
1

Hierarchical Decision Tree Induction

in Distributed Genomic Databases

Amir Bar-Or, Assaf Schuster, Ran Wolff Daniel Keren

Faculty of Computer Science Department of Computer Science

Technion Haifa University

Haifa, Israel Haifa, Israel

{abaror, assaf, ranw}@cs.technion.ac.il dkeren@cs.haifa.ac.il

February 23, 2005 DRAFT

2

Abstract

Classification based on decision trees is one of the important problems in data mining and has

applications in many fields. In recent years, database systems have become highly distributed, and dis-

tributed system paradigms such as federated and peer-to-peer databases are being adopted. In this paper,

we consider the problem of inducing decision trees in a large distributed network of genomic databases.

Our work is motivated by the existence of distributed databases in healthcare and in bioinformatics,

and by the emergence of systems which automatically analyze these databases, and by expectancy that

these databases will soon contain large amounts of highly dimensional genomic data. Current decision

tree algorithms require high communication bandwidth when executed on such data, which large-scale

distributed systems. We present an algorithm that sharply reduces the communication overhead by

sending just a fraction of the statistical data. A fraction which is nevertheless sufficient to derive the

exact same decision tree learned by a sequential learner on all the data in the network. Extensive

experiments using standard synthetic SNP data show that the algorithm utilizes the high dependency

among attributes, typical to genomic data, to reduce communication overhead by up to 99%. Scalability

tests show that the algorithm scales well with both the size of the dataset, the dimensionality of the

data, and the size of the distributed system.

Index Terms

data mining, distributed algorithms, decision trees, classification.

I. INTRODUCTION

The analysis of large databases requires automation. Data mining tools have been shown to

be useful for this task, in a variety of domains and architectures. It has recently been shown that

data mining tools are extremely useful for the analysis of genomic data as well [26]. Since the

number of genomic databases and the amount of data in them increases rapidly, there is a dire

need for data mining tools designed specifically to target genomic data specifically.

Classification, the separation of data records into distinct classes, is apparently the most

common data mining task, and decision tree classifiers are perhaps the most popular classification

technique. Some recent works have shown that classification can be used to analyze the effect

of genomic, clinical, environmental, and demographic factors on diseases, response to treatment,

and the risk of side effects [23]. Providing efficient decision tree induction algorithms suitable

for genomic data is therefore an important goal.

February 23, 2005 DRAFT

3

One interesting aspect of genomic databases is that they are often distributed over many

locations. The main reason for this is that they are produced by a variety of independent

institutions. While these institutions often allow a second party to browse their databases, they

will rarely allow this party to copy them. There could be a number of reasons for this: the need

to retain the privacy of personal data recorded in the database, through questions regarding its

ownership, or even because the sheer size of the data makes copying non-permissively costly in

CPU, disk I/O or network bandwidth.

Our lead example in this paper is the task of mining genomically enriched electronic medical

records (EMRs). Within a few years it is expected that each patient’s medical record will contain

a genomic fingerprint. This fingerprint will be used mainly to optimize treatment and predict

side effects. Existing genomic fingerprinting techniques, such as single nucleotide polymorphisms

(SNPs) and Gene Expression Microarrays, yield records with tens of thousands of entries that

are usually interpreted as binary (normal/abnormal allele or active/inactive gene, respectively). It

is common perception that an illness or treatment side effect can many times relate to just single

SNPs or to the expression of few genes. In this paper we focus on SNP data mainly because

Microarray experiments still lack standartization. This may yield many other problems which

call for prior use of additional tools before classification can be applied to the data.

Data mining of genomically enriched EMRs would be needed for the identification of unknown

correlations and for the development of new drugs. It would best be performed on a national

scale, using EMRs gathered by many different health maintenance organizations (HMOs). This

would naturally extend the functionality of systems such as RODS [28] and NRDM [29] which

already collect and analyze health data at a regional (RODS) and national (NRDM) scale.

RODS, for example, accesses the database of tens of hospitals using the HL7 [12] protocol

to retrieve statistical information and detect disease outbreaks. Nevertheless, it is unlikely that

an HMO would allow systems such as RODS to download its entire database. Hence, the need

for distributed algorithms.

A distributed decision tree induction algorithm is one that executes on several computers,

each with its own database partition. The outcome of the distributed algorithm is a decision tree

which is the same as, or at least comparable with, a tree that would be induced were the different

partitions collected to a central place and processed using a sequential decision tree induction

algorithm. Since decision tree induction poses modest CPU requirements, the performance of

February 23, 2005 DRAFT

4

the algorithm would usually be dictated by its communication requirements.

Previous work on distributed decision tree induction usually focused on tight clusters of

computers, or even on shared memory machines [1], [15], [16], [18], [24], [25]. When a wide

area distributed scenario was considered, all these algorithms become impractical because they

use too much communication and synchronization. A kind of decision tree induction algorithm

which is more efficient in a wide area system employs meta-learning [6], [10], [17], [19]. In

meta-learning, each computer induces a decision tree based on its local data; then the different

models are combined to form the final tree. This final tree is an approximation of the one

which would be induced from the entire database. Studies have shown that the quality of the

approximation decreases significantly when the number of computers increase, and when the data

become sparse. Because genomic databases contain many (thousands) attributes for each data

instance and can be expected to be distributed over many distant locations, current distributed

decision tree induction algorithms are ill-fit for them.

In this paper we describe a new distributed decision tree algorithm, Distributed Hierarchical

Decision Tree (DHDT). DHDT is executed by a collection of agents which correlate with the

natural hierarchy of a national virtual organization. For instance, the leaf level agents may

correspond to different HMOs (or clinics within an HMO) while upper levels correspond to

regional, state and national levels of the organization. DHDT focuses on reducing the volume of

data sent from each level to the next while preserving perfect accuracy (i.e., the resulting decision

tree is not an approximation). When tested on genomic SNP data with one thousand SNPs in

each data record, DHDT usually collects data about only a dozen of the SNPs – a 99% decrease

in bandwidth requirements. The algorithm is suitable for any high dimention data, provided that

the correlations in it are sparse as they are in genomic data. Both the hierarchic organization and

the communication efficiency of DHDT give it excellent scalability at no decrease in accuracy.

The rest of the paper is structured as follows. We describe sequential decision tree induction

in Section II and related work in Section III. In Section IV, we provide bounds for the Gini

index and the information gain functions. The DHDT algorithm is described in Section V, and

our experimental evaluation is given in Section VI. We conclude in Section VII.

February 23, 2005 DRAFT

5

II. SEQUENTIAL DECISION TREE INDUCTION

The decision tree model was first introduced by Hunt et al. [14], and the first sequential

algorithm was presented by Quinlan [20]. This basic algorithm used by most of the existing

decision tree algorithms is given here.

Given a training set of examples, each tagged with a class label, the goal of an induction

algorithm is to build a decision tree model that can predict with high accuracy the class label

of future unlabeled examples. A decision tree is composed of nodes, where each node contains

a test on an attribute, each branch from a node corresponds to a possible outcome of the test,

and each leaf contains a class prediction. Attributes can be either numerical or categorical. In

this paper, we deal only with categorical attributes. Numerical attributes can be discretisized and

treated as categorical attributes; however, the discretization process is outside the scope of this

paper.

A decision tree is usually built in two phases: A growth phase and a pruning phase. The tree

is grown by recursively replacing the leaves by test nodes, starting at the root. The attribute to

be tested at a node is chosen by comparing all the available attributes and greedily selecting

the attribute that maximizes some heuristic measure, denoted as the gain function. The minimal

and sufficient information for computing most of the gain functions is usually contained in a

two-dimensional matrix called the crosstable of attribute i. The [v, c] entry of the crosstable

contains the number of examples for which the value of the attribute is v and the value of the

class attribute is c.

