
(

p, C j
)
, where cost

(p, C) = min f∈C {d (p, f )}, cu = 0, λ = 0. Note
that, as shown in [27], su and cu can be set to
arbitrary numbers and not just to zero or one.
Further note that for every Ci, C j the following
equality holds:

∑

p∈DB

cost (p, Ci) −
∑

p∈DB

cost
(

p, C j
)

=
∑

u

∑

p∈DBu

[
cost (p, Ci) − cost

(
p, C j

)]

Additionally, we set the bias of the vote to the
difference in costs between the two configura-
tions, γ = D

(
C j

) − D (Ci). Hence, if the vote
comparing the costs of Ci and C j determines that
�u 〈i, j〉 ≥ γ , then the cost of Ci is proven to be
larger than the cost of C j.

Note that since every majority vote is per-
formed using the local algorithm described in
Section 3, the entire computation is also local.
Eventual correctness of the result and the ability
to handle changes in DBu or Gu also follow im-
mediately from the corresponding features of the
majority voting algorithm.
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4.3 Pruning the Set of Comparisons

In the above subsections we have shown how
it is possible to reduce facility location to a set
of majority votes. However, the reduction over-
shoots the objective of the algorithm. While a
facility location algorithm only requires that the
best possible successor configuration be calculated
given a certain configuration, the reduction above
actually computes a full order on the possible suc-
cessor configurations. This is problematic because
for some inputs computing a full order may be
arbitrarily more difficult (and thus less local) than
computing only the best option. For instance, the
algorithm may invest a lot of messages in deciding
which of the two configurations is better, even
though none of them is the best.

To overcome this problem we augment the al-
gorithm with a pruning technique that limits the
progress of comparisons such that only a small
number of them actually take place. The tech-
nique we adopt is based on pivoting. First, each
configuration is a candidate to be the least costly.
We choose an arbitrary candidate configuration
(without loss of generality, the first one) as a
pivot and compare all of the other candidates to
it. Then, we choose the configurations which are
indicated to be less costly than the pivot to be
the next set of candidates and select one of them
(again, the one with the lowest index) as the new
pivot. As soon as the next candidate set becomes
empty, the development process is stopped, and
the last pivot is the least costly configuration.

Formally, given a configuration C and the set
of successor configurations Next(C), we define for
every node u: Pivotu

i (C)=min Su
i (C) for 1≥ i≥k,

and Su
1(C)={1, 2, . . . , |Next(C)|}. We define

Su
i (C) = { j ∈ Su

i−1(C) | Majorityu
C〈 j, Pivotu

i−1(C)〉.
out = negative} developing pivots until Su

k(C) =
∅. Eventual correctness of all the majority votes
assure that Pivotu

k−1(C) is the configuration with
the lowest cost.

4.4 Pseudocode of the Algorithm

The pseudocode of the algorithm is given in Algo-
rithm 2. It relies on an underlying majority voting
algorithm. The facility location algorithm tunnels

Algorithm 2 Local Facility Location

Global Constants: the set M of m possible
locations
Input of processor u:
a database DBu = {pu

1, pu
2, . . . }, a set of

neighbors Gu, and the distances of points
from the possible locations d : DBu × M → R

+

Definitions:
Next(C)= Swap(C) ∪ Add(C) ∪Remove(C)∪C

Swap(C) = {C \ { f } ∪ { f ′}| f ∈ C, f ′ ∈ M \ C}
Add(C) = {C ∪ { f ′} | f ′ ∈ M \ C}
Remove(C) = {C \ { f } | f ∈ C}

For some set of configurations N, N[i] is i’s
element of N according to lexicographic order.
For any Ci ∈ Ru the following holds:

Cu
1 = {M[1]}

let k be the minimal index for which Su
k(C) = ∅

let l be the minimal index for which Cu
l = Cu

l−1

Cu
i+1 = Next(Cu

i )[Pivotu
k−1(C

u
i )] for 1 ≤ i < l

Su
1(C) = {1, 2, . . . , |Next(C)|}—Set of indexes

∀i > 1 : Su
i (C) = { j ∈ Su

i−1(C) |
Majorityu

C〈 j, Pivotu
i−1(C)〉.out = negative},

For 1 ≤ i < k: Pivotu
i (C) = min Su

i (C)

