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Abstract. In this paper we address a well-known facility location problem (FLP)
in a sensor network environment. The problem deals with finding the optimal way
to provide service to a (possibly) very large number of clients. We show that a
variation of the problem can be solved using alocal algorithm. Local algorithms
are extremely useful in a sensor network scenario. This is because they allow the
communication range of the sensor to be restricted to the minimum, they can op-
erate in routerless networks, and they allow complex problems to be solved on
the basis of very little information, gathered from nearby sensors. The local facil-
ity location algorithm we describe is entirely asynchronous, seamlessly supports
failures and changes in the data during calculation, poses modest memory and
computational requirements, and can provide an anytime solution which is guar-
anteed to converge to the exact same one that would be computed by a centralized
algorithm given the entire data.

1 Introduction

Determining the location of facilities which provide system related services is a major
issue for any large distributed system. The resource limited scenario of a sensor net-
work makes the problem far more acute. A well-placed resource (cache server, relay, or
high-powered sensor, etc.) can tremendously increase the lifespan and the productivity
of dozens or even hundreds of battery operated sensors. In many cases, however, the
optimal location of such resources depends on dynamic characteristics of the sensors
(e.g., their remaining battery power), the environment (e.g., level of radio frequency
white noise), or the phenomena they monitor (e.g., frequency of changes). Thus, opti-
mal placement cannot be computed a priori, independently of the system’s state.

One example of a facility location problem may occur in sensor networks that, in
addition to regular sensors, use a few dozen relays. Regular sensors are low-power mo-
tion sensing devices, which are distributed from the air, covering the area randomly.
Instead, relays are equipped with large batteries and long range transceivers and are
placed at strategic points by ground transportation. The purpose of the relays is to col-
lect data from the sensors and transmit it to a command station whenever it is requested.
However, the question remains how to best utilize the relays which in themselves have
but limited resources. It would make sense to shut down a relay if there was only mild



activity in its nearby surroundings and report that activity via other relays. Note, how-
ever, that the amount of activity, the available resources of the relays and the motion
sensors, as well as the environmental conditions in which they all operate may influ-
ence the decision, and these factors may vary over time. The optimal solution, thus, has
to be regularly adjusted.

The facility location problem (FLP) has been extensively studied in the last decade.
Like many other optimization problems, optimal facility location is NP-Hard [13].
Thus, the problem is usually solved using either a hill-climbing heuristic [14, 8, 4] or
linear programming [11, 19, 12]. These approaches achieve constant factor approxima-
tion of the globally optimal solution [1]. FLP also has several versions, primarily di-
vided according to whether facilities have finite or infinite capacity (i.e.,capacitated
vs.uncapacitatedFLP).

To the best of our knowledge FLP has never been studied specifically in a dis-
tributed setting. Nevertheless, it is easy to see how distributed formulation of related
hill-climbing algorithms such ask-means andk-median clustering [5, 7, 6] can be adap-
ted to solve distributed FLP. We note, however, that all previous work on distributed
clustering assumes tight cooperation and synchronization between the processors con-
taining the data, and a central processor that collects the sufficient statistics needed in
each step of the hill-climbing heuristic. Such central control is not practical in wireless
networks, because of the energy required and because it is prone to errors even in the
case of single failures. Even more importantly, central control is unscalable in the pres-
ence of dynamically changing data: any such change must be reported to the center, for
fear it might alter the result.

Thus, it is clear that other features are required to qualify an algorithm for sen-
sor networks. The most important of these are the following: the ability to perform in
a routerless network (i.e., to be driven by data rather than by address), the ability to
calculate the result in-network rather than collect all of the data to a central processor
(which would quickly exhaust bandwidth [9]), and the ability to locally prune redundant
or duplicate computations. These three features typifylocal algorithms.

A local algorithm is one in which the complexity of computing the result does not
directly depend on the number of participants. Instead, each processor usually computes
the result using information gathered from just a few nearby neighbors. Because com-
munication is restricted to neighbors, a local algorithm does not require message rout-
ing, performs all computation in-network, and in many cases is able to locally overcome
failures and minor changes in the input (provided that these do not change its output).
Local algorithms have been mainly studied in the context of graph related problems
[2, 15–18]. Most recently, [20] demonstrated that local algorithms can be devised for
complex data analysis tasks, specifically, data mining of association rules in distributed
transactional databases. The algorithm presented in [20] features local pruning of false
propositions (candidates), in-network mining, asynchronous execution, and resilience
to changes in the data and to partial failure during execution.

