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Abstract— We extend the problem of association rule min-
ing – a key data mining problem – to systems in which
the database is partitioned among a very large number of
computers that are dispersed over a wide area. Such com-
puting systems include GRID computing platforms, federated
database systems, and peer-to-peer computing environments.
The scale of these systems poses several difficulties, such
as the impracticality of global communications and global
synchronization, dynamic topology changes of the network,
on-the-fly data updates, the need to share resources with
other applications, and the frequent failure and recovery of
resources.

We present an algorithm by which every node in the
system can reach the exact solution, as if it were given the
combined database. The algorithm is entirely asynchronous,
imposes very little communication overhead, transparently
tolerates network topology changes and node failures,
and quickly adjusts to changes in the data as they occur.
Simulation of up to 10,000 nodes show that the algorithm is
local: all rules, except for those whose confidence is about
equal to the confidence threshold, are discovered using
information gathered from a very small vicinity, whose size
is independent of the size of the system.

I. INTRODUCTION

The problem of association rule mining (ARM) in large
transactional databases was first introduced in 1993 [3].
The input to the ARM problem is a database in which
objects are grouped by context. An example would be
a list of items grouped by the transaction in which they
were bought. The objective of ARM is to find sets of
objects which tend to associate with one another. Given two
distinct sets of objects, X and Y , we say Y is associated
with X if the appearance of X in a certain context usually
implies that Y will appear in that context as well. The
output of an ARM algorithm is a list of all the association
rules that appear frequently in the database and for which
the association is confident.

ARM has been the focus of great interest among data
mining researchers and practitioners. It is today widely
accepted to be one of the key problems in the data mining
field. Over the years many variations were described for
ARM, and a wide range of applications were developed.
The overwhelming majority of these deal with sequential

ARM algorithms. Distributed association rule mining (D-
ARM) was defined in [1], not long after the definition of
ARM, and was also the subject of much research (see, for
example, [1], [8], [27], [10], [14], [20], [4], [11], [26], [16],
[6]).

In recent years, database systems have undergone major
changes. Databases are now detached from the computing
servers and have become distributed in most cases. The
natural extension of these two changes is the development
of federated databases – systems which connect many
different databases and present a single database image.
The trend toward ever more distributed databases goes
hand in hand with an ongoing trend in large organizations
toward ever greater integration of data. For example, health
maintenance organizations (HMOs) envision their medical
records, which are stored in thousands of clinics, as one
database. This integrated view of the data is imperative
for essential data analysis applications such as epidemic
control, ailment and treatment pattern discovery, and the
detection of medical fraud or misconduct. Similar examples
of this imperative are common in credit card companies
(international fraud), in the banking industry (international
money laundering rings), and elsewhere.

An especially interesting example for large scale dis-
tributed databases are peer-to-peer systems. These systems
include GRID computing environments such as Condor
[17] (20,000 computers), specific area computing systems
such as SETI@home [21] (1.8 million computers) or
UnitedDevices [25] (2.2 million computers), general pur-
pose peer-to-peer platforms such as Entropia [9] (60,000
peers), and file sharing networks such as Kazaa (5 million
peers). Like any other system, large scale distributed sys-
tems maintain and produce operational data. However, in
contrast to other systems, that data is distributed so widely
that it will usually not be feasible to collect it for central
processing. It must be processed in place by distributed
algorithms suitable to this kind of computing environment.

Consider, for example, mining user preferences over the
Kazaa file sharing network. The files shared through Kazaa
are usually rich media files such as songs and videos.
Participants in the network reveal the files they store on
their computers to the system and gain access to files
shared by their peers in return. This database may contain
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interesting knowledge which is hard to come by using other
means. It may be discovered, for instance, that people who
download The Matrix also look for songs by Madonna.
Such knowledge can then be exploited in a variety of ways,
much like the well-known data mining example stating that
“customers who purchase diapers also buy beer.”

The large-scale distributed association rule mining
(LSD-ARM) problem is very different from the D-ARM
problem, because a database that is composed of thousands
of partitions is very different from a small scale distributed
database. The scale of these systems introduces a plethora
of new problems which have not yet been addressed by
any ARM algorithm. The first such problem is that there
can be no global synchronization in a system that large.
This has two important consequences for any algorithm
proposed for the problem: The first is that the nodes must
act independently of one another; hence their progress is
speculative, and intermediate results may be overturned as
new data arrives. The second is that there is no point in
time in which the algorithm is known to have finished;
thus, nodes have no way of knowing that the information
they possess is final and accurate. At each point in time,
new information can arrive from a distant branch of the
system and overturn the node’s picture of the correct result.
The best that can be done in these circumstances is for
each node to maintain an assumption of the correct result
and update it whenever new data arrives. Algorithms that
behave this way are called anytime algorithms.

Another problem is that global communication is costly
in large scale distributed systems. This means that for all
practical purposes the nodes should compute the result
through local negotiation. Each node can only be familiar
with a small set of other nodes – its immediate neighbors.
It is by exchanging information about their local databases
with their immediate neighbors that nodes investigate the
combined, global database.

A further complication comes from the dynamic nature
of large scale systems. If the mean time between failures
of a single node is 20,000 hours1, a system consisting
of 100,000 nodes could easily fail five times per hour.
Moreover, many such systems are purposely designed to
support the dynamic departure of nodes. This is because
a system that is based on utilizing free resources on non-
dedicated machines should be able to withstand scheduled
shutdowns for maintenance, accidental turnoffs, or an
abrupt decrease in availability when the user comes back
from lunch. The problem is that whenever a node departs,
the database on that node may disappear with it, changing
the global database and the result of the computation. A
similar problem occurs when nodes join the system in mid-
computation.

Obviously none of the distributed ARM algorithms
developed for small-scale distributed systems can manage

1This figure is accepted for hardware; for software the estimate is
usually a lot lower.

a system with the aforementioned features. These algo-
rithms focus on achieving parallelization induced speed-
ups. They use basic operators, such as broadcast, global
synchronization, and a centralized coordinator, none of
which can be managed in large-scale distributed systems.
To the best of our knowledge, no D-ARM algorithm
presented so far acknowledges the possibility of failure.
Some relevant work was done in the context of incremental
ARM, e.g., [7], [23], [24], [28], and similar algorithms. In
these works the set of rules is adjusted following changes in
the database. However, we know of no parallelizations for
those algorithms even for small-scale distributed systems.