The decision tree built in the growth phase can ”overfit” the learning data. As the goal

of classification is to accurately predict new cases, the pruning phase generalizes the tree by

removing sub-trees corresponding to statistical noise or variation that may be particular only to

the training data. This phase requires much less statistical information than the growth phase; thus

it is by far less expensive. Our algorithm integrates a tree generalization technique suggested

in PUBLIC [22], which combines the growing and pruning stages while providing the same

accuracy as the post-pruning phase. In this paper, we focus on the costly growth phase.

A. Gain Functions

The most popular gain functions are information gain [20], which is used by Quinlan’s ID3

algorithm, and the Gini Index [2], which is used by Brieman’s Cart algorithm, among others.

February 23, 2005 DRAFT

6

Consider a set of examples S that is partitioned into M disjoint subsets (classes) C1, C2, ..., CM

such that S =
⋃M

i=1 Ci and Ci

⋂

Cj = ∅ for every i 6= j. The estimated probability that a

randomly chosen instance s ∈ S belongs to class Cj is pj =
|Cj |

|S|
, where |X| denotes the

cardinality of the set X . With this estimated probability, two measures of impurity are defined:

entropy(S) = −
∑

j pjlogpj, and Gini(S) =
∑

j p2
j .

Given one of the impurity measures defined above, the gain function measures the reduction

in the impurity of the set S when it is partitioned by an attribute A as follows: GainA(S) =
∑

v∈V alues(A)
|Sv |
|S|

Imp(Sv), where V alues(A) is the set of all possible values for attribute A,

Sv is the subset of S for which attribute A has the value v, and Imp(S) can be entropy(S) or

Gini(S).

III. RELATED WORK

The distributed decision tree algorithm described in [3] perhaps most resembles ours, in both

motivation and the assumed distributed database environment (i.e., homogeneous databases with

categorical attributes). Caragea et al. decompose the induction algorithm into two components:

The first component collects sufficient local statistics and sends them to a centralized site, while

the second component aggregates the statistics, computes the gain function, and chooses the best

splitting attribute. Obviously, this algorithm has high communication complexity because it sends

statistical data for each and every attribute in the database. The size of the crosstable of a single

attribute depends on the size of the attribute domain, i.e., the number of distinct values that this

attribute can receive, and on the number of distinct classes. For example, assume a genomic

dataset with L = 10, 000 SNPs in each entry, each encoded in a single bit (usual or unusual

allele). If a central network node in a network with N = 1, 000 sites learns a decision tree for

a binary class attribute with just D = 100 decision tree nodes (the maximal number of nodes

would be O
(

2L
)

), the number of bytes it would receive from the entire network is O (LND),

or, in our example, 10000∗2∗2∗1000∗100∗4 = 16TB (assuming a crosstable entry is encoded

in 4 bytes). In addition, it is often the case that the process should be repeated many times with

different arguments (e.g., different classification goals). Therefore, the above algorithm requires

high communication bandwidth between the participating nodes, which clearly does not exist in

large-scale distributed systems.

The common approach to reducing the communication overhead would be to sample the

February 23, 2005 DRAFT

7

distributed dataset and collect a small subset of the learning examples for central processing.

In addition to this sample, the different sites may also deduce decision trees based on their

local datasets and transfer these decision trees to the central site. This has been the theme of an

approach called meta-learning [6], [27]. Beside the fact that by transferring learning examples

this approach may violate privacy requirements, it suffers from severe scalability limitations. In

order to significantly reduce communication overhead one would have to collect small samples

and possibly not cover all sites. This would cause the quality of the resulting decision tree to

deteriorate rapidly whenever the datasets of the different sites vary from one another [5]. In

contrast, our approach, which is equivalent to collecting all the data, retains the quality of the

result and reduces the communication overhead.

A different meta-learning induction algorithm was suggested in [10]. The algorithm turns

each decision tree classifier into a set of rules and then merges the rules into a single superset

of rules while resolving conflicts as suggested in [19]. Kargupta et al. [17] describe a meta-

learning algorithm where the local decision tree classifiers are approximated by a set of Fourier

coefficients, which are then collected to a central site where they are combined into a single

model. Although the meta-learning approach is very scalable in terms of performance, the

accuracy and the comprehensibility of the meta-classifier drops sharply as the number of remote

sites increases. Thus, these methods are not well-suited for large distributed networks.

Much attention was given to the parallelization of induction algorithms. The parallel algorithms

described below were intended for a data warehouse environment, where a control environment

and high communication bandwidth are assumed, as opposed to a large distributed network

where there is no control over the distribution of the data and a normal Internet bandwidth is

assumed.

Three parallel algorithms for decision tree induction were described in [25]. In the first

algorithm, called synchronous tree construction, all computing nodes construct a decision tree

synchronously in depth-first order by exchanging the class distribution information of the local

data. Then they simultaneously compute the gain function, select the best attribute, and split

the decision tree node according to this attribute. In the second algorithm, called partitioned

tree construction, one (or more) of the computing nodes is responsible for a portion of the

decision tree and data is relocated to the responsible computing node after a split. As a result,

the responsible computing node can develop this portion of the decision tree independently.

February 23, 2005 DRAFT

8

The third algorithm uses a hybrid approach: it starts with synchronous tree construction and

switches to partitioned tree construction when the number of active leaves in the tree exceeds

a given threshold. Thus, at the top of the decision tree, where there are only a few decision

tree leaves and data movement is expensive, synchronous tree construction is used. Then, when

the number of developed leaves increases, incurring a high communication cost, partitioned tree

construction is used. The hybrid algorithm thus aims to minimize the communication overhead

between the computing nodes. However, these straightforward algorithms cannot be used in large-

scale distributed systems because data movement is often impractical in distributed networks, for

the reasons explained above, and because the communication complexity of synchronous tree

construction is similar to that of the algorithm described above [3].

The parallel version of SPRINT, also described in [24], enhances the performance of the

algorithm by using a vertical partitioning scheme, where every computing node is responsible

for a distinct subset of the data attributes. Thus, by dividing the attribute lists evenly among

the computing nodes and finding in parallel the best binary conditions of the attributes, the

algorithm boosts the performance of the sequential SPRINT algorithm. However, in order to

split the attribute lists, the hash table must be available on all computing nodes. In order to

construct the hash table, all-to-all broadcast must be performed, making this algorithm highly

unscalable. ScalParC [16] improves upon SPRINT with a distributed hash table that efficiently

splits the attribute lists, and is communication-efficient when updating the hash table. The

same communication pattern is common to all state-of-the-art parallel decision tree induction

algorithms [1], [8], [15].

IV. BOUNDS ON THE GAIN FUNCTIONS

The bounds given in this section bound the gain function of a population that is the union

of several disjoint subpopulations on which only partial information is available. By using them

we can avoid collecting the crosstables of many of the attributes whose gain, as indicated by

the bounds, cannot be large enough to change the result.

A. Notations

The bounds given below are defined for a single attribute of a single decision tree leaf node.

Therefore, we simplify the notations by removing references to the attribute and the decision tree

February 23, 2005 DRAFT

9

node. Let P be a population of size n and let {P1, P2} be a partition of P into two subpopulations

of sizes n1, n2 respectively. Let the crosstables of populations P1, P2, P be defined as:

−→
P1(value, class) =

a11 a12

a21 a22

,
−→
P2(value, class) =

b11 b12

b21 b22

,

−→
P (value, class) =

a11 + b11 a12 + b12

a21 + b21 a22 + b22

 respectively.

Here, ai,j and bi,j denote the number of learning examples with value i and class j in
−→
P1 and

−→
P2, respectively.