In this work we develop a local algorithm that solves a specific version of FLP, one
in which uncapacitated resources can be placed in anyk out of m possible locations.
Initiating our algorithm from a fixed resource location, say, in the firstk locations, we
show that the computation required to reach agreement on a single hill-climbing step—



moving one resource to a free location—can be reduced to a group of majority votes. We
then use a variation of the local majority voting algorithm presented in [20] to develop
an algorithm which locally computes the exact same solution a hill-climbing algorithm
would compute, had it been given the entire data.

In a series of experiments employing networks of up to 10,000 simulated sensors,
we prove that our algorithm has good locality, incurs reasonable communication costs,
and quickly converges to the correct answer whenever the input stabilizes. We further
show that when faced with constant data updates, the vast majority of sensors continue
to compute the optimal solution. Most importantly, the algorithm is extremely robust to
sporadic changes in the data. So long as these do not change the global result, they are
pruned locally by the network.

The rest of this paper is organized as follows. We first describe our notations and
formally define the problem. Then, in Section 3, we give our version of the majority
voting algorithm originally described in [20]. Section 4 describes the localk-facility
location algorithm. Finally, in Section 5, we present some of the experimental results.

2 Notations, Assumptions, and Problem Definition

We assume a large number N of processors, which can communicate with one another
by sending messages. We further assume that communication among neighboring pro-
cessors is reliable and ordered. This assumption can be enforced using standard num-
bering, ordering and retransmission mechanisms. For brevity, we assume an undirected
communication tree. As shown in [3], such a tree can be efficiently constructed and
maintained using variations of Bellman-Ford algorithms [10]. Finally, we assume that
failure is fail-stop and that the neighbors of a processor that is disconnected or recon-
nected for any reason are reported.

Given a databaseDB containinginput points{p1, p2, . . . , pn}, a setM of m possi-
ble locations, and a cost functiond : DB ×M → R+, the task of ak-facility location
algorithm is to find a set offacilitiesC ⊂ M of sizek, such that the cumulative distance
of points from their nearest facility

∑

pi∈DB

min
c∈C

d (pi, c) is minimized.

To relate these definitions to the example given in the introduction, consider a
database that includes a list of events that occurred in the last hour. Each event would
have a heuristic estimate of its importance. Furthermore, each sensor would evaluate
its hop distance from every relay and multiply this by the heuristic importance of each
event to produce its cost. Given this input, a facility location algorithm would compute
the best combination of relays such that the most important events need not travel far
before they reach the nearest relay. The less important events, we assume, would be
suppressed either in the sensor that produced them, or in-network by other sensors.

An anytimek-facility location algorithm is one which, at any given time during its
operation, outputs a placement for the location such that the cost of this ad hoc output
improves with time until the optimal solution is found. Adistributedk-facility loca-
tion algorithm would compute the same result even when theDB is partitioned into
N mutually exclusive databases

{
DB1, . . . , DBN

}
, each of which is deposited with a

separate processor, and these are then allowed to communicate by passing messages to



each other. Alocal k-facility location algorithm is a distributed algorithm whose per-
formance does not depend onN but rather corresponds to the difficulty of the problem
instance at hand.

Thehill-climbing heuristic fork-facility location begins from an agreed upon place-
ment of the facilities (henceforth,configuration). Then, it finds a single facility and a
single empty location, such that by moving the facility to that free location the cost of
the solution is reduced to the greatest possible degree. If such a step exists, the algorithm
changes the configuration accordingly and iterates. If any configuration which can be
produced by moving just one facility has a higher cost than the current configuration,
the algorithm terminates and outputs the current configuration as the solution.

This paper presents a local anytime algorithm that computes the hill-climbing heuris-
tic for k-facility location.

3 Local Majority Voting

Our k-facility location algorithm reduces the problem to a large number of majority
votes. In this section, we briefly describe a variation of the local majority voting al-
gorithm from [20], which we use as the main building block for the algorithm. The
algorithm assumes that messages sent between neighbors are reliable and ordered, and
that processor failure is reported to the processor’s neighbors. These assumptions can
easily be enforced using standard numbering, retransmission, ordering, and heart-beat
mechanisms. The algorithm makes no assumptions on the timeliness of message trans-
fer and failure detection.