ActiveSetu = {〈C, i, j〉 | C ∈ Ru, ∃q : i ∈
Su

q(C), j = Pivotu
q(C), i 
= j}

Local variables:
A vector Ru = 〈

Cu
1 , . . . , Cu

l

〉
of

configurations, where Cu
i ⊆ M

A message queue OutOf Contextu

For each C ∈ Ru: a vector of pairs
MV(C) = 〈(Su

1(C),

Pivotu
1(C)), . . . , (Su

k(C), Pivotu
k(C))〉

a set of majority votes referred to as
Majorityu

C 〈i, j〉
Init of Majorityu

C〈i, j〉:
if Majorityu

C〈i, j〉 exists then
activate Majorityu

C〈i, j〉
else

create Majorityu
C〈i, j〉 with inputs

s = ∑
p∈DBu cost(p, N[i]) − cost(p, N[ j]),

for N = Next(C),
cost(p, C) = min f∈C{d(p, f )}
c = 0, λ = 0, Gu = Gu

γ = D(Next(C)[ j]) − D(Next(C)[i])
tunnel to Majorityu

C〈i, j〉 all messages in
OutOf Contextu

directed to it
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Algorithm 2 Local Facility Location (cont.)

Initialization:
OutOf Contextu ← ∅
whileRu or MV(C) for C ∈ Ru changes do

∀〈C, i, j〉 ∈ ActiveSetu init Majorityu
C〈i, j〉

update Ru and ∀C ∈ Ru update MV(C)

On MessageSend {δ} from Majorityu
C〈i, j〉 to v:

send message {C, i, j, δ} to v

On message {C, i, j, δ} from v ∈ Gu

if Majorityu
C〈i, j〉 exist then

tunnel message {δ} to Majorityu
C〈i, j〉

else
enqueue {C, i, j, δ} in OutOf Contextu

On change in Gu:
foreach existing Majorityu

C〈i, j〉 do
call on change in Gu for Majorityu

C〈i, j〉
On change in output of Majorityu

C〈i, j〉
repeat

OldActive ← ActiveSetu

update Ru and MV(C) for C ∈ Ru

foreach〈C, i, j〉 ∈ ActiveSetu \ OldActive do
init Majorityu

C〈i, j〉
foreach〈C, i, j〉 ∈ OldActive \ ActiveSetu do
suspend Majorityu

C〈i, j〉
until OldActive 
= ActiveSetu

Output of processor u: Cu
l

messages to and from majority votes, removing
and adding context information on the way.

4.5 An Illustration of Algorithm Execution

To provide some insight on how the algorithm
works, we will illustrate an example execution of
a single node in the network.

The node begins its execution from an initial-
ization event which creates the majority votes.
Immediately after creation, before receiving any
messages, each majority vote outputs an ad-hoc
solution. Based on the majority vote outputs, a
vector Ru is created, and the node provides an
ad-hoc solution. Note that this solution appears
immediately after initialization and is based solely
on the node’s local input.

Some time later a message {C, i, j, δ} arrives.
This message is routed to Majorityu

C〈i, j〉 majority
vote according to C, i, and j tags. Assume that
this message alters the output of this majority,
and assume that C = Cu

p ∈ Ru. Also assume that
as a reaction Pivotu

k−1(C) changes it value from
r to r′. In this case the successor configuration of
C, Cu

p+1 = Next(C)[r] ceases to be the least cost
successor configuration, and needs to be replaced
with Next(C)[r′]. During this replacement, con-
figurations Cu

p+1, Cu
p+2, . . . ,C

u
l are dropped from

Ru, and a new sequence of configurations starting
from Cu

p+1 = Next(C)[r′] is created. All majority
votes related to the dropped configurations are
suspended. After replacement is finished, a new
ad-hoc output appears. The new output is based
on both the received message and the local input,
and therefore is more accurate and closer to the
optimal solution than its predecessor.

Eventually, when enough messages are re-
ceived the output will converge to the exact
solution.

5 Experiments

To evaluate the algorithm’s performance, we ran
it on simulated networks of up to 1,000 nodes
using databases of varying sizes. Our experiments
test for two main properties of the algorithm:
its ongoing behavior when the data is constantly
altered and its dependency on the different oper-
ational parameters.