In this paper we describe an algorithm which solves
LSD-ARM. Our first contribution is the inference that the
distributed association rule mining problem is reducible
to the well-studied problem of distributed majority votes.
Building on this inference, we develop an algorithm which
combines sequential association rule mining, executed lo-
cally at each node, with a majority voting protocol to
discover, at each node, all of the association rules that
exist in the combined database. During the execution of the
algorithm, which in a dynamic system may never actually
terminate, each node maintains an ad hoc solution. If the
system remains static, then the ad hoc solution of most
nodes will quickly converge toward an exact solution. If
the static period is long enough, then all nodes will reach
this solution. However, in a dynamic system, where nodes
dynamically join or depart and the data changes over time,
the changes are quickly and locally adjusted to, and the
solution continues to converge. It is worth mentioning that
no previous ARM algorithm was proposed which mines
rules (not itemsets) on the fly. This contribution may affect
other kinds of ARM algorithms, especially those intended
for data streams [15].

It should be stressed that the goal of our algorithm is not
to approximate, but to converge quickly toward the exact
solution. This is the same solution that would be reached
by a sequential ARM algorithm had all the databases been
collected and processed. This convergence can be viewed
in two ways: One, that soon after initialization an ever
increasing portion of the nodes will compute the exact
result. Two, that if the local database changes, or a node
disconnects from the system, but the global result remains
the same, then while the result of a few nodes might
become inaccurate, the correct result will be restored after
just a short period and a few message exchanges.

Our majority voting protocol, which is at the crux of our
association rule mining algorithm, is in itself a significant
contribution. It requires no synchronization between the
computing nodes. Each node communicates only with its
immediate neighbors. Moreover, the protocol is local: in
the overwhelming majority of cases, each node computes
the majority – i.e., identifies the correct rules – based
upon information arriving from a very small surrounding
environment. Locality implies that the algorithm is scalable
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TABLE I
GENERAL NOTATIONS

Symbol Meaning
I Set of items
Vt Set of nodes at time t

DBt The union of all databases at time t
MinFreq Minimal frequency of correct rules
MinConf Minimal confidence of correct rules
R [DBt] The set of rules which are correct in DBt

R̃u [DBt] The ad hoc solution of node u at time t

to very large networks. Another outcome of the algorithm’s
locality is that the communication load it produces is
small and roughly uniform, thus making it suitable for
non-dedicated environments. We further demonstrate the
importance of our majority voting protocol by showing
that it can be utilized to solve other problems such as the
ranking of rules according to their frequency or confidence.
A further generalization allows ranking of rules according
to a function of the confidence. For instance, we show how
the rules can be sorted according to the Shannon’s entropy
of the confidence.

No previous protocol was described which discovers
the majority locally. However, the majority vote problem
is similar to the persistent bit problem, for which local
protocols were given ([13], [12]), and the two problems
are reducible to one another. The main drawback of the
aforementioned persistent bit protocols is that each of them
assumes some form of synchronization: In [13], nodes
query groups of other nodes and must await a reply before
they proceed, while [12] works in locked-step, assuming a
global clock pulse. In contrast, our majority vote protocol
requires no synchronization at all. There are also more
subtle differences which make these protocols impractical
for majority vote. For instance, the former only works
when the majority is very evident while the latter, because
it allows any intermediate result to be corrupted, requires
O (n) memory at each node.

II. PROBLEM DEFINITION

The association rule mining (ARM) problem is tradi-
tionally defined as follows: Let I = {i1, i2, ..., im} be
the items in a certain domain. An itemset is some subset
X ⊆ I . A transaction t is also a subset of I , associated
with a unique transaction identifier. A database DB is
a list that contains |DB| transactions. Given an itemset
X and a database DB, Support (X, DB) is the number
of transactions in DB which contain all the items of X

and Freq (X, DB) = Support(X,DB)
|DB| . For some frequency

threshold MinFreq ∈ [0, 1], we say that an itemset X is
frequent in a database DB if Freq (X, DB) ≥ MinFreq
and infrequent otherwise. For two distinct frequent item-
sets X and Y , and a confidence threshold MinConf ∈
[0, 1], we say the rule X ⇒ Y is confident in DB if
Freq (X ∪ Y, DB) ≥ MinConf · Freq (X, DB). We call

confident rules between frequent itemsets correct and the
remaining rules false. The solution of the ARM problem
is R [DB] – all the correct rules in the given database.

We assume the database is updated over time, and hence,
DBt will denote the database at time t and R [DBt]
the rules that are correct in that database. In distributed
association rule mining the database is partitioned among
a set of nodes, and with large-scale distributed mining we
allow this set to change over time. Hence we denote Vt the
set of nodes at time t. When the number of nodes is large
and the frequency of updates is high, it may not be feasible
to propagate the changes to the entire system at the rate
they occur. Thus, it is beneficial if an incremental algorithm
can compute ad hoc results quickly and improve them
as more data is propagated. Such algorithms are called
anytime algorithms.

The performance of an anytime algorithm is measured
by its average recall and precision. Let R̃u [DBt] be the
ad hoc solution known to the node u at time t. The
recall and precision of u at that time are |

R̃u[DBt]∩R[DBt]|
|R[DBt]|

and |
R̃u[DBt]∩R[DBt]|
|R̃u[DBt]|

. An anytime algorithm is said to be
correct if during static periods, in which the database and
the system do not change, both the average recall and the
average precision converge to one. An important measure
of efficiency for an anytime algorithm is the rate of that
convergence.

Throughout this work we make two simplifying assump-
tions. We assume that an underlying mechanism maintains
a communication tree that spans all nodes. We further
assume the failure model of computers is fail-stop [18],
and that a node is informed of changes in the status of
adjacent nodes.

III. AN ARM ALGORITHM FOR LARGE-SCALE
DISTRIBUTED SYSTEMS

As previously described, our algorithm is comprised of
two rather independent components: Each node executes
a sequential ARM algorithm which traverses the local
database and maintains the current result. Additionally,
each node participates in a distributed majority voting
protocol which makes certain that all nodes that are reach-
able from one another converge toward the correct result
according to their combined databases. We will begin by
describing the protocol and then proceed to show how the
full algorithm is derived from it.

A. LSD-Majority Protocol

It has been shown in [19] that a distributed ARM
algorithm can be viewed as a decision problem in which
the participating nodes must decide whether or not each
itemset is frequent. However, the algorithm described in
that work extensively uses broadcast and global synchro-
nization; hence it is only suitable for small-scale distributed
systems. We present here an entirely different majority
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Fig. 1. A graphical representation of the LSD-Majority algorithm from the perspective of a single node. Assuming λ = 1

2
, we use flagged arrows

to symbolize messages to and fro u with the flag height indicating sumvu − λcountvu. Hence in (a) we see inside the node marked u that
sum⊥u − λcount⊥u indicates one excess vote and around it the last sent and received messages with different heights. ∆u, portrayed above u,
indicates two excess votes. In (b) a message is received from w which lowers ∆wu and ∆u but does not trigger additional messages because ∆u

is now equal to ∆uv and to ∆ux. In (c) an additional message from w further lowers ∆wu and ∆u . Now ∆u < ∆uv ,∆ux and thus messages
are sent to both v and x, as indicated by the change in the height of the flag directed from u to v and to x.