We further use GiniIndex(P), InfoGain(P) as the Gini index and information gain functions

computed for population P . For brevity, in the following we include only the lemma we use in

the paper. We provide detailed proofs of these lemma in Appendix VII

B. Gini Index Function

Lemma 1: For any GiniIndex(P1), GiniIndex(P2), n1, n2, an upper bound on GiniIndex(P)

is given by:

Upper bound =
n1GiniIndex(P1) + n2GiniIndex(P2)

n1 + n2

(1)

Lemma 2: Let P1, P2, n1, n2 be given. Furthermore, let the candidate binary split decision

divide P1 into two subsets, P left
1 and P right

1 , with sizes of nleft
1 and nright

1 (n1 = nleft
1 + nright

1)

respectively. Then a lower bound on GiniIndex(P) is given by:

Lower Bound =
GiniIndex(P1)

[

1 + n2

n1

] [

1 + max
{

n2

n
left
1

, n2

n
right
1

}] (2)

C. Information Gain Function

Lemma 3: For any InfoGain(P1), InfoGain(P2), n1, n2, an upper bound on InfoGain(P)

is given by
n1InfoGain(P1) + n2InfoGain(P2)

n1 + n2

(3)

Lemma 4: Let P1, n1, n2 be given. Furthermore, let the candidate split decision divide P1 into

two subsets, P left
1 and P right

1 , with size nleft
1 and nright

1 respectively. Then a lower bound on

InfoGain(P) is given by:
[

1

1 + n2

min{nleft
1 ,n

right
1 }

·
1

1 + n2

n1

]

InfoGain(P1) (4)

February 23, 2005 DRAFT

10

We summarize our results with the following theorems:
Theorem 1: Let P be a population of size n, and {P1, P2, ..., Pk} a partition of P into k

subpopulations of sizes n1, n2, ..., nk respectively. Let G() denote the gain function (information
gain or Gini index). Then an upper bound on G(P) is given by:

G(P) ≤

Pk

i=1 niG(Pi)
Pk

i=1 ni

.

Note that above theorem is a trivial generalization of lemmas 5 and 7.

Theorem 2: Let P be a population of size n, and {P1, P2} a partition of P into two subpopu-

lations of sizes n1, n2 respectively. Assume that the candidate split divides P1 into two subsets,

P left
1 and P right

1 , with sizes nleft
1 and nright

1 respectively. Let G() denote the gain function

(information gain or Gini index). Then, lower bounds on G(P) is given by:

G(P) ≥
G(P1)

[

1 + n2

n1

] [

1 + n2

min{nleft
1 ,n

right
1 }

]

V. DISTRIBUTED HIERARCHICAL DECISION TREE

Initialization

newLeavesList = decision tree root

Algorithm

1. For each leafi in newLeavesList do

2. Remove leafi from newLeavesList

3. Attributek = run DESAR for leafi

4. If the gain from splitting leafi according to Attributek is above the prunning threshold.

5. Split leafi by Attributek

6. Insert new leaves to newLeavesList

7. Endif

8. End
Algorithm 1: The DHDT algorithm for the root agent

The distributed hierarchical decision tree (DHDT) algorithm runs on a group of computers,

connected through a wide-area network such as the Internet. Each computer has its own local

database, while the goal of the DHDT is to derive the exact same decision tree learned by

a sequential decision tree learner on the collection of all data in the network. We assume

a homogeneous database schema for all databases, which can be provided transparently, if

required, by ordinary federated system services. The algorithm relies on a (possibly overlay)

February 23, 2005 DRAFT

11

MassGeneral

Harvard
Medical
School

Brigham
and

Women's

National
Level

Regional
Level

Organization
Level
(HMO,PPO)

Hospital
Level

WAN

Massachusetts

DB

Agent

WAN

Partners

DB

Agent

HMO

DB

Agent

WAN

DB

Agent

WAN

PPO

DB

Agent

HMO

DB

Agent

WANWAN WAN

National
Research

Center

Agent

DB

Fig. 1. Hierarchical network of a medical data organization. The network structure in the figure echoes the medical organization’s

hierarchical structure. Nodes in the lower levels of the hierarchy are hospitals, clinics, medical schools and research centers.

Hospitals and clinics are usually associated with Health Maintenance Organizations (HMOs) such as Partners in the Boston area.

Inside these health organizations, medical information is collected independently by each hospital or clinic. However, data is

shared on a daily basis between the associated members, to allow patients to get medical care from any one of them. At higher

levels of the hierarchy, health organizations collaborate to conduct research on a regional or even national scale.

communication tree that spans all computers in the group. The communication tree can be

maintained by a spanning tree algorithm such as Scribe [4] or can utilize the natural hierarchy

of the network (see figure 1). For reasons of locality, communication between nodes in the

lower levels of the spanning tree is often cheaper than communication between nodes in the

upper levels. Thus, a ”good” algorithm will use more communication at the bottom than at the

top of the tree. We further assume that during the growth phase of the decision tree, the databases

February 23, 2005 DRAFT

12

and the communication tree remain static.

For each database an entity called Agent is allocated, which accesses the database through

a standard interface such as SQL or HL7 and gathers simple statistics (the joint distribution

of each attribute and the class attribute). For performance consideration, the Agent had better

reside on either the same host as the database or on a collocated machine. The Agent is in charge

of computing the required statistics from the local database and participating in the distributed

algorithm. Agents collect statistical data from their children agents and from the local database

and send it to their parent agent at its request. All communication is by message exchange.

The root agent is responsible for developing the decision tree and making the split decisions

for the new decision tree leaves. First, the root agent decides whether a decision tree leaf has to

be split according to one or more stopping conditions (e.g., if the dominance of the majority class

has already reached a certain threshold) or according to the PUBLIC method [22], which avoids

splitting a leaf once it knows it may be pruned eventually. The class distribution vector, which

holds the number of examples that belong to each distinct class in the population, is sufficient

for computing these functions, and thus it is aggregated by the agents over the communication

tree to the root agent.

Recall that if a decision tree leaf has to be split, the split must be done by the attribute with

the highest gain in the combined database of the entire network. All that is required to decide on

the splitting attribute is an agreement as to which attribute has the maximal gain; the actual gain

of each attribute does not need to be computed. To reach an agreement, the agents participate

in a distributed algorithm called DESAR (Distributed Efficient Splitting Attribute Resolver). For

each new leaf that has to be developed, DHDT starts a new instance of DESAR to find the

best splitting attribute. The pseudocode for DHDT is given in Algorithm 1. We now proceed to

describe the DESAR algorithm.

A. Distributed Efficient Splitting Attribute Resolver

To find the best splitting attribute while minimizing communication complexity, DESAR

aggregates only a subset of the attribute crosstables over the communication tree to the root

agent. The algorithm starts when the agents receive a message from the root that a new leaf

has to be developed. Then, each agent waits for messages from its children. When messages are

received from all of them, it combines the received crosstables with its own local crosstables,

February 23, 2005 DRAFT

13

Fig. 2. Example of a wrong decision based on partial statistics. Agent A and Agent B are the children of Agent C. After

computing the gain for each of its attributes, Agent A sends only the crosstable of its best splitting attribute, Attribute 1.

Similarly, Agent B sends only the crosstable of Attribute 1. Agent C combines these crosstables and chooses Attribute 1 as its

best splitting attribute. However, the correct decision is to pick Attribute 2, which has the highest gain in the combined dataset.

A2A1,A2 A1,A3 A1,A2

1 2 4 5

63

7

(a)

1 2

3

4 5

6

7

A1

A1

(b)

3

51 2 4

A1

6

7

(c)

A1

7

1

3

2 4 5

6

A1,A2

(d)

Fig. 3. An overview of DESAR core. In (a) all leaf Agents send their promising attributes to their parents. (b) shows that

for Agent 3 the data was sufficient to determine A1 as its promising attribute, and thus send it to the root. However, Agent 6

requests more data on A1 from Agent 5. In (c) Agent 5 responds. Finally, in (d), Agent 6 sends both A1 and A2 as promising

attributes to the root, which finds this data sufficient to split the node according to A1.

picks the most promising splitting attributes on the basis of its aggregated data, and sends to its

parent agent only the crosstables for these attributes.