We are interested in three main metrics: the
percentage of nodes which compute the exact
solution at any point in time, the relative costs
of the solutions computed by nodes which output
a wrong solution, and the communication cost
for computing the solution. Ideally, most of the
nodes will compute the exact solution, or else will
compute a solution that is not much costlier than
the exact one. Finally, all this will be done using
very few messages.

The operational parameters we find most cru-
cial are the size of the system (N), the number
of data points in every local database (n/N), and
the network topology. To test for the dependency
of the algorithm’s performance on these parame-
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ters, we ran batch mode experiments in which the
data did not change during the execution. This
provided a controlled experiment in which each
parameter could be tested on its own.

The performance (run-time, messages, etc.) of a
local algorithm differs from one peer to the next.
As shown in previous work [28] this performance
is proportional to the distribution of the data in
the near proximity of the peer. Specifically, on
the largest area surrounding the peer which has
data that would yield the wrong outcome. In our
experiments, we used unbiased data by sampling
the data of all peers from the same stochastic
source. A uniform mixture of sources is not ex-
pected to influence performance significantly, be-
cause each small neighborhood of sources will
have the same mixture of distributions. Determin-
istic bias, if introduced, will have an adverse effect
of performance. However, this effect is difficult to
quantify in a meaningful manner because of the
many possible ways the data can be biased.

We used a synthetic database created using
the method described in [8]. The data points
(which represent clients) were generated in the
2D real domain [0, 20] × [0, 20]. The source of the
data points was a mixture of 10 Gaussians with
a random mean and variance of one, and 20%
random uniform noise. Possible facility locations
were placed on an equally spaced Grid covering
the points’ domain. Figure 1 depicts a typical
database with the large (red) dots signifying pos-
sible locations. Using these settings, each static
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Fig. 1 A typical database

experiment was run 10 times with different data
each time. In the batch experiments, databases of
between 100 and 1,000 points (depending on the
experiment) were generated for each node. In the
dynamic experiments, once every few simulator
clock cycles (again, depending on the experiment)
a node was randomly selected, and a fraction of
the points in its database were replaced with new
points, sampled from the same distribution.

Finally, because the behavior of distributed al-
gorithms may depend on network topology, we re-
peated our experiments for two different topolo-
gies: An Internet-like topology generated by a
state-of-the-art BRITE [23] simulator and a de
Bruijn topology [16] that simulates a network with
a fixed expansion rate.

Fig. 2 Evolution of solutions costs distribution in dynamic
experiment is shown. At each time, a histogram of solutions
costs is plotted. The cost of the optimal solution is 100. At
time interval 0–687 simulator cycles (the first time slice in
the graph), 60% of nodes output a solution of cost 113 to
118, and 20% of nodes output a solution of cost 127 to 131.
Leaving only 20% of the nodes at the optimal solution. As
time passes more nodes converge to the optimal solutions.
At time interval 0–10,000, node’s data undergoes continu-
ous perturbations. From time 3,000 to 10,000 the system is
at steady state, where perturbations prevent from all nodes
to converge to the optimal solution. As perturbations stop,
the system rapidly converges to the optimum. Simulation
parameters: Internet topology, N = 512, n/N = 1, 000, and
m = 25
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5.1 Ongoing Operation

In this experiment we tried to realistically
simulate a typical working scenario of the
algorithm, in which the distribution of the data is
stationary, but the data is continuously updated
over time with new samples. To simulate dynamic
data that retains a stationary distribution, we
randomly select 5% of the nodes every five
simulator cycles (about 35 times in an average
edge delay). We replace 10% of each selected
node’s data points with new points selected from
the same distribution. We keep changing the
database this way for 10,000 simulator cycles and
then stop the changes in order to let the algorithm
converge to the exact result.

As the results in Fig. 2 show, during the period
of data changes, more than 80% of the nodes
manage to quickly compute the optimal solution.
Of the nodes that compute a different result, most
compute one that is about 15% more costly than
the optimal (note that costs here are normalized).
When at cycle 10,000 the changes stop, all of
the nodes immediately converge to the correct
result. Similar results were computed for different
amounts of data perturbation.

5.2 Communication Cost

We evaluated the communication cost of the al-
gorithm by counting the number of messages sent
by the average node during an entire bulk run.
We were especially interested in the scale-up of
the algorithm (i.e., the effect of increasing N on
the message cost) and in the effect of different
network topologies on the message cost. We ran
experiments with 256, 512, and 1,024 nodes us-
ing both a BRITE generated Internet topology
and a de Bruijn topology. For each combination
we generated 10 different databases. We let the
algorithm run through, counted the number of
messages sent by each node, and then reported the
averaged histogram for each topology and N.