TABLE II
NOTATION FOR LSD-MAJORITY

Symbol Meaning
〈sumuv , countuv〉 Last message sent from u to v

〈sumvu, countvu〉 Last message sent from v to u
〈

sum⊥u, count⊥u
〉

〈1, 1〉 if u’s input bit is set 〈0, 1〉 otherwise
λ The required majority ratio

Eu {vu : v and u are neighbors}
Nu Eu ∪ {⊥u}

∆u

∑

vu∈Nu

(sumuv − λcountuv)

∆uv (sumvu + sumuv)−
λ (countvu + countuv)

voting protocol – LSD-Majority – which works well for
large-scale distributed systems. In the interest of clarity,
we assume that the data at each node is a single bit. We
will later show how the protocol can be generalized for
frequency counts.

As in LSD-ARM, the purpose of LSD-Majority is to
ensure that each node converges toward the correct major-
ity. Since the majority problem is binary, we measure the
recall as the proportion of nodes u whose ad hoc solution
agrees with the majority. The protocol dictates how nodes
react when the data changes, a message is received, or a
neighboring node is reported to have detached or joined.

The nodes communicate by sending messages that con-
tain two integers: count, which stands for the number of
input bits this message reports, and sum which is the
number of those bits which are equal to one. Each node u

will record, for every neighbor v, the last message it sent
to v – 〈sumuv, countuv〉 – and the last message it received
from v – 〈sumvu, countvu〉. In the interest of conciseness
we symbolize the local bit as a message that is received
from ⊥ and which contains 〈1, 1〉if the input bit is set and
〈0, 1〉 if the bit is unset. We also extend the group of edges
colliding with u, Eu, to include the virtual edge ⊥u and
designate the extended edge set Nu. Node u calculates

the following two functions of these messages and its own
local bit:

∆u =
∑

vu∈Nu

(sumvu − λcountvu)

∆uv = (sumuv + sumvu)− λ (countuv + countvu)

Note that if no message was yet received from any neigh-
bor, then ∆u is positive if the input bit is set and negative
if it is unset. Throughout execution the ad hoc output of
u is set according to the sign of ∆u, a majority of set
bits if the sign is positive and of unset bits if the sign is
negative. Furthermore, ∆u measures the number of excess
set bits u has been informed of (or missing set bits if it
is negative). ∆uv measures the number of excess set bits
u and v have last reported to one another. Each time the
input bit changes, a message is received, or a node connects
to v or disconnects from v, ∆u is recalculated; ∆uv is
recalculated each time a message is sent to or received
from v.

Each node performs the protocol independently with
each of its immediate neighbors. Node u coordinates its
majority decision with node v by maintaining the same
∆uv value (note that except for the time a message travels
from u to v, ∆uv = ∆vu) and making certain that
∆uv will not mislead v into believing that the number
of excess bits is larger than it actually is. As long as
∆u ≥ ∆uv ≥ 0 and ∆v ≥ ∆vu ≥ 0, there is no
need for u and v to exchange data. They both have more
excess bits then they reported each other; thus, the majority
in their combined data must be of set bits. If, on the
other hand, ∆uv > ∆u, then v might mistakenly calculate
∆v ≥ 0 because it has not received the updated data from
u. Thus, in this case the protocol dictates that u send

v a message,







∑

wu6=vu∈Nu

sumwu,
∑

wu6=vu∈Nu

countwu







.

Note that after this message is sent, ∆uv = ∆u.
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Algorithm 1 LSD-Majority
Input for node u: The set of edges that collide with it
Eu, An input bit su and the majority ratio λ.

Output: The algorithm never terminates. Nevertheless, at
each point in time if ∆u ≥ 0 then the output is 1,
otherwise it is 0.

Definitions: See notation in table II.

Initialization: For each vu ∈ Eu set sumvu, countvu,
sumuv, countuv to 0.

On edge vu recovery : Add vu to Eu. Set sumvu,
countvu, sumuv, countuv to 0.

On failure of edge vu ∈ Eu: Remove vu from Eu.

On message 〈sum, count〉 received over edge vu: Set
sumvu = sum, countvu = count

On any change in ∆u or ∆uv resulting from a change
in the input, edge failure or recovery, or the receiving
of a message:

For each vu ∈ Eu

If countuv + countvu = 0 and ∆u ≥ 0
or countuv + countvu > 0 and either ∆uv < 0 and

∆uv < ∆u or ∆uv ≥ 0 and ∆uv > ∆u

Set sumuv =
∑

wu6=vu∈Nu

sumwu and countuv =

∑

wu6=vu∈Nu

countwu

Send 〈sumuv, countuv〉 over vu to v

The opposite case is almost the same. Again, if 0 >

∆uv ≥ ∆u and 0 > ∆vu ≥ ∆v, then no messages
are exchanged. However, when ∆u > ∆uv , the protocol
dictates that u send v a message calculated the same way.
The only difference is that if no messages were sent or
received, v knows, by default, that ∆u < 0 and u knows
that ∆v < 0 . Thus, unless ∆u ≥ 0, u does not send
messages to v because the majority of the bits in their
combined data cannot be set.

The pseudocode of the LSD-Majority protocol is given
in Algorithm 1, and a graphical representation in Figure 1.
It is easy to see that when the protocol dictates that no node
needs to send any message, either ∆v ≥ 0 for all nodes, or
∆v < 0 for all of them. If there is disagreement then there
must be disagreement between two immediate neighbors,
in which case at least one node v must send data, which
will cause countuv + countvu to increase. This number is
bounded by the size the system; hence, the protocol always
reaches consensus in a static state. It is less trivial to show
that the conclusion they arrive at is the correct one. This
proof is given in the Appendix.

B. Verifying Candidate Rule Correctness

A correct rule X ⇒ Y ought to satisfy two conditions:
the frequency of X ∪ Y must exceed MinFreq and the
frequency X ∪ Y within transactions that contain X must
exceed MinConf . The first condition can be verified by a
majority vote in which each node votes as many times as
the number of transactions in its database, with the number
of set input bits equal to the support of X ∪ Y in that
database, and λ set to MinFreq. The second condition can
be verified by a similar majority vote in which each node
votes as many times as the support of X , with the number
of set input bits equal again to the support of X ∪ Y , and
λ set to MinConf .

Deciding whether a candidate rule is correct or false thus
requires two instances of LSD-Majority. A simple opti-
mization would be to share the result of the first instance,
which validates the frequency of an itemset among all of
the rules derived from that itemset.

The strength of the protocol lies in its behavior when
the average of the input bits is somewhat different than
the majority threshold λ. Defining the significance of the

input as 1
λ

∑

u
(sum⊥u−λcount⊥u)
∑

u
count⊥u

, we will show in section

V-A that even a minor significance, on the scale of ±0.1,
is sufficient for making a correct decision using data from
only a small number of nodes. In other words, even a
minor significance is sufficient for the algorithm to become
local. Another strength of the protocol is that during static
periods, most of the nodes will make the correct majority
decision very quickly. These two features make LSD-
Majority especially well-suited for LSD-ARM, in which
most of the candidates are far from significant.