Since different subtrees may choose to send information on different subsets of the attributes

to their root, the information eventually collected by the root does not always suffice to decide

which attribute maximizes the gain function. An attribute may have high gain in the part of

the tree which sent it to the root, but the gain may drop sharply when data is collected from

other parts of the tree. The opposite is also possible, as can be seen in Figure 2. To overcome

this, we use the upper and lower bounds discussed in the previous section and compute for

February 23, 2005 DRAFT

14

Attributes

Gini index

0.5
A1 A4

0.9

0.8

0.7

0.6

A2 A3 A5

threshold

Fig. 4. Example for clear separation. In the above figure, the intervals of five attributes are displayed and a threshold with a

value of 0.82 defines a clear separation between the intervals.

each attribute an attribute interval, rather than a single, possibly erroneous value. The interval

between the lower bound and the upper bound for the gain of an attribute, based on the known

data is denoted the attribute interval.

The details of computing the bounds can be found in the next section. The bounds are computed

using the information received from all of the agent’s children. Thus, these bounds bound the

gain function over the data in the network subtree. In particular, the bounds computed by the

root agent bound the gain function over all the data in the network.

Using the notion of attribute intervals, we say that a given threshold defines a clear separation

of intervals if it separates the attribute intervals into two non-empty disjoint sets of intervals and

neither of the intervals crosses the threshold (see figure 4).

When the bounds are computed, the agent sets a threshold, denoted border, with minimal

number of attributes having their lower bounds larger than the border. If the border obtained

defines a clear separation, the attributes whose intervals lay above the border are called promising,

and their crosstables are sent to the agent’s parent. If a clear separation is not achieved, or if

the number of attributes whose interval is above the border is too high, the agent collects more

information from its descendants using request methods which we explain below. Notice that

the root agent is special in that it requires, in addition to clear separation, that only a single

interval remains above the border. Only if this additional requirement is met can the root agent

safely decide to split the leaf according to the attribute whose interval is above the border.

Figure 5 describes an example for two steps of the DESAR algorithm.

The simplest way an agent can request more information from its children is to name the

February 23, 2005 DRAFT

15

Attribute: 1

v2

v1

c1

15

3 7

5

c2

Gini Index:
 0.61

Attribute: 2

v2

v1

c1

10

8 10

2

c2

Gini Index:
0.5926

Agent A

Attribute: 1

v2

v1

c1

5

45 20

60

c2

Gini Index:
 0.716

Attribute: 2

v2

v1

c1

40

10 60

20

c2

Gini Index:
 0.663

Agent B Attributes

G
in

i i
nd

ex

0.5

0.663

0.716 Border

A1 A2
Attributes

G
in

i i
nd

ex

0.5

0.5926

0.61 Border

A1 A2

Step 1:

A1,Gu=0.5926
Step 1:

A1,Gu=0.663

Step 1: Border does not define clear separation

Attribute: 1

v2

v1

c1

20

48 27

65

c2

Gini Index:
 0.5928

Attribute: 2

v2

v1

c1

0

0 0

0

c2

Gini Index:
 0.5-0.649

Agent C Attributes

G
in

i i
nd

ex

0.5

0.5928

0.649

Border

A1 A2

Attribute: 1

v2

v1

c1

20

48 27

65

c2

Gini Index:
 0.5928

Attribute: 2

v2

v1

c1

50

18 70

22

c2

Gini Index:
 0.63

Agent C Attributes

G
in

i i
nd

ex

0.5

0.5928

0.63
Border

A1 A2

Step 2:

A2,Gu=0.5
Step 2:

A2,Gu=0.5

Step 2: Border defines clear separation

Fig. 5. Two-step example for the DESAR algorithm. Agent A and Agent B are the children of agent C. Once Agent A and

Agent B have computed all attribute intervals, they define the border and their promising attribute sets, which for both agents

include only attribute 1. When Agent C receives the messages, it computes its own attribute intervals and discovers that the

border does not define a clear separation. Therefore, it requests more information regarding Attribute 2 from its children. When

replied, Agent C recomputes the attribute interval of Attribute 2, and this time the border defines a clear separation where the

only promising attribute is Attribute 2.

attributes for which more information is needed. We call this request method the naming method.

When a child receives a request for a specific attribute, and if the crosstable of this attribute

was not yet sent to its parent, the child immediately replies by sending its crosstable. If the

crosstable was not yet received from the subtree, it first requests that its children send more

information regarding this attribute, and forwards the information once it arrives. Note that the

less information an agent collects from its subtree on an attribute, the larger the interval will be.

Therefore, if the naming method is repeated, all information for the attributes whose intervals

cross the border will eventually be collected to the requesting parent agent, the lower and upper

bounds will be equal to the accurate gain in the agent’s combined database, and a clear separation

will be defined.

In section V-C we describe an additional request method. We also describe a strategy, aimed at

February 23, 2005 DRAFT

16

reducing communication complexity, for determining whether this method or the naming method

should be used.

Algorithm 2 describes DESAR pseudocode, uniformly executed by all agents.

B. Computing Lower and Upper Bounds on the Gain of Attributes

As we did in section IV, we simplify the notations here by removing indices to the attribute

and the decision tree node.

Let agent1, ..., agentq be the descendants of agent0. Additionally, let childi denote the ith

immediate child of agent0. Let Pd be the population of agentd derived from its local database.

The combined population for accurate computation of the gain function for the network tree

rooted in agent0 is defined by P =
⋃

d Pd.

Without loss of generality, for any given attribute, let PU =
⋃

d=k+1..q Pd be the combined

population of the descendant agents which did not yet send the attribute’s crosstable to agent0,

and let PK = P/PU . Furthermore, let P i
K be the combined population of the descendant agents

who did submit the attribute’s crosstable and are also descendants of childi (including childi

itself), and let P i
U be the combined population of the descendant agents who did not submit the

attribute’s crosstable and are also descendants of childi. Finally, let G() denote the gain function

used by the algorithm and let |X| denote the size of the set X .

1) Upper bound: First, the agent computes an upper bound GU on G(PU). This bound is

computed recursively, where each child agent computes and sends to its parent an upper bound,

denoted Gi
U , on its contribution to population PU . Gi

U is computed by the following recursive

rule: If the attribute’s crosstable is not sent to the parent, Gi
U is equal to the attribute’s upper

bound. Otherwise, Gi
U is equal to GU of the child itself. Note that for the leaf agents PU = ∅,

and thus GU is set to 0.

Then, by applying Theorem 1, GU is:

GU ≥ G(PU), where GU =

∑

i |P
i
U |G

i
U

∑

i |P
i
U |

(5)

Now, by applying Theorem 1 again, the agent computes the upper bound as follows:

G(P) ≤
|PK|G(PK) + |PU |GU

|P |
(6)

Note that the size of the combined database, |P |, can be computed from the aggregated class

distribution vector, and thus |PK| , |P i
U | can easily be computed.