The result, as reported in Fig. 3, shows some
interesting trends. First, about half the nodes use
200–400 messages throughout the algorithm. This
seems a very reasonable number, considering that
each of the algorithm’s messages takes a few doz-
ens bytes. Being small, these messages could be
buffered. Second, the algorithm scales-up well,
with no real increase in costs. Last, the algorithm
requires fewer messages in an Internet topology,
which can be explained by its superior mixing
power.
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de Bruijn BRITE – Internet

Fig. 3 Distribution of number of messages sent by nodes
for three network sizes and two topologies. Last bars
represent all nodes which sent more than 1,800 messages.

The graph shows that as the network size grows, messages
distribution remains essentially the same
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Fig. 4 A histogram of average environment sizes is de-
picted for three network sizes and two network topologies
(de Bruijn and BRITE). Each bar represents the average
number of nodes over 10 experiments. These graphs show

that the vast majority of nodes have small environments,
which supports the claim that the algorithm is local. Simu-
lation parameters: m = 25, n/N = 1, 000

5.3 Locality

The next set of experiments measures the size
of each node’s environment directly. Node u’s

environment is the set of neighboring nodes from
which u gathers data. The size of the environment
is important because the algorithm’s performance
strongly depends on it. For each network topology
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Fig. 5 A histogram of maximum environment sizes is de-
picted for three network sizes and two network topologies
(de Bruijn and BRITE). Each bar represents the maximum
number of nodes over 10 experiments. These graphs show

that even in the worst case analysis, the vast majority of
nodes have small environments. Simulation parameters:
m = 25, n/N = 1, 000
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Fig. 6 Comparison of best case and worst case results when using different databases. The small differences suggest that
our results are robust. Simulation parameters: m = 25, n/N = 1, 000, N = 1, 024, BRITE – Internet topology

we again ran multiple experiments with different
N. In each experiment, we counted the number
of majority votes which had environments with
sizes 0 through N, where a majority had an en-
vironment size zero in a given node if it was not
initiated at that node (we only counted, of course,
majority votes that were initiated at some node).
A majority vote had size one at a given node if it
was initiated, but no messages were ever received
in its context. Otherwise, the environment size
of node u is the number of neighboring nodes
whose data was collected to u. We report the
environment sizes for both the average node and
the one with the largest environment.

The results, averaged across 10 random data-
bases, are depicted in Figs. 4 and 5. Figure 4 de-
scribes the environment size for the average node
for BRITE and de Bruijn topologies. Note that
both the y-axis and the x-axis here are logarithmic.
The vast majority of the votes has average envi-
ronment size zero, which means that they were
initialized in only a few nodes. In Fig. 5 however,
no majorities have zero environment size, because
each has been initialized in at least one node.
Looking at the bars for average environment sizes
one and up, we can see that the sizes resemble a
power-law distribution. One important exception
to this rule is the last bar for each N. As can be

seen, there are always some majorities that run
into a tie and therefore have environment size
N. The pattern discussed above repeats itself for
both the average node and the one with the largest
environment (Fig. 5). In the latter, naturally, the
trend is less clear because of the fluctuating nature
of worst case measurements.
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Fig. 7 Effect of n/N (the number of clients on each node)
on the number of messages. The graph shows four message
distributions for four different n/N values. As n/N grows
the algorithm sends less messages. Simulation parameters:
m = 20, N = 512, BRITE – Internet topology
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Fig. 8 Effect of n/N (the number of clients on each node)
on the environment size. Two graphs show the maximum
and average number of messages histograms for four dif-
ferent n/N values. As n/N grows, environments (both

maximum and average) become smaller, and therefore,
the algorithm becomes more and more local. Simulation
parameters: m = 20, N = 512, BRITE – Internet topology

5.4 Robustness of our Results

One question that is often asked about average
(or worst case) results is how robust they are. In
Fig. 6 we depict, for one of the experiments above,
the range of results that were calculated. As can
be seen, the difference between the minimal and
maximal number of messages is not significant.
The difference between the minimal and maximal
environment size for the average node can be
quite large because in certain instances of the
problem there happen to be no ties at all.