C. Majority-Rule Algorithm

LSD-Majority efficiently decides whether a candidate
rule is correct or false. It remains to show how candidates
are generated and how they are counted in the local
database. The full algorithm must satisfy two requirements:
First, each node must take into account not only the local
data, but also data brought to it by LSD-Majority, as this
data may indicate that additional rules are correct and
further candidates should be generated. Second, unlike
other algorithms, which produce rules after they have
finished discovering all the itemsets, an algorithm which
never really finishes discovering all the itemsets must
generate rules on the fly. Therefore the candidates it uses
must be rules, not itemsets. We now present an algorithm
– Majority-Rule – which satisfies both requirements.

The first requirement is rather easy to satisfy. We simply
increment the counters of each rule according to the data
received. Additionally, we employ a candidate generation
approach that is not levelwise: as in the DIC algorithm [5],
we periodically consider all the correct rules, regardless of
when they were discovered, and attempt to use them for
generating new candidates.
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Algorithm 2 Majority-Rule
Input for node u: The set of edges that collide with it
Eu. The local database DBu. MinFreq, MinConf , M

Initialization:

Set C ← {〈∅ ⇒ {i}〉 for all i ∈ I}

For each r ∈ C set r.sum = r.count = 0, and
r.λ = MinFreq

For each r ∈ C and every vu ∈ Eu set
r.sumuv = r.countuv = r.sumvu = r.countvu = 0

Upon receiving 〈r.id, sum, count〉 from a neighbor v

If r = 〈X ⇒ Y 〉 6∈ C add it to C. If
c′ = 〈∅ ⇒ X ∪ Y 〉 6∈ C add it too.

Set r.sumvu = sum, r.countvu = count

On edge vu recovery: Add vu to Eu. For all r ∈ C set
r.sumuv = r.countuv = r.sumvu = r.countvu = 0

On failure of edge vu ∈ Eu: Remove vu from Eu.

Main: Repeat the following forever

Read the next transaction – T . If it is the last one in DBu

iterate back to the first one.
For every r = 〈X ⇒ Y 〉 ∈ C which was generated after
this transaction was last read

• If X ⊆ T increase r.count

• If X ∪ Y ⊆ T increase r.sum

Once every M transactions
• Gen-Candidates
• For each r = 〈X ⇒ Y 〉 ∈ C and for every vu ∈ Eu

– If Cond(r,uv) returns true
∗ Set r.sumuv =

∑

wu6=vu∈Nu

r.sumwu and

r.countuv =
∑

wu6=vu∈Nu

r.countwu

∗ Send 〈r.id, r.sumuv, r.countuv〉 over vu to v

The second requirement, mining rules directly rather
than mining itemsets first and producing rules when the
algorithm terminates, has not, to the best of our knowledge,
been addressed in the literature. To satisfy this requirement
we generalize the candidate generation procedure of Apri-
ori [2]. Apriori generates candidate itemsets in two ways:
Initially, it generates candidate itemsets of size 1: {i} for
every i ∈ I . Later, candidates of size k + 1 are generated
by finding pairs of frequent itemsets of size k that differ
by only the last item – X ∪ {i1} and X ∪ {i2} – and
verifying that all of the subsets of X ∪ {i1, i2} are also
frequent before making that itemset a candidate. In this
way, Apriori generates the minimal candidate set that must
be generated by any deterministic algorithm.

In the case of Majority-Rule, the dynamic nature of the

Procedure Cond(r,uv):

Return true on one of the following two conditions:
1. r.countuv + r.countvu = 0 and ∆u (r) > 0
2. r.countuv + r.countvu > 0 and ei-
ther (∆uv (r) ≥ 0 and ∆uv (r) > ∆u (r)) or
(∆uv (r) < 0 and ∆uv (r) < ∆u (r))

Procedure Gen-Candidates:

1. Set R̃u [DBt] = the set of rules r = 〈X ⇒ Y 〉 ∈ C such
that ∆u (r) ≥ 0 and for r′ = 〈∅ ⇒ X ∪ Y 〉 ∆u (r′) ≥ 0
2. For every r = 〈X ⇒ Y 〉 ∈ R̃u [DBt], such that X = ∅
and i ∈ Y if r′ = 〈Y \ {i} ⇒ {i}〉 6∈ C insert r′ into
C with r′.sum = r′.count = 0, r′.λ = MinConf and
r′.id = unique rule id
3. For each c1 = 〈X ⇒ Y ∪ {i1}〉 , c2 =
〈X ⇒ Y ∪ {i2}〉 ∈ R̃u [DBt] such that i1 < i2,
if c3 = 〈X ⇒ Y ∪ {i1, i2}〉 6∈ C and ∀i3 ∈ Y :
〈X ⇒ Y ∪ {i1, i2} \ {i3}〉 ∈ R̃u [DBt], add c3 to
C with c3.sum = c3.count = 0, c3.λ = c1.λ, and
c3.id = unique rule id

system means that it is never certain whether an itemset
is frequent or a rule is correct. Thus, it is impossible to
guarantee that no superfluous candidates are generated.
Nevertheless, at any point during execution t, it is worth-
while to use the ad hoc set of rules, R̃u [DBt] to try
and limit the number of candidate rules. Our candidate
generation criterion is thus a generalization of Apriori’s
criterion. Each node generates initial candidate rules of
the form ∅ ⇒ {i} for each i ∈ I . Then, for each rule
∅ ⇒ X ∈ R̃u [DBt], it generates X \ {i} ⇒ {i} candidate
rules for all i ∈ X . In addition to these initial candidate
rules, the node will look for pairs of rules in R̃u [DBt]
which have the same left-hand side, and right-hand sides
that differ only in the last item – X ⇒ Y ∪ {i1} and
X ⇒ Y ∪ {i2}. The node will verify that the rules
X ⇒ Y ∪ {i1, i2} \ {i3}, for every i3 ∈ Y , are also
correct, and then generate the candidate X ⇒ Y ∪{i1, i2}.
It can be inductively proved that if R̃u [DBt] contains only
correct rules, then no superfluous candidate rules are ever
generated using this method. Note that when this method
is used, generating a candidate of the form X ⇒ Y always
generates the matching candidate ∅ ⇒ X ∪ Y .

The rest of Majority-Rule is straightforward. Whenever
a candidate is generated, the node will begin to count
its support and confidence in the local database. At the
same time, the node will also begin two instances of LSD-
Majority, one for the candidate’s frequency and one for its
confidence, and these will determine whether this rule is
globally correct. Since each node runs multiple instances
of LSD-Majority concurrently, messages must carry a rule
identifier – r.id – in addition to sum and count. We will
denote ∆u (r) and ∆uv (r) the result of the previously
defined functions when they refer to the counters and λ
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of candidate r. Finally, r.λ is the majority threshold that
applies to r. We set r.λ to MinFreq for rules with an
empty left-hand side and to MinConf for all other rules.