February 23, 2005 DRAFT

17

Definitions

D1. border= maximal lower bound of all attributes which were not sent to the parent

D2. borderAttribute= the attribute whose lower bound defines the border

D3. If agent is root then

D4. ExtraCondition = There is only a single attribute Ai where UpperBound(Ai) ≥ border or

. maxi(UpperBound(Ai)) = border

D5. Else

D6. ExtraCondition = Gi
u

< border for all children

Algorithm

On initialization of a new leaf is born

01. Receive information from all children

02. While (not (border defines a clear separation and ExtraCondition)) do

03. If (Gi
u

> border) then

04. request childi to lower its border and send new information

05. Else if (border does not define a clear separation and

. crosstable of borderAttribute has only partial information)

06. request information for borderAttribute from children who did not send complete information

07. Else

08. request information for all attributes that cross the border

09. End if

10. Receive information from all children

11. End while

12. Return attributes Ai where LowerBound(Ai) ≥ border

On a request for more information from parent

01. If (parent requires more information for attribute attri) then

02. If (crosstable of attri was not sent to parent) then

03. Send parent the crosstable of attri

04. Else

05. request information for attri from children who sent partial information regarding attri

06. Else (the case where parent requests that the border be lowered)

07. Update border and borderAttribute and start phase 1.

08. Endif
Algorithm 2: DESAR Algorithm

February 23, 2005 DRAFT

18

Finally, in order to further reduce communication complexity and make it independent of the

number of candidate attributes, a child agent sends the maximal Gi
U of all attributes as a single

upper bound (denoted G
i

U
) for all of them.

2) Lower bound: The lower bound is trivially computed by Theorem 4, where P1 = PK and

P2 = PU .

C. Efficient Request Methods

The disadvantage of the naming method is in the way the bounds are computed: Recall that

the parent receives from its childi a single upper bound, G
i

U
, which bounds, for all attributes,

the possible contribution to the gain function of all the data beneath childi, which was not

sent up. Following equations 5 and 6, the upper bound of every attribute is partially based on

G
i

U
. If G

i

U
is high, the weighted upper bounds of many attributes (which are computed using

G
i

U
and Theorem 1) will be higher than the border, and since their lower bounds remain low,

their attribute intervals will cross the border. Consequently, a request that names many crossing

attributes causes high communication overhead.

To overcome this, a different request method, called the independent method, is used. The

new request method asks the child to lower its border independently of its parent. When a child

receives this request, it sets its border as the maximal lower bound of all attributes that were not

sent up. Then it tries again to find a clear separation, if necessary, by requesting more information

from its children. Consequently, new information is sent to the requesting parent, and the upper

bound G
i

U
of the child is reduced.

Finally, to minimize the overall communication complexity, DESAR employs the following

strategy when using the request methods: If G
i

U
of childi is above the border, the independent

method is used. Otherwise, if a clear separation does not exist and the highest attribute (i.e.,

the attribute with the highest lower bound) has partial information, the child uses the naming

method to request information, for the highest attribute only, from all children who sent partial

information regarding this attribute. This is done in the hope that the new information will

raise the border and a clear separation will be achieved. If the highest attribute already has full

information, i.e., the lower and upper bound of the attribute are equal, then the agent will use

the naming method to request more information for the attributes that cross the border.

February 23, 2005 DRAFT

19

D. Reducing Message Complexity with the Hoeffding Bound

In the DESAR algorithm, each Agent sends to its parent attributes whose intervals are above

a border which it calculates based on data from its subtree. The parent may later request that

the Agent sends additional data, regarding other attributes. One cause for such requests for more

data may be slight differences between the data in different subtrees, which cause the gain of an

attribute in the subtree database to be exceptionally higher (or lower) for that agent comparing

to the global database. Since requests for more data are wasteful, it is beneficial to sometime

send a small number of additional attributes in first place so as to avoid them.

For this purpose we enhance DESAR by further lowering the border by a small constant ε (see

figure 6). We calculate ε using the well known Hoeffding bound [11] in a way that resembles

its usage in the VFDT algorithm [7]. We treat the gain of an attribute in a subtree database as a

random variable r calculated over an independent sample of size n. The Hoeffding bound then

predicts that with probability 1−δ the actual value of r (i.e., the gain over the whole population)

lays within ε =

√

R2 ln(1
δ
)

2n
of the value calculated over the sample (R, the range of r, equals one

in the case of the gain functions we use). By tuning δ we can now trade the number of attributes

sent in the first message against the probability that additional data will be required.

A further complication arises from the fact that DESAR does not really calculate the value

of r, but rather bounds it from below. Since the real value is guarantied to lay above the border,

reducing the border by ε means that we may sometimes overestimate δ and send too many

attributes. This would not happen if DESAR collects full information on the most prominent

attribute, as it usually does.

We conclude that the new definition of border is:

border = maxi∈attributes{LowerBoundi} −

√

ln(1
δ
)

2n
. (7)

E. The DESAR Correctness Proof

We now prove that the DESAR algorithm terminates, and that it chooses the same attributes

that the sequential decision tree algorithm would choose when working on the combined database

of the complete network.

February 23, 2005 DRAFT

20

Attributes

0.5

0.55

0.60

Border

A1 A2 A3 A4 A5

Ga
in

Fig. 6. Redefinition of border for reducing the average number of messages sent. In the above figure, the intervals of five

attributes are displayed. The border computed by formula 7 defines 3 promising attributes: A2,A3 and A5. Only the crosstables

of these attributes are sent to the parent agent.

The referenced line numbers in the proof refer to the pseudocode of DESAR provided in

Algorithm 2 above.

Proof:

• Correctness: Assume that the gain of another attribute, say Ak, is higher in the combined

database than the gain of the attribute returned by DESAR algorithm at the root agent, Abest.

Clearly, this means LowerBound(Abest) < UpperBound(Ak). Since Abest, by definition,

has the highest lower bound, LowerBound(Abest) > LowerBound(Ak). This means that

the border, which is set to LowerBound(Abest), must cross Ak’s attribute interval. Hence,

there is no clear separation and DESAR does not terminate.

• Termination: The algorithm does not end until the condition tested in line 2 is satisfied.

Assume that the algorithm has made N rounds of requesting more information, where N

is large enough so that all crosstables from all the descendants have arrived at the root

agent. In this case all the intervals will have size zero, since the gain for the combined

database can be computed accurately. Clearly, the condition tested in Line 2 is satisfied and

the algorithm terminates.

February 23, 2005 DRAFT

21

VI. EXPERIMENTAL EVALUATION

The DHDT algorithm is designed to run on datasets with a large number of attributes, such

as the genomically enriched EMR. However, data which include both genotype and phenotype

information is scarce. Therefore, we adopted an approach common in bioinformatics studies,

which is to try and predict part of the genotype using the rest of the genotype. This approach

can be justified in the case of phenotypical patterns that are correlated strongly with a single

SNP variation or an increased activity of a single gene. In such cases, learning a model which

predicts an SNP’s allele, for instance, is equivalent to learning a model which predicts one of

these diseases.

Another question regarding the data is whether to use real or synthetic data. Real datasets are

hard to come by and even harder to merge with one another, mainly because they were usually

generated in independent experiments and under different experimental conditions. For instance,

datasets of microarray gene expression exhibit two types of variations, variation in microarray

technologies, and variations in different expression levels of significant genes in various cancer

types. In the genomically enriched EMR application we consider, all data would be generated

using a standard test and under standard conditions. Thus, we opt for synthetic data created by

two accepted data generators ([9], [13]) using two different theoretical models. The performance

of the algorithm is almost the same regardless of what generator is used, which indicates that

it takes advantage of characteristics of genetic data rather than on characteristics of the data

generator.

Each dataset contains 250,000 examples describing a single population. A single SNP is

described by a binary attribute where ’0’ denotes the most common allele. An example is

composed of 1000 SNPs. An arbitrary SNP is designated the class attribute. The experiments

were performed on a simulation of a communication tree that spans all agents in the system.

At the beginning of each experiment, each agent builds its local database by sampling a small

fraction of the simulated dataset, thus emulating a specific subpopulation.