5.5 Size of Database

In the last experiment, we measured the effect of
the size of the local database (n/N) on the lo-
cality and message load of the algorithm. n/N
is dependent mostly on the characteristics of the
domain, e.g., the number of files on the disk of
an average e-Mule peer or the buffer size of a
sensor. We expect that as this number increases,
the performance of the algorithm will improve
because local statistics will become more accurate
and more representative of the global ones.

We varied n/N from 1,000 points down to 100.
Figure 7 depicts the number of messages sent by

each node, and Fig. 8 depicts the sizes of the
average and largest environments. As can be seen,
the same trends we discussed above persist when
n/N equals 1,000, 500, and 250.1 For n/N equals
100, the number of messages and average envi-
ronment size grow significantly. However, since
these experiments exhibit local behavior as well,
we assume that, had we run our experiments with
larger N values, the trend would have been visible
for smaller n/N as well. Unfortunately, the perfor-
mance of our simulator restricts us at this phase to
N = 1, 024.

6 Conclusions and Further Research

We have described a new facility location algo-
rithm suitable for large scale distributed systems.
The characteristics which qualify the algorithm for
systems of this type are its message efficiency, its
strong local pruning, and its ability to efficiently
sustain failures and changes in the input. All these
qualities stem from the algorithm’s local nature.

1The slight discrepancies between the results for n/N =
1, 000 in Fig. 7 and Figs. 3 and 4 are due to different m
values used in those experiments.
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Besides its immediate value, the algorithm
serves to demonstrate that various data mining
problems can be solved in large scale distrib-
uted settings through reduction to basic primitives
like majority-vote. These primitives can later be
solved by efficient local algorithms. We believe
than in-network data mining may very well be-
come one of the key techniques for accessing the
output of these systems.

Appendix

Correctness Proof

We first prove that the algorithm terminates and
then proceed to show that after termination the
output is correct. Our proof relies on the correct-
ness of Algorithm 1, which is proved in [28].

Global termination

Global termination is achieved if the following
two conditions hold for long enough time: (1)
the input of no node changes, and (2) the net-
work topology does not change. We say that the
algorithm is terminated if all messages reached
their destination and no new messages are sent.
Note that no node can detect the satisfaction
of those global conditions, therefore from a lo-
cal point of view of a single node the algorithm
never terminates.

Global termination of Algorithm 2 follows di-
rectly from the global termination of Algorithm
1. Every message of Algorithm 2 is an augmented
message of some majority vote (i.e. Algorithm
1’s message). Therefore, when all majority votes
terminate, Algorithm 2 stops sending messages
and terminates.

Correctness

We will now prove the correctness of Algorithm
2. Namely, we will prove that after the algorithm
terminates, the output of each node is equal to the
output of the sequential facility location algorithm
running on the entire database.

Note that for any node u and ∀〈C, i, j〉 ∈
ActiveSetu, Majorityu

C〈i, j〉 is active. This is im-

plied by two events in the pseudo code: “Ini-
tialization”, and “On change in output of
Majorityu

C〈i, j〉”. Moreover, after termination, in
every node u the structures Ru and MV(C), ∀C ∈
Ru, are updated. This is because after last majority
vote output change, those structures were updated
in “On change in output of Majorityu

C〈i, j〉” event.

Lemma 1 Every node in Algorithm 2 outputs the
same result as a sequential facility location algo-
rithm would output.

Proof Sequential facility location algorithm be-
gins with some initial configuration and then in
each step improves it. The algorithm stops when
no improvement can be done. In the improvement
step the sequential algorithm moves, closes, or
opens one facility, or makes no change if this is
the best option. If no change was made in the last
iteration, the algorithm stops.

We now prove that the Ru vector is the same in
each node and that it contains the same sequence
of configurations that the sequential algorithm
encounters during hill climbing process. By induc-
tion on Ru’s length.

Base |Ru|=1, thus by definition Cu
1 ={M[1]}

which is the same on all nodes, and being the
initial configuration the same as the first config-
uration in the sequential algorithm.

Step We assume correctness for |Ru| = i and
prove for |Ru| = i + 1. By assumption Cu

i is the
same in all nodes and the same as in the sequential
algorithm. By definition in pseudo code: Cu

i+1 =
Next(Cu

i )[Pivotu
k−1(C

u
i )]. Therefore, by Corollary

1, Cu
i+1 is the lowest cost configuration among all

configurations in Next(Cu
i ) and is the same on all

nodes. Since Next(Cu
i ) contains all the configura-

tions that can be produced by moving, opening, or
closing one facility of making no change, Cu

i+1 is
the same as i + 1’s configuration of the sequential
algorithm.