The pseudocode of Majority-Rule is detailed in Algo-
rithm 2. Note that although the algorithm as given runs in
an infinite loop, this is strictly for the purpose of clarity.
It is straightforward to implement it in an event-based
manner. Hence, when there are no new candidates, there is
no need to read further transactions and all communication
is in response to incoming messages, just as in LSD-
Majority.

IV. GENERALIZED MAJORITY VOTING

The previous section we described a majority voting
algorithm scalable for peer-to-peer networks and an ap-
plication of that algorithm for association rule mining.
In this section we will present additional applications
of the majority voting algorithm. Specifically, we will
show that given multiple options voting, with each peer
u choosing one or more of d options, the different options
can be ranked according to their total popularity; i.e.,

Rank

(

∑

u

supportui

)

can be computed for every option

i. Computing the rank of options is equivalent to ordering
them, which means that by computing the ranks we can
come up with a local method of ordering rules according
to their confidence or their support.

Another application of the majority voting protocol is
for cases in which the rank should be computed not
on
∑

u

xu
i , but rather on some function F of the sum.

This is straightforward if F is monotone, because the
same i which maximizes

∑

u

xu
i would maximize either

F

(

∑

u

xu
i

)

or −F

(

∑

u

xu
i

)

. However, we show that

the rank of F

(

∑

u

xu
i

)

can be computed for a group

of piecewise monotone functions, which include functions
such as Shannon’s EntropyH which are often used for rule
ranking [22].

A. Multiple Choice Voting

Suppose a group of peers would like to agree on one of d

options. Each peer u conveys its preference by initializing
a binary preference vector P u ∈ {0, 1}d, setting the
preferred option to one and the rest to zero (alternatively,
several options can be set to one with no change in the
algorithm). To decide which option has the largest support
we will transform each vector to a d by d matrix Au

such that Au [i, j] = P u [i] − P u [j] + 1. Now, for each
entry of Au we can perform an independent instance of
LSD-Majority, with sum⊥u = Au [i, j], count⊥u = 2 and
λ = 0.5.

Algorithm 3 Rank-By-Support
Input for node u: The set of edges that collide with it
Eu, a list of d association rules S with their respective
local support counts P u.

Output: The algorithm never terminates. Nevertheless, at
each time the function Rank (i) can be called which
returns the rank of the ith rule.

Initialization:

Compute Au [i, j] = P u [i]− P u [j] + M , where
M = max {P u} −min {P u}.

For each pair i, j ∈ [1, d] initialize LSD-Majority with the
following inputs: sum⊥u = Au [i, j], count⊥u = 2M ,
λ = 0.5 and with the variables ∆u

Au[i,j] and ∆uv
Au[i,j] for

each v ∈ Eu .

To evaluate Rank (i):

Count the number r of indexes j such that ∆u
Au[i,j] < 0

and return r + 1.

Theorem 1: The result of LSD-Majority performed on
the [i, j] entry of Au of all u ∈ V is that ∆u ≥ 0 if and
only if

∑

u

P u [i] ≥
∑

u

P u [j]

Proof: Follows immediately from the correctness of
LSD-Majority and from the initialization of Au.

Corollary 1: Let Ji = {j1, . . . , jM} be the group of
indexes such that for all j ∈ Ji the result of LSD-Majority
on the [i, j] entry of Au is that ∆u < 0 and for all j′ 6∈ Ji

the result is that ∆u ≥ 0 then
∑

u

P u [i] is the M +1 most

supported option.
Corollary 1 gives us a simple way of computing the

order of a set of d rules according to their support or
confidence. All we have to do is perform d2 local majority
votes and return for each option the size of Ji. The pseudo-
code of this algorithm is given in Algorithm 3.

B. Ranking Functions of the Support

Ordering rules according to their support or confidence
may sometime be simplistic. A large body of work exists
on different functions of those arguments which can result
in better ordering of rules. Next we would outline how
such functions can be computed locally. The simplest
example is computing the rank of any monotone function

of the support, FM

(

∑

u

P u [i]

)

. Assuming that FM is

monotonously increasing, the ranking of
∑

u

P u [i] dictates

the ranking of FM

(

∑

u

P u [i]

)

. For monotonously de-

creasing functions the same computation is made and then
the complement of the result to d is returned.
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An interesting generalization of the problem is when the
function F is piece-wise monotone with symmetric pieces.
Such functions include trigonometric functions (e.g., sin),
the Shannon’s Entropy H (considering the average fre-
quency as an estimator of the mean of a Bernoulli random
variable), certain polynomials (e.g., x2), and more.

To see how this can be done suppose the input of each
peer u is a binary vector P u sampled from d random
variables distributed according to Bernoulli distributions
such that P u [1] ∼ Ber (p1) , . . . , P u [d] ∼ Ber (pd). The
average input vector, P̄ [1] , . . . , P̄ [d] is an estimator of
p1, . . . , pd. The Shannon’s entropy of each of the random
variables, H (p) is defined on the range [0, 1], receives its
minimal values (zero) on p = 0 and p = 1, its maximal
value (one) on p = 0.5, and is symmetric around p = 0.5.
Now suppose we want to rank the variables according to
their H value. Since H (p) is monotonously increasing for
p ∈ [0, 0.5] and monotonously decreasing for p ∈ [0.5, 1]
a straightforward implementation of the ranking algorithm
would solve the problem had all the pi been in one of these
ranges. Putting qi = 1−pi it is obvious that for all i either
pi or qiare in [0, 0.5].

The main idea of the algorithm is to double the size of
the vector by considering 1−P u [i] as well for each i, and
then rank the entries of the extended vector. Concurrently,
for each i we will decide using LSD-Majority whether
P̄ [i] < 0.5. Now, we choose to compare pi or qi to pj or
qj according to which of them are estimated smaller than
0.5. Assuming, for example, that pi < 0.5 and qj < 0.5,
H (pi) would be larger than H (pj) if and only if pi > qj .

Generally, renaming xi =

{

pi pi < 0.5
qi otherwise

we can

write the following Theorem:
Theorem 2: H (pi) ≥ H (pj) if and only if xi ≥ xj .

To translate Theorem 2 into an algorithm (Algorithm 4)
we first notice that pi − pj = qj − qi. Thus, the number
of comparisons can be reduced by half. Our algorithm
will compare just pi and qi to pj (2d2 comparisons rather
than 4d2) and pi to 0.5 (a further d comparisons). We
initialize for every P u two d × d matrices Au and Bu.
Where Au [i, j] = P u [i] − P u [j] + 1 and Bu [i, j] =
(1− P u [i]) − P u [j] + 1. Now, for every entry of Au

and Bu we perform LSD-Majority with sum⊥u set to
Au [i, j] or Bu [i, j] respectively, count⊥u set to two and
λ = 0.5. Additionally, for every entry of P u we perform
LSD-Majority with sum⊥u = P u [i], count⊥u = 1 and
λ = 0.5.