The DHDT algorithm computes exactly the same result as would be computed by ID3 had it

been given the entire dataset. For this reason the focus of our experiments is not on evaluating

the accuracy of the resulting model, but rather on measuring the reduction in communication

overhead. The value of ID3 generated classifiers has been validated over and over in the last

February 23, 2005 DRAFT

22

two decades on far more datasets than we can possibly cover in this context. To evaluate DHDT

performance we compare the overhead it generates to the calculated overhead of previously

suggested decision tree algorithms [3], [25], which both collect all the crosstables for all the

available attributes to a single agent. Henceforth, we denote these two algorithms as Algorithm

Prev. Algorithm Prev sends O (LN) bytes and O(L) messages per decision tree node, where

L is the number of agents and N is the number of attributes in the dataset. Note that DHDT

generates the exact same model Algorithm Prev would (which is the same one that which would

be computed by a sequential algorithm that accesses all the data). Thus, there is no point in

comparing the algorithms’ accuracy because it depends only on the data and not of the choice

of algorithm.

A. Synthesized Genomic Data

We have synthesized two SNP datasets, using two simulations that follow different theoret-

ical models. The first simulation is based on coalescent theory and was conducted with the

Hudson simulation engine [13]. The simulation assumes intragenic recombination. Whenever a

recombination event occurs, the two separated strands of a DNA sequence become statistically

independent, consequently lowering the association between the SNPs of the separated strands.

The parameters for this simulation are the number of examples, the number of sites (SNPs),

and the probability that recombination will take place. In this simulation we used a typical

recombination probability of 10−8 per generation for every 2500 base pairs.

The second simulation follows a recently developed theory that assumes the existence of DNA

blocks. The theory proposes that recombination events occur in narrow hot-spots, resulting in the

creation of DNA blocks in the region between two hot-spots. Therefore, SNPs that are contained

in a single DNA block are more strongly associated. The simulation was conducted using the

simulation tool suggested in [9] with default parameters.

The results of the experiments showed that the communication overhead of the algorithm is

the same for both databases. Thus we present below just one set of results.

B. Experiments

Our first experiment measures the average communication overhead of a single split decision

(i.e., a single run of the DESAR algorithm) in terms of the number of messages and the number

February 23, 2005 DRAFT

23

(a) Average communication overhead, comparing to Alg.

prev which sends 1000 attributes in a single message

(b) Hierarchical view of the communication overhead

(Gini index)

Network spanning tree degree 3

Levels of hierarchy 6

Network size
P6

i=1 3i = 1093

Subpopulation size 5000

Total number of attributes 1000

Average number of decision tree nodes (Gini index) 25

Average misclassification rate 3%

(c) Experiment parameters

Fig. 7. Average communication overhead for a single split decision

of sent crosstables. These results are compared with previous distributed decision tree algorithms

which collect and aggregate the crosstables of all attributes.

Our algorithm demonstrates an average reduction of more than 99% in the number of transmit-

ted bytes, with only a small increase in the average number of sent messages (1.2 per Agent per

decision tree node). These results are summarized in figure 7(a). Figure 7(b) provides a detailed

view of the communication overhead over the levels of the network spanning tree when using

the Gini index function. Similar results are achieved for the information gain function. Note that

most of the communication takes place in the lower levels of the tree and decreases in the higher

levels. Because more data is used to compute the gain function in the higher levels, there is less

chance that the best attribute in a child agent will not be the best attribute in its parent agent

as well. Recall that, for locality reasons, the communication in higher levels is more expensive,

February 23, 2005 DRAFT

24

and thus the DHDT algorithm is able to amortize the cost of communication over the network.

In addition, the benefits of the algorithm are emphasized because the maximal communication

overhead (out of 20 tests) declines similarly to the average communication overhead, and is

sharply reduced in the higher and more costly levels of the network tree.

The above experiment also compares the communication overhead when using the information

gain and the Gini index functions. The results show that the information gain function is more

efficient communication-wise than the Gini index function. In [21], the authors compared the

split decisions made by the Gini index function with those made by the information gain function.

Their results showed disagreement only on 2% of the decisions. However, if different splitting

attributes are chosen for a node that resides at the top of the decision tree, then obviously the

subtrees below this node will be completely different. Consequently, the effect of the different

decision is increased.

Our next experiments examine the scalability of the algorithm with respect to the size of the

network, the number of total attributes, and the size of the local databases.

• Scalability in the size of the network. We examined the communication overhead with

an increasing network size (40; 121; 364 and 1093 agents), where in each step, a new

level is added to the network spanning tree and the other parameters remain as in figure

7. The results, summarized in figure 8, show that the reduction in communication over-

head is hardly affected by the network size. Therefore, the algorithm can be deployed on

large-scale networks containing even thousands of network nodes and can sharply reduce

communication overhead.

• Scalability in dataset dimensionality. The algorithm is intended for highly dimensional

datasets. Therefore, we tested the reduction in communication overhead when the number

of attributes in the datasets increases. We conducted tests with 125, 250, 500, and 1000

attributes (SNPs), with a longer segment of the chromosome used each time in order to

increase the number of SNPs in our dataset. Our results, summarized in figure 9, show

that when the number of attributes is doubled, only a few additional crosstables are sent

up, and the percentage of the sent attributes declines sharply. This behavior is expected

due to both the following properties of the SNP data and the DESAR algorithm: SNPs

that are near each other on a chromosome are more strongly associated than SNPs that

are far away from one another. Thus, as the number of SNPs increases, only few of the

February 23, 2005 DRAFT

25

additional SNPs are good predictors of the target SNP (the class attribute). Because the

DESAR algorithm sends only attributes that provide good prediction of the target attribute,

only a few additional crosstables are sent up the hierarchy, and the communication overhead

remains low.

• Scalability in the size of local databases. In this experiment, we examined the effect

of larger local datasets on communication overhead. As expected, the results in figure 10

show that when the size of the local datasets increases, communication overhead decreases

because the sampling noise decreases.

Fig. 8. Scalability in network size. The above figures show the distribution of the average communication overhead over the

network tree levels for different network sizes (Gini index). Other experiment parameters remained as described in figure 7.

Fig. 9. Scalability in dataset dimensionality. The above figure shows the communication overhead for a network of 364 agents,

where the number of attributes increases. Other experiment parameters remained as described in figure 7.

Our next experiment examines the optimizations described in section V-D. We examine how

tuning the δ parameter affects communication overhead. Recall that as δ increases, the border

February 23, 2005 DRAFT

26

Fig. 10. Effect of smaller databases. When the size of the local databases decrease, the data becomes more noisy. Roughly,

the number of message and of crosstables sent is inverse proportional to the number of examples in each database.

is fixed ever further below the maximal lower bound. Therefore, more crosstables are sent in a

child’s first message to its parent. Consequently, fewer requests for more information are initiated

by the parent, which in turn reduces the number of messages. We performed tests with δ = 0,

0.1, and 0.2. Figure 11 shows that the number of messages decreased at the cost of a higher

number of sent attributes. In a detailed view that shows the distribution of the communication

overhead (figure 12), we see that the optimization mostly effects communication in the lower

levels of the network tree, where the number of sent messages is effectively reduced, while

communication in the upper levels, which already uses an almost minimal number of messages,

is hardly affected. This desired behavior is achieved even for small values of δ.

Fig. 11. Optimizing the number of messages. The above figure shows the effect of the optimization described in section V-D

on communication overhead for a network of 364 agents. Other experiment parameters remained as described in figure 7.

In the experiment described in Figure 10 we decreased the size of the local database and

February 23, 2005 DRAFT

27

Fig. 12. Hierarchical view of the average communication overhead when the number of messages is optimized.

by that increased the level of ”White” noise. In reality, it is often the case that noise stems

from measurement and experimental errors. Such error source is characterized not by ”White”

noise but rather by outliers – examples that are by far different from the normal population.