Given a set of processorsV , where eachu ∈ V contains a zero-one poll withcu

votes,su of which are one, and given the required majority0 < λ < 1, the objective of
the algorithm is to decide whether

∑
u

su/
∑

u

cu ≥ λ. We call∆ the number of excess

votes.
The following local algorithm decides whether∆ ≥ 0. Each processoru ∈ V

computes the number of excess votes in its own poll,δu = su − λcu. It then stores the
number of excess votes it reported to each neighborv in δuv and the number of excess
votes which have been reported to it byv in δvu. Processoru computes the total number
of excess votes it knows of, as the sum of its own excess votes and those reported to
it by the setGu of its neighbors∆u = δu +

∑

v∈Gu

δvu. It also computes the number

of excess votes it agreed on with every neighborv ∈ Gu, ∆uv = δuv + δvu. Whenu
chooses to informv about a change in the number of excess votes it knows of,u sets
δuv to ∆u − δvu – thus setting∆uv to ∆u, and then sendsδuv to v. Whenu receives a
message fromv containing someδ, it setsδvu to δ – thus updating both∆uv and∆u.
Processoru outputs that the majority is of ones if∆u ≥ 0, and of zeros otherwise.

The crux of the local majority voting algorithm is in determining whenu must send
a message to a neighborv. More precisely, the problem is to determine when sending
a message can be avoided, despite the fact that the local knowledge has changed. In
the algorithm presented here, there are two cases in which a processoru would send a
message to a neighborv: whenu is initialized and when the condition



(∆uv ≥ 0 ∧∆uv > ∆u) ∨ (∆uv < 0 ∧∆uv < ∆u) evaluates true. Note thatu must
evaluate this condition upon receiving a message from a neighborv (since this event
updates∆u and the respective∆uv), when its input bit switches values, and when an
edge connected to it fails (because∆u is then computed over a smaller set of edges
and may change as a result). This means the algorithm is event driven and requires no
synchronization.

We modify the local majority voting algorithm slightly in order to apply it tok-
facility location. We add the ability to suspend and reactivate the vote using corre-
sponding events. A processor whose voting has been suspended will continue to receive
messages and modify the corresponding local variable, but will not send any messages.
When the vote is activated, the processor will always check whether it is required to
send a message as a result of the information ir received while in a suspended state.

4 Majority Based k-Facility Location

The localk-facility location algorithm which we now present is based upon three funda-
mental ideas: The first is to have every processor optimistically perform hill-climbing
steps without waiting for a decision as to which is the globally optimal step. Having
taken these steps, the processor continues to validate the agreement of the steps it took
with the globally correct one. If there is no agreement, then these speculative steps are
undone and better ones are chosen. The second idea is to choose the optimal step not by
computing the cost of each step directly, but rather by voting on which pair of possible
steps is more costly (i.e., more popular). The third idea is a pruning technique by which
many of these votes can be avoided altogether; avoiding unnecessary votes is essen-
tial because, as we further explain below, computing votes among each pair of optional
steps might be arbitrarily more complicated than finding the best next step.

4.1 Optimistic Computation of an Ad-hoc Solution

Most parallel data mining algorithms use synchronization to validate that their outcome
represents the global data

⋃
u

DBu. We find this approach impractical for large-scale

distributed systems — especially if one assumes that the data may change with time,
and thus the global data can never be determined. Instead, when performing parallel
hill-climbing, we let each processor proceed uphill whenever it computes the best step
according to the data it currently possesses. Then, we use local majority voting (as we
describe next) to make sure that processors which have taken erroneous steps will even-
tually be corrected. In the event that a processor is corrected, computations associated
with configurations that were wrongly chosen are put on hold. These configurations are
put aside in a designated cache in case additional data that accumulates will prove them
correct after all.

We term the sequence of steps selected by processoru at a given point in time its
paththrough the space of possible configurations and denote itRu = 〈Cu

1 , Cu
2 , . . . , Cu

l 〉.
Cu

1 is always chosen to be the firstk locations inM . Cu
l is the ad hoc solutionCu. u

refrains from developing another configuration following a givenCu
l when no possible



step can improve on the cost of the current configuration, or when two or more steps
still compete on providing the best improvement.

Since the computation of all of the configurations along every processor’s path is
concurrent, messages sent by the algorithm contain acontext– the configuration to
which they relate. Since the computation is also optimistic, it may well happen that two
processorsu andv temporarily have different pathsRu andRv. Wheneveru receives
a message in the context of some configurationC 6∈ Ru, this message is considered
to beout of context. Rather than being accepted byu, it is stored inu’s out-of-context
message queue. Whenever a new configurationC entersRu, u scans the out-of-context
queue and accepts messages relating toC in the order by which they were received.