Let, ∆u
P u[i], ∆u

P u[j], ∆u
Au[i,j], ∆u

Bu[i,j] be the results of
LSD-Majority for the i and j entries of P u and for the [i, j]
entries of Au and Bu. To decide whether H (pi) ≥ H (pj)
we first check ∆u

P u[i] and ∆u
P u[j] are smaller than 0. If so,

then according to Theorem 2, H (pi) ≥ H (pj) if and only
if ∆u

Au[i,j] ≥ 0. Similarly, if ∆u
P u[i] ≥ 0 and ∆u

P u[j] ≥ 0
then H (pi) ≥ H (pj) if and only if ∆u

Au[i,j] < 0. The
cases for ∆u

P u[i] ≥ 0 and ∆u
P u[j] < 0 or ∆u

P u[i] < 0 and

Algorithm 4 Rank-By-H
Input of node u: The set of edges that collide with it Eu,
a binary vector P u of length d.
Output of node u: The algorithm never terminates. Never-
theless, at each time it computes a function J : [1, k] →
[1, k] which is the rank of the Shannon’s Entropy of each
entry of the vector.

Initialization:

Compute Au [i, j] = P u [i]− P u [j] + 1,
Au [i, j] = (1− P u [i])− P u [j] + 1.

For each entry of Austart LSD-Majority with the
following inputs: sum⊥u = Au [i, j], count⊥u = 2,
λ = 0.5 and with the variables ∆u

Au[i,j] and ∆uv
Au[i,j] for

each v ∈ Eu; start similar instances for Bu.

For each entry of P u start LSD-Majority with the
following inputs: sum⊥u = P u [i], count⊥u = 1,
λ = 0.5 and with the variables ∆u

P u[i] and ∆uv
P u[i] for

each v ∈ Eu.

To evaluate J (i):

Count the number M of indexes j for which condition
Cond (i, j) holds true, and return M + 1.

Cond (i, j): return true if one of the following conditions
holds:

















∆u
P u[i] < 0 and ∆u

P u[j] < 0 and ∆u
Au[i,j] ≥ 0

∆u
P u[i] < 0 and ∆u

P u[j] ≥ 0 and ∆u
Bu[i,j] < 0

∆u
P u[i] ≥ 0 and ∆u

P u[j] < 0 and ∆u
Bu[i,j] ≥ 0

∆u
P u[i] ≥ 0 and ∆u

P u[j] ≥ 0 and ∆u
Au[i,j] < 0



















∆u
P u[j] ≥ 0 are likewise computed using ∆u

Bu[i,j].

V. EXPERIMENTAL RESULTS

To evaluate Majority-Rule’s performance, we imple-
mented a simulator capable of running thousands of sim-
ulated computers. We simulated 1600 such computers,
connected in a random tree overlaid on a 40×40 grid. We
also implemented a simulator for a stand-alone instance of
the LSD-Majority protocol and ran simulations of up to
10,000 nodes on a 100× 100 grid. The simulations were
run in lock-step, not because the algorithm requires that
the computers work in lock-step – the algorithm poses
no such limitations – but rather because properties such
as convergence and locality are best demonstrated when
all processors have the same speed and all messages are
delivered in unit time.

For lack of real datasets of the magnitude required by
a system of 1600 computers, we used synthetic databases
generated by the standard tool from the IBM-quest data
mining group [2]. We generated three synthetic databases
– T5.I2, T10.I4 and T20.I6 – where the number after T is
the average transaction length and the number after I is the
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Fig. 2. The locality of LSD-Majority strongly depends on the difference between the percentage of set bits in the data and the threshold. We ran
LSD-Majority on a network of 10,000 nodes which were randomly initialized with different percentages of set bits. The leftmost figure shows the
maximum, average and minimum of the environment size over the 10,000 nodes. If the percentage of ones is more than 60 or less than 40, then
the average environment size is dozens of nodes or less. As the percentage approaches the threshold, more data must be gathered in order to reach
the decision (all the data is needed by most nodes if the average is 50%). The remaining figures are contour maps showing the environment sizes
of nodes in different areas of the grid. What is interesting about these maps is that there is no clear pattern. Had there been a pattern (for example,
were environments nearer to the center larger than at the rim), it would have indicated that the protocol distributes the work unfairly.

average pattern length. The combined size of each of the
three databases is 10,000,000 transactions.

With the default settings, the number of patterns gener-
ated is 10, 000, which results in a very high proportion of
false rules vs. correct ones: about ten thousand candidates
are required for each candidate which turns out to be
correct. Since we simulated thousands of computers, using
the default number of patterns would pose impracticable
memory requirements on our simulator. Since we can show
that Majority-Rule performs much better for false rules
than for correct ones, we could reduce the proportion of the
former without impairing the validity of our experiments.
Hence we changed this parameter to one hundred in our
simulations, resulting in about hundred false candidates per
correct rule.

The main argument which would dictate the perfor-
mance of Majority-Rule on a real-life database is the dis-
tribution of the significance of candidates in that database.
It has already been shown that this distribution can vary
from one database to another and further depends on the
choice of MinFreq and MinConf . Since we thoroughly
investigate the behavior of the majority vote with respect to
the significance of the input, and since different instances
of the vote (i.e., different candidates) map into independent
votes, the expected performance for each real-life database
can be projected according to the distribution of candidate
frequency in that database.

A. Locality of LSD-Majority and Majority-Rule

In a static system, we define the environment of u as
the nodes whose bits gets counted by u. The locality of a
protocol is measured according to the worst-case size and
the average size of the environments of the different nodes.
Since the number of nodes in LSD-ARM is very large,
any algorithm which does not have good average locality

simply cannot be considered scalable or practical. Locality
is also instrumental to performance. Since no messages
sent outside the environment of u will ever be propagated
to u, the size of the average environment determines the
number of messages exchanged during the protocol and
the number of steps required in a lock-step execution. A
protocol that has good locality will thus also be quick and
communication efficient.