We generated outliers by agents that contain data generated by splitting chromosomes in the

middle and crossing the two halves. Since the data of these agents is so different from the norm,

the attributes considered promising by most agents will not seem promising to these agents.

Thus, the statistics for the promising attributes will be missing some data. Thus, this experiment

measures the effectiveness of our lower bound.

Comparing our lower bound with a trivial lower bound of 0.5, Figure 13 shows that our

lower bound does save part of the communication in the lower levels of the communication

tree – where most of the communication is done. The lower bound is less affective at higher

levels. This is explained by the larger populations accumulated at higher levels. These larger

populations mean that the statistic for the non-altered data is more accurate and thus it is easier

for the algorithm to overcome the outliers, even without the help of the lower bound.

VII. CONCLUSIONS

Whereas prior decision tree algorithms have had to send statistics for every attribute in the

dataset in order to make a correct decision, our algorithm sends statistics for only a fraction of

the attributes, while eliminating most of the communication overhead. Thus it does not require

the high network bandwidth required by the earlier algorithms—bandwidth that clearly does

not exist in wide-area networks. Furthermore, it continues to perform well as the size of the

February 23, 2005 DRAFT

28

Fig. 13. The effect of the lower bound over the communication overhead with noisy training data

network or the number of attributes increases. Therefore, our algorithm is well-suited for mining

large-scale distributed systems with highly dimensional datasets, and especially beneficial for

the medical information domain, where clinical and genomic data are distributed across hospital

databases and other medical facilities.

In further research we intend to generalize the basic approach of DHDT, bounding a statistics

rather than computing it and computing the bounds hierarchically, to other data mining tasks.

REFERENCES

[1] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. CLOUDS: A decision tree classifier for large datasets. In Knowledge

Discovery and Data Mining, pages 2–8, 1998.

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and Brooks, Monterey,

CA, 1984.

[3] D. Caragea, A. Silvescu, and V. Honavar. A framework for learning from distributed data using sufficient statistics and its

application to learning decision trees. International Journal of Hybrid Intelligent Systems. Invited Paper. In press, 2003.

[4] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: A large-scale and decentralized application-level multicast

infrastructure. IEEE Journal on Selected Areas in Communications, page 20(8), 2002.

[5] J. Catlett. Megainduction: Machine learning on very large databases. PhD thesis, University of Sydney, 1991.

February 23, 2005 DRAFT

29

[6] Phillip K. Chan and Salvatore J. Stolfo. Toward parallel and distributed learning by meta-learning. In Working Notes AAAI

Work. Knowledge Discovery in Databases, pages 227–240, 1993.

[7] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceeding of the sixth ACM SIGKDD International

Conference on Knowledge and Discovery and Data Mining, pages 71–80, 2000.

[8] Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan, and Wei-Yin Loh. BOAT — optimistic decision tree construction.

In Proc. of ACM SIGMOD international conference on Management of data, 1999.

[9] Gideon Greenspan and Dan Geiger. Model-based inference of haplotype block variation. RECOMB, pages 131–137, 2003.

[10] Lawrence O. Hall, Nitesh Chawla, and Kevin W. Bowyer. Combining decision trees learned in parallel. In Distributed

Data Mining Workshop at the International Conference of Knowledge Discovery and Data Mining, 1998.

[11] W. Hoeffding. Probability inequalities for sums of bounded random variable. Journal of American Statistical Association,

58:13–30, 1963.

[12] http://www.hl7.org.

[13] R. R. Hudson. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18:337–338,

2002.

[14] E. B. Hunt, J. Marin, and P. T. Stone. Experiments in Induction. Academic Press, 1966.

[15] Ruoming Jin and Gagan Agrawal. Communication and memory efficient parallel decision tree construction. In Proc. of

Third SIAM International Conference on Data Mining (SDM), 2003.

[16] Mahesh V. Joshi, George Karypis, and Vipin Kumar. A new scalable and efficient parallel classification algorithm for

mining large datasets. In Proc. of International Parallel Processing Symposium, 1998.

[17] H. Kargupta, B. Park, D. Hershbereger, and E. Johnson. Collective data mining: A new perspective toward distributed data

mining. Advances in Distributed and Parallel Knowledge Discovery, AAAI/MIT Press, 1999.

[18] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. SLIQ: A fast scalable classifier for data mining. In Proc. of the

Fifth Int’l Conference on Extending Database Technology, Avignon, France, 1996.

[19] Foster John Provost and Daniel N. Hennessy. Scaling up: Distributed machine learning with cooperation. In Proceedings

of the Thirteenth National Conference on Artificial Intelligence, 1996.

[20] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[21] Laura Raileanu and Kilian Stoffel. Theoretical comparison between gini index and information gain criteria. Annals of

Mathematics and Artificial Intelligence, 41(1):77–93, May 2004.

[22] Rajeev Rastogi and Kyuseok Shim. PUBLIC: A decision tree classifier that integrates building and pruning. Data Mining

and Knowledge Discovery, 4(4):315–344, 2000.

[23] N. J. Risch. Searching for genetic determinants in the new millennium. In Nature 405, pages 847–856, 2000.

[24] John C. Shafer, Rakesh Agrawal, and Manish Mehta. SPRINT: A scalable parallel classifier for data mining. In Proc.

22nd Int. Conf. on Very Large Databases for Data Mining VLDB India, 1996.

[25] Anurag Srivastava, Eui-Hong (Sam) Han, Vipin Kumar, and Vineet Singh. Parallel formulations of decision-tree

classification algorithms. Data Mining and Knowledge Discovery: An International Journal, 3:237–261, 1999.

[26] W. Sthlinger, O. Hogl, H. Stoyan, and M. Muller. Intelligent data mining for medical quality management. In the Fifth

Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-2000), Workshop Notes of the 14th

European Conference on Artificial Intelligence (ECAI-2000), pp. 55-67, 2000.

[27] Salvatore J. Stolfo, Andreas L. Prodromidis, Shelley Tselepis, Wenke Lee, Dave W. Fan, and Philip K. Chan. JAM: Java

agents for meta-learning over distributed databases. In Knowledge Discovery and Data Mining, pages 74–81, 1997.

February 23, 2005 DRAFT

30

[28] Fu-Chiang Tsui, Jeremy U. Espino, Virginia M. Dato, Per H. Gesteland, Judith Hutman, and Michael M. Wagner. Technical

description of rods: A real-time public health surveillance system. Journal of the American Medical Informatics Association

JAMIA, 10(5):399–408, Sep/Oct 2003.

[29] Michael M. Wagner, J. Michael Robinson, Fu-Chiang Tsui, Jeremy U. Espino, and William R. Hogan. Design of a

national retail data monitor for public health surveillance. Journal of the American Medical Informatics Association

JAMIA, 10(5):409–418, Sep/Oct 2003.

APPENDIX: PROOFS

Lemma 5: For any GiniIndex(P1), GiniIndex(P2), n1, n2, an upper bound on GiniIndex(P)

is given by:

Upper bound =
n1GiniIndex(P1) + n2GiniIndex(P2)

n1 + n2
(8)

Proof: Following the previous notations, GiniIndex(P) is given by:

GiniIndex(P) =

(a11+b11)2+(a12+b12)2

a11+a12+b11+b12
+ (a21+b21)2+(a22+b22)2

a21+a22+b21+b22

a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22

while the upper bound provided in this lemma is given by:

Upper bound =

(a11)2+(a12)2

a11+a12
+ (b11)2+(b12)2

b11+b12
+ (a21)2+(a22)2

a21+a22
+ (b21)2+(b22)2

b21+b22

a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22

Now, to prove that Upper bound − GiniIndex(P) ≥ 0, it is enough for the following

inequalities to hold:

1 :
(a11)

2 + (a12)
2

a11 + a12

+
(b11)

2 + (b12)
2

b11 + b12

−
(a11 + b11)

2 + (a12 + b12)
2

a11 + a12 + b11 + b12

≥ 0

2 :
(a21)

2 + (a22)
2

a21 + a22

+
(b21)

2 + (b22)
2

b21 + b22

−
(a21 + b21)

2 + (a22 + b22)
2

a21 + a22 + b21 + b22

≥ 0

It is straightforward to verify that inequality 1 is equivalent to:

(a11b12 − a12b11)
2

(a11 + a12 + b11 + b12)(a11 + a12)(b11 + b12)
≥ 0

The above inequality is always satisfied, since both the numerator and denominator are always

positive (all variables are non-negative). Inequality 2 is handled in the same manner.