4.2 Locally Computing the Best Possible Step

For each configurationCu
a ∈ Ru, processoru computes the best possible step as fol-

lows. First, it generates the set of possible configurationsNext [Cu
a ], such that each

member ofNext [Cu
a ] is a configuration that replaces one of the members ofCu

a with a
non-member location fromM\Cu

a . Next, for eachC ∈ {Cu
a }∪Next [Cu

a ] and eachp ∈
DBu, the cost incurred byp in C is computed such thatcost (p, C) = min

x∈C
{d (p, x)}.

Finally, for everyCi, Cj ∈ Next [Cu
a ], wherei < j, processoru initiates a major-

ity vote, Majorityu
Cu

a
〈i, j〉, which compares their relative costs and eventually com-

putes∆u
Cu

a
〈i, j〉 ≥ 0 if the global cost ofCi is higher than that ofCj (as we explain

below). Correctness of the majority vote process guarantees that the best configura-
tion Cibest

∈ {Cu
a } ∪ Next [Cu

a ] will eventually have negative∆u
Cu

a
〈ibest, j〉 for all

j > ibest, and positive∆u
Cu

a
〈j, ibest〉 for all j < ibest. Hence, the algorithm will opti-

mistically chooseCi as the next configuration wheneverCi has the maximal number of
majority votes indicating it is the better one (even if some votes indicate otherwise).

To determine, by means of majority vote, which of two configurations has the lower
cost, we set for every processoru, δu 〈i, j〉 =

∑

p∈DBu

cost (p, Ci)− cost (p, Cj). This

can be done for anyδu 〈i, j〉 ∈ [−x, x] by choosing, for example,c = 2x, λ = 1/2
ands = x − λ. Note that, as shown in [20],su andcu can be set to arbitrary numbers
and not just to zero or one. Further note that for everyCi, Cj

∑
p∈DB cost (p, Ci) −∑

p∈DB cost (p, Cj) =
∑

u

∑
p∈DBu [cost (p, Ci)− cost (p, Cj)]. Hence, if the vote

comparing the cost ofCi to that ofCj determines that∆u 〈i, j〉 ≥ 0, this proves the
cost ofCi is larger than that ofCj .

Note that since every majority vote is performed using the local algorithm described
in Section 3, the entire computation is also local. Eventual correctness of the result
and the ability to handle changes inDBu or Gu also follow immediately from the
corresponding features of the majority voting algorithm.

4.3 Pruning the Set of Comparisons

The subsections above show how it is possible to reducek-facility location to a set
of majority votes. However, these reductions overshoot the objective of the algorithm.
This is because while ak-facility location really only requires that thebestpossible



configuration be calculated given a certain configuration, the reduction above actually
computes afull order on the possible configurations. This is problematic because, for
some inputs, computing a full order may be arbitrarily more difficult (and hence, less
local and more costly) than computing only the best option.

To overcome this problem, the algorithm is augmented with a pruning technique that
limits the progress of comparisons such that only a small number of them actually take
place. Given a configurationC, processoru sets as itsbestpossible configurations the
ones with the maximal number of majority votes—indicating that these configurations
are less costly. It sets ascontendingthose possible configurations which are indicated
to be less costly than one of the best configurations. Processoru keeps track of its
best and its contending configurations and the best and contending configurations of
its neighbors inGu. For this purposeu reports, with every message it sends, which
configurations it currently considers best or contending.u retains in an active state those
majority votes that compare a configuration to either its own or its neighbors’ best and
contending configurations.u suspends the rest of the majority votes, meaning that it
will not send messages relating to them even if it accepts messages or data changes.
It can also be shown that this pruning technique does not affect the correctness of the
algorithm.

Fig. 1. Behavior in dynamic environment.
The upper graph shows that more than 98%
of nodes output the exact solution. The
lower graph shows average solution cost.
As the noise begins, the average cost devi-
ates from the minimum but returns to it as
the noise stops.
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Fig. 2. Messages per processor. The
graph shows the number of messages
each processor sends for 3 topology
types and 5 different sizes. The num-
ber of messages stays constant as the
network size increases.
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5 Experiments

To evaluate the algorithm’s performance we ran it on simulated networks of up to ten
thousand processors using up to one thousand input points in each processor. The main
conclusions are as follows:



– The algorithm is local. The number of messages per processor remains constant as
the network size increases (see figure 2). Moreover, the number of interlocutors of
each processor don’t grow with network size.

– The algorithm easily adapts to incremental data changes. In the dynamic data ex-
periment, we swapped the databases of two random processors during a typical
edge delay (we call those swapsnoise). Throughout the experiment, not more than
2% of the processors deviated from the exact solution (see figure 1).

– The majority of processors converge rapidly. More than 90% of the processors
converged to the exact solution after 4 edge delays. In addition, convergence time
doesn’t depend on network size.
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