In LSD-Majority, the size of the environment of a node
is simply the number of data bits it has received by the
time the simulation terminates (i.e., no further messages
are exchanged). It is thus equal to 1 +

∑

vu∈Eu countvu.
Our experiments with LSD-Majority show that its lo-

cality strongly depends on the significance of the input:
1
λ

∑

u
(sum⊥u−λcount⊥u)
∑

u
count⊥u

. Figure 2 describes the results of

a simulation of 10,000 nodes in a random tree over a grid,
with various percentages of set input bits at the nodes.
It shows that when the significance is ±0.1 (i.e., 45%
or 55% of the nodes have set input bits), the protocol
already has good locality: the maximal environment is
about 1200 nodes and the average size a little over 300. If
the percentage of set input bits is closer to the threshold,
a large portion of the data would have to be collected in
order to find the majority. In the worst possible case, when
the number of set input bits is equal to the number of unset
input bits plus one, at least one node would have to collect
all of the input bits before the solution could be reached.
On the other hand, if the percentage of set input bits is
further from the threshold, then the average environment
size becomes negligible. In many cases different regions
of the grid may not exchange messages at all.

In figure 3 we show what happens when the distribution
of the data across the grid is biased. In subfigure 3(a), the
distribution of set input bits has a left-to-right gradient: the
left side of the grid has five percent fewer set input bits
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Fig. 3. LSD-Majority remains local even if the distribution is biased. In
the left figure, the right-hand side has 50% set input bits and the left-hand
side 40%; in the figures on the right, the center hundred nodes are all
set bits and in the rest 40% of the bits are set. The size of each node’s
environment depends on the average of bits in close proximity to it. See
for reference figure 2 (b) which has the same percentage of set input bits
as the left side of subfigure (a) and the rim of subfigure (b), and indeed
has a similar distribution of environment sizes.

and the right side five percent more set input bits than the
average. In subfigure 3(b), the input bits of the hundred
central nodes are all set, and the rest were randomly
selected. The results show that the locality characteristics
of each area of the grid depend on its small range average.
For instance, the left side of subfigure 3(a) and the rim of
subfigure 3(b), both of which have 40% set input bits, are
very similar to one another and to figure 2(b), which has
the same percentage of set input bits across the whole grid.
The outcome of these experiments is that LSD-Majority
remains local even if the distribution is strongly biased.

For Majority-Rule we define the environment size of
a candidate r in node u to be the number of transactions
which u was informed of, in messages related to candidate
r, until the algorithm reached consensus. Figure 4 presents

the locality of Majority-Rule. For each rule the worst-case
and the average environment sizes are drawn against that
rule’s global significance. As can be seen, the decrease in
the environment size as the significance grows away from
0 is even stronger than that seen in the stand-alone LSD-
Majority experiments. This is because the local frequency
and confidence of a rule only becomes static after all the
transactions in the database are scanned. With the databases
and the M we used, this took 60 steps for each rule at each
node. Apparently, for rules with extreme significance only
the first few updates were communicated, after which the
protocol converged.

B. Convergence and Cost of Majority-Rule

In addition to locality, the other two important char-
acteristics of Majority-Rule are its convergence rate and
communication cost. We measure convergence by calcu-
lating the recall – the percentage of rules discovered –
and precision – the percentage of correct rules in the
ad hoc solution – vis-a-vis the number of transactions
scanned. Figure 5 describes the convergence of the recall
(a) and of the precision (b). At the bottom of this figure
the convergence of stand-alone LSD-Majority is given, for
various percentages of set input bits.

To understand the convergence of Majority-Rule, one
must look at how the candidate generation and the ma-
jority voting interact. Rules which are very significant
are expected to be generated early and agreed upon fast.
The same holds for false candidates with extremely low
significance. They too are generated early, because they
are usually generated due to noise, which subsides rapidly
as a greater portion of the local database is scanned; the
convergence of LSD-Majority will be as quick for them
as for rules with high significance. This leaves us with the
group of marginal candidates, those that are very near to
the threshold; these marginal candidates are hard to agree
upon, and in some cases, if one of their subsets is also
marginal, they may only be generated after the algorithm
has been working for a long time. We remark that marginal
candidates are as difficult for other algorithms as they are
for Majority-Rule. For instance, DIC may suffer from the
same problem: if all rules were marginal, then the number
of database scans would be as large as that of Apriori.

An interesting feature of LSD-Majority convergence is
that the number of nodes that assume a majority of set
bits always increases in the first few rounds. This would
result in a sharp reduction in accuracy in the case of a
majority of unset bits, and an overshot, above the otherwise
exponential convergence, in the case of a majority of
set bits. This occurs because our protocol operates in
expanding wavefronts, convincing more and more nodes
that there is a certain majority, and then retreating with
many nodes being convinced that the majority is the
opposite. Since we assume by default a majority of zeros,
the first wavefront that expands would always convince
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Fig. 4. Locality of Majority-Rule. Figures 4(a) through 4(c) give, for
T5.I2, T10.I4 and T20.I6, the environment size, in percentage of the
global database that is collected at the average node vs. the significance
of the rule. All of these figures are very similar to figure 2(a). That is,
despite the fact that LSD-Majority is a simplification of Majority-Rule,
they have similar locality characteristics.
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Fig. 5. Subfigure (a) describes the convergence of the recall of Majority-
Rule at the average node, for three different databases. Similarly, subfigure
(b) describes the convergence of the precision. By the end of the first
(parallel) database scan, both the the recall and the precision of the
average node are above 90 percent. The bottom figure describes the
convergence of LSD-Majority – the percent of the nodes which calculate
the correct majority, for different percentages of set input bits. Starting
from about step 10, the distance between pairs of lines is nearly the
same. In other words, the convergence rate has exponential dependency
on significance.
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nodes that the majority is of ones. Interestingly enough, the
same pattern can be seen in the convergence of Majority-
Rule (more clearly for the precision than for the recall).

We have two objectives where communication load is
concerned. One is that the load be small and the other
is that it be evenly distributed on the grid. The first
requirement is important for nondedicated systems, in
which applications compete over bandwidth. The second
requirement embodies the desire for fairness – that the
nodes should do approximately the same work – which
is essential in peer-to-peer systems. Figure 6 shows the
distribution of the communication load vis-a-vis rule sig-
nificance. For rules that are very near the threshold, a
lot of communication2 is required, on the scale of the
grid diameter. For significant rules the communication load
is about ten messages per rule per node. However, for
false candidates the communication load drops very fast
to hardly any messages at all.

C. Majority-Rule in Dynamic Scenarios

The local frequency and confidence of each rule changes
several times from the time the candidate is generated
and until it is sought in all the transactions of the local
database. So each execution of Majority-Rule is, in fact,
data-dynamic. To further investigate dynamic scenarios, we
performed controlled experiments with LSD-Majority. We
experimented with two different models, both of which
are stationary (i.e., while the data changes, the result stays
the same): a steady-state model, in which the data at the
nodes is constantly changing, and an abrupt change model
in which the topology changes and then the system remains
static until the protocol converges.