Lemma 6: Let P1, P2, n1, n2 be given. Furthermore, let the candidate binary split decision

divide P1 into two subsets, P left
1 and P right

1 , with sizes of nleft
1 and nright

1 (n1 = nleft
1 + nright

1)

respectively. Then a lower bound on GiniIndex(P) is given by:

Lower Bound =
GiniIndex(P1)

[

1 + n2

n1

] [

1 + max
{

n2

n
left
1

, n2

n
right
1

}] (9)

February 23, 2005 DRAFT

31

Proof: Recall that GiniIndex(P) is given by:

GiniIndex(P) =

(a11+b11)2+(a12+b12)2

a11+a12+b11+b12
+ (a21+b21)2+(a22+b22)2

a21+a22+b21+b22

a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22

since all entries are positive, the above expression is bounded from below by (recall that n1 =

a11 + a12 + a21 + a22, n2 = b11 + b12 + b21 + b22):

1

1 + n2

n1

(a11)2+(a12)2

(a11+a12)
h

1+
b11+b12
a11+a12

i + (a21)2+(a22)2

(a21+a22)
h

1+
b21+b22
a21+a22

i

n1

But this expression is clearly bounded from below by

1

1 + n2

n1

(a11)2+(a12)2

a11+a12
+

(a21)2+(a22)2

a21+a22

n1

1 + max
{

n
left
2

n
left
1

,
n

right
2

n
right
1

} =
1

1 + n2

n1

GiniIndex(P1)

1 + max
{

n
left
2

n
left
1

,
n

right
2

n
right
1

}

and the proof follows immediately by noting that n2 ≥ nleft
2 , nright

2 . Note that nleft
2 , nright

2 don’t

need to be known – only the total size n2.

We note here that, in general, it is impossible to derive a lower bound on the Gini index of

a union; this is possible only if one population is quite smaller than the other, in which case

a bound can be derived from the relative sizes and the Gini index of the larger population.

Nevertheless, as we show in our experiments the lower bound becomes especially useful when

outliers occur in the data. In such cases small populations report attributes which are entirely

different from those reported by the majority of the population. By using the lower bound the

algorithm can overcome small amounts of missing data (about the attributes reported by the

majority) and by that avoid the need for additional communication.

A. Information Gain Function

Lemma 7: For any InfoGain(P1), InfoGain(P2), n1, n2, an upper bound on InfoGain(P)

is given by

n1InfoGain(P1) + n2InfoGain(P2)

n1 + n2
(10)

Proof: Recall that InfoGain(P) equals

InfoGain(P) =
(a11 + b11) log((A + B)11) + (a12 + b12) log((A + B)12)

n1 + n2
+

(a21 + b21) log((A + B)21) + (a22 + b22) log((A + B)22)

n1 + n2

February 23, 2005 DRAFT

32

where the following definitions have been adopted for brevity:

A11 =
a11

a11 + a12
, A12 =

a12

a11 + a12
, A21 =

a21

a21 + a22
, A22 =

a22

a21 + a22

Similar notations are used for B and A + B, e.g., (A + B)11 = a11+b11
a11+b11+a12+b12

).

Similarly, InfoGain(P1) and InfoGain(P2) are given by

InfoGain(P1) =
a11 log(A11) + a12 log(A12) + a21 log(A21) + a22 log(A22)

n1

InfoGain(P2) =
b11 log(B11) + b12 log(B12) + b21 log(B21) + b22 log(B22)

n2

We now define the auxiliary variables

λ1 =
a11 + a12

a11 + a12 + b11 + b12
, λ2 =

a21 + a22

a21 + a22 + b21 + b22

Clearly

(A + B)11 = λ1A11 + (1 − λ1)B11, (A + B)12 = λ1A12 + (1 − λ1)B12

(A + B)21 = λ2A21 + (1 − λ2)B21, (A + B)22 = λ2A22 + (1 − λ2)B22

In order to make the notations less cumbersome, let us bound one summand of InfoGain(P)

(the other summands are handled similarly):

(a11 + b11) log((A + B)11) =
a11 + b11

(A + B)11

(A + B)11 log((A + B)11) =

a11 + b11

(A + B)11

(λ1A11 + (1 − λ1)B11) log(λ1A11 + (1 − λ1)B11)

Since the function x log(x) is convex, the last expression is bounded from above by

a11 + b11

(A + B)11
(λ1A11 log(A11) + (1 − λ1)B11 log(B11)) =

a11 log(A11) + b11 log(B11)

Hence InfoGain(P) is bounded from above by

(a11 log(A11) + a12 log(A12) + a21 log(A21) + a22 log(A22) +

b11 log(B11) + b12 log(B12) + b21 log(B21) + b22 log(B22))/(n1 + n2) =

n1InfoGain(P1) + n2InfoGain(P2)

n1 + n2
.

February 23, 2005 DRAFT

33

Lemma 8: Let P1, n1, n2 be given. Furthermore, let the candidate split decision divide P1 into

two subsets, P left
1 and P right

1 , with size nleft
1 and nright

1 respectively. Then a lower bound on

InfoGain(P) is given by:
[

1

1 + n2

min{nleft
1 ,n

right
1 }

·
1

1 + n2

n1

]

InfoGain(P1) (11)

Proof: Following the proof of Lemma 7, let us now bound (a11 + b11) log((A + B)11) =

(a11 +b11) log(λ1A11 +(1−λ1)B11) from below. Since log(x) is concave, (a11 +b11) log(λ1A11 +

(1−λ1)B11) is bounded from below by (a11 +b11)(λ1 log(A11)+(1−λ1) log(B11)), which (since

log(A11), log(B11) are negative and b11 is positive) is bounded from below by λ1a11 log(a11).

Continuing in much the same way as in the previous proof, we obtain:

InfoGain(P) ≥

[

1

1 + n2

min{a11+a12 ,a21+a22}

·
1

1 + n2

n1

]

InfoGain(P1)

Recall that a11 + a12 = nleft
1 and a21 + a22 = nright

1 , thus proving the lemma.

We summarize our results with the following theorems:
Theorem 3: Let P be a population of size n, and {P1, P2, ..., Pk} a partition of P into k

subpopulations of sizes n1, n2, ..., nk respectively. Let G() denote the gain function (information
gain or Gini index). Then an upper bound on G(P) is given by:

G(P) ≤

Pk

i=1 niG(Pi)
Pk

i=1 ni

.

Note that above theorem is a trivial generalization of lemmas 5 and 7.

Theorem 4: Let P be a population of size n, and {P1, P2} a partition of P into two subpopu-

lations of sizes n1, n2 respectively. Assume that the candidate split divides P1 into two subsets,

P left
1 and P right

1 , with sizes nleft
1 and nright

1 respectively. Let G() denote the gain function

(information gain or Gini index). Then, lower bounds on G(P) is given by:

G(P) ≥
G(P1)

[

1 + n2

n1

] [

1 + n2

min{nleft
1 ,n

right
1 }

]

February 23, 2005 DRAFT