Finally, since the last configuration, Cu
l , by defi-

nition equals Cu
l−1, it satisfies the stop condition of

the sequential algorithm.
We saw that the Ru vector of any node con-

tains the same sequence of configurations that
a sequential facility location algorithm would
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generate during its hill climbing process. Thus
the output configurations of both algorithms
are identical. ��

Corollary 1 Let N = Next(C) for some C∈ Ru for
all nodes u:Cost(N[Pivotu

k−1(C)])≤Cost(N[ j]) for
j ∈ {1, . . . , |N|}.

Proof By Lemma 1 we have

Su
k(C) =

{
j ∈ {1, . . . , |N|}

∣∣∣ Cost(N[ j])

< Cost(N[Pivotu
k−1(C)])

}

which by definition of k is an empty set. Therefore,
there is no configuration whose cost is lower than
Cost(N[Pivotu

k−1(C)]), which proves the corollary.
��

We now prove the correctness of a single step
of the hill-climbing process.

Lemma 2 Let N = Next(C) for some C ∈ Ru for

all nodes u: Su
i (C)

{
j ∈ {1, . . . , |N|}

∣∣∣Cost(N[ j])<
Cost(N[Pivotu

i−1(C)])
}

.

Proof By induction on i.

Base For i=1 the lemma is trivially satisfied,
since Su

1(C) = {1, . . . , |N|} by definition and
Pivotu

0(C) is undefined.

Step We assume correctness for i and prove for
i + 1. By definition:

Su
i+1(C)=

{
j ∈ Su

i (C)

∣∣∣Majorityu
C〈 j, Pivotu

i (C)〉.out

= negative
}

by definition of ActiveSetu we have 〈C, j,
Pivotu

i (C)〉 ∈ ActiveSetu and thus all those majori-
ties are active, and we can use Lemma 1 which
implies

Su
i+1(C) =

{
j ∈ Su

i (C)

∣∣∣ Cost(N[ j])

< Cost(N[Pivotu
i (C)])

}

by inductive assumption

∀ j /∈ Su
i (C) : Cost(N[ j]) ≥ Cost(N[Pivotu

i−1(C)])
and since Pivotu

i (C) ∈ Su
i (C) we have

Cost(N[Pivotu
i−1(C)]) ≥ Cost(N[Pivotu

i (C)])
therefore,

∀ j /∈ Su
i (C) : Cost(N[ j]) ≥ Cost(N[Pivotu

i (C)])
combining this with the consequence of Lemma 1
we get

Su
i+1(C) =

{
j ∈ {1, . . . , |N|}

∣∣∣ Cost(N[ j])

< Cost(N[Pivotu
i (C)])

}

��

We conclude with a lemma which proves that
the comparison of a pair of configuration costs can
be correctly done using one majority vote.

Lemma 3 Let N = Next(C) for some C ⊆ M. For
any two configurations N[i], N[ j] ( j < i) and ac-
tive majority vote Majorityu

C〈i, j〉 on every node u:
Cost(N[i]) < Cost(N[ j]) iff Majorityu

C〈i, j〉.out =
negative.

Proof At first we break the cost into components
local to each node:

Cost(N[i]) < Cost(N[ j])
iff

Cost(N[i]) − Cost(N[ j]) < 0

iff
∑

p∈DB

cost(p, N[i]) + D(N[i])

−
∑

p∈DB

cost(p, N[ j]) − D(N[ j]) < 0

iff

∑

u

⎛

⎝
∑

p∈DBu

cost(p, N[i]) −
∑

p∈DBu

cost(p, N[ j])
⎞

⎠

< D(N[ j] − D(N[i])
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According to the “Init of Majorityu
C〈i, j〉” event in

Algorithm 2: su =
∑

p∈DBu

cost(p,N[i])−cost(p, N[ j]),
and γ = D(N[ j]) − D(N[i]). Therefore,
∑

u

su < γ

but since cu = 0, λ = 0 we have
∑

u

(su − λcu) < γ

By correctness of Algorithm 1, this is true if and
only if

Majorityu
C〈i, j〉.out = negative

��
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