Under the steady state model, we investigate the noise
immunity of the protocol. In this experiment we randomly
select, once every step, one percent of the nodes, and flip
them from zero to one or vice versa (making sure the
overall percentage of ones remains the same). Figure 7(a)
describes the percentage of nodes which concluded, at each
step, that the majority is of set bits, for various percentages
of bits that were actually set. As the graph shows, when
the percentage of nodes which had their bit set was 70 and
above or 30 and below, more than 95 percent of the nodes
computed the correct majority. This means that when the
majority is clear, the noise immunity of LSD-Majority is
above 95 percent. The noise immunity of Majority-Rule
will, naturally, depend on the proportion of significant vs.
insignificant rules. About 200 messages are sent each step
for 10% set bits and 90% set bits (only twice the number
of nodes flipped), 300 for 20% and 80%, and 500 for 30%
and 70%.

In the abrupt change model, we investigated the response
of the protocol in the event that, after it converged, 10

2It is important to keep in mind that we consider here each pair of
integers we send a message. In a realistic scenario, a message will contain
up to 1500 bytes, or about 180 integer pairs.
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Fig. 6. Communication characteristics of Majority-Rule (a), and of LSD-
Majority (b). Note that a message here is a pair of integers. In a realistic
scenario each message would contain more than one hundred such pairs,
so the costs would be amortized.

random edges were disconnected (simulating the failure of
random nodes). From figure 8(a) it can be seen that the
protocol reconverged in just a few dozen steps (depending
on the significance of the data), and that at its peak, no
more than a few percent of the nodes were led to the wrong
result. The effect of an abrupt change on communications
is also moderate. Naturally it lasts the same number of
steps. At its peak, fewer than one hundred messages are
sent by the 10,000 nodes.

VI. CONCLUSIONS

We have described a new distributed majority vote
protocol – LSD-Majority– which we incorporated as part
of an algorithm – Majority-Rule – that mines association
rules on distributed systems of unlimited size. We have
shown that the key quality of our algorithm is its locality
– the fact that information need not travel far on the
network for the correct solution to be reached. We have
also shown that the locality of Majority-Rule translates
into fast convergence of the result and low communication
demands. Communication is also very efficient, at least
for candidate rules which turn out not to be correct. Since
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Fig. 7. LSD-Majority under the steady-state model. The noise immunity
of LSD-Majority depends on the significance of the majority. For a
significant majority, ±0.4, more than 95 percent of the nodes retain the
correct result, for significance of ±0.2 about 85 percent, and for ±0.1
about 70 percent. The communication required to retain the correct result
is, not surprisingly, dependent on the percentage of the nodes that are
wrong, and hence, of the significance of the majority.

the overwhelming majority of the candidates usually turn
out this way, the communication load of Majority-Rule
depends mainly on the size of the output – the number of
correct rules. That number is controllable via user supplied
parameters, namely MinFreq and MinConf .

We have shown that our algorithm functions well even
if the data in the distributed machines constantly changes,
and that the communication load which results from these
changes is minor. This makes Majority-Rule especially
well-suited for incremental mining and for applications
which require the ongoing monitoring of a large-scale
distributed system. Such applications exist in the areas of
intrusion detection and network traffic control.
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APPENDIX

A simple proof that if the LSD-Majority algorithm
converges (i.e., no further messages should be sent) then
all nodes converge to the same majority value is given in
Section III. Here we will prove that all of the nodes con-
verge to the correct majority, i.e., that upon convergence
∆u ≥ 0 if and only if the majority of the nodes which can
be reached from u have their input bit set.

Assume a static connected tree G (V, E) with static
data

〈

sum⊥u, count⊥u
〉

at each u ∈ V . Let countuv and
sumuv be the values after the algorithm has converged. Let
∆u, ∆uv be as defined in Algorithm 1. We say an edge uv

is unemployed if no message was sent over that edge during
the execution of the algorithm. For each u ∈ V let [u] =
{v ∈ V : v is reachable from u using edges in E}.
For every uv ∈ E let [u]v =
{w ∈ V : w is reachable from v using edges in E \ {uv}}.
Finally, for any subset of nodes S ⊆ V let
∆S =

∑

v∈S sum⊥v − λcount⊥v.

Theorem 3: In a static tree G (V, E) with static data and
upon convergence, for all u ∈ V , ∆u ≥ 0 if and only if
∆V ≥ 0

Lemma 1: In a static tree G (V, E) with static data and
upon termination if for some u ∆u ≥ 0 then for each v

such that uv ∈ E, sumvu − λcountvu ≤ ∆[u]
v

Proof: By induction on |[u]v |
Base: |[u]v| = 1 which means that [u]v = {v} and v

received no messages from nodes other than u and sent no
messages to nodes other than u, i.e., any edge wv 6= uv

is unemployed. Hence, ∆[u]
v

= sum⊥v − λcount⊥v and
∆v = sumuv + sum⊥v − λ

(

countuv + count⊥v
)

. We
assume, by contradiction, sumvu − λcountvu > ∆[u]

v
=

sum⊥v − λcount⊥v . It follows that ∆vu = ∆uv =
sumvu + sumuv − λ (countvu + countuv) > sum⊥v +
sumuv − λ

(

count⊥v + countuv
)

= ∆v . Hence either
∆uv < 0, in which case u should send a message to v,
or ∆vu ≥ 0 in which case v should send a message to u.
Either case is contradictive to the convergence assumption.

Step: Assuming the lemma holds for |[u]v| ≤ k, we
will prove that it holds for |[u]v | = k + 1. From the
induction hypothesis we learn that for each edge vw other
than vu (there must be at least one, or |[u]v| = 1),
sumwv − λcountwv ≤ ∆[v]

w

.

∆v = sum⊥v − λcount⊥v +
∑

wv∈E

sumwv − λcountwv

because of the induction hypothesis

≤ sumuv − λcountuv + sum⊥v − λcount⊥v +
∑

wv 6=uv∈E

∆[v]
w

= sumuv − λcountuv +
∑

x∈[v]
u

sum⊥x − λcount⊥x

the contradictive assumption
≤ sumuv − λcountuv + sumvu − λcountvu

= ∆uv

Again, either ∆uv < 0, in which case u should send a
message to v or ∆vu ≥ 0 in which case v should send
a message to u, and both cases are contradictory to the
convergence assumption.

Corollary 2: If ∆u < 0 then sumvu − λcountvu ≥
∆[v]

u

Proof: We now prove Theorem 3. First, recall that
if node u has ∆u ≥ 0 and no node v ∈ V needs to send
a message, then every node v must have ∆v ≥ 0. We
now must prove that ∆u ≥ 0 if and only if ∆V ≥ 0.
To do so, we add a fictitious node f with cf = sf = 0
to an arbitrary node u. Note that if u does not need to
send a message to f then ∆f = ∆uf = ∆u, and also
that f never sends messages, and hence does not affect the
protocol in any way. Upon convergence, according to the
lemma, 0 ≤ ∆f = ∆uf ≤ ∆[f ]

u
= ∆V . Since we know

∆f ≥ 0, ∆V is also greater than or equal to 0.


