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Abstract. We present a new distributed association rule mining (D-ARM) algorithm that demon-
strates superlinear speed-up with the number of computing nodes. The algorithm is the first
D-ARM algorithm to perform a single scan over the database. As such, its performance is un-
matched by any previous algorithm. Scale-up experiments over standard synthetic benchmarks
demonstrate stable run time regardless of the number of computers. Theoretical analysis reveals a
tighter bound on error probability than the one shown in the corresponding sequential algorithm.
As a result of this tighter bound, and by utilizing the combined memory of several computers, the
algorithm generates far less candidates than comparable sequential algorithms – the same order
of magnitude as the optimum.
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1. Introduction

The economic value of data mining is today well established. Most large organizations
regularly practice data mining techniques. One of the most popular techniques is asso-
ciation rule mining (ARM), which is the automatic discovery of pairs of element sets
that tend to appear together in a common context. An example would be to discover
that the purchase of certain items (say tomatoes and lettuce) in a supermarket transac-
tion usually implies that another set of items (salad dressing) is also bought in that same
transaction.

Like other data mining techniques that must process enormous databases, ARM is
inherently disk-I/O intensive. These I/O costs can be reduced in two ways: by reducing
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the number of times the database needs to be scanned, or through parallelization, by par-
titioning the database between several machines which then perform a distributed ARM
(D-ARM) algorithm. In recent years much progress has been made in both directions.

The main task of every ARM algorithm is to discover the sets of items that fre-
quently appear together – the frequent itemsets. The number of database scans required
for the task has been reduced from a number equal to the size of the largest itemset in
Apriori (Agrawal and Srikant, 1994), to typically just a single scan in modern ARM
algorithms such as Sampling and DIC (Toivonen, 1996; Brin, Motwani, Ullman and
Tsur, 1997).

Much progress has also been made in parallelized algorithms, in which the archi-
tecture of the parallel system plays a key role. For instance, many of the proposed algo-
rithms take advantage of the fast interconnect, or the shared memory, of parallel com-
puters. Notable examples include (Han, Karypis and Kumar, 2000; Zaki, Parthasarathy,
Ogihara and Li, 1997b). The latest development is (Zaiane, El-Hajj and Lu, 2001), in
which each process makes just two passes over its portion of the database.

Parallel computers are, however, very costly. Hence, although these algorithms were
shown to scale up to 128 processors, few organizations can afford to spend such re-
sources on data mining. The alternative is distributed algorithms, which can be run
on cheap clusters of standard, off-the-shelf PCs. Algorithms suitable for such systems
include the CD and FDM algorithms (Agrawal and Shafer, 1996; Cheung, Han, Ng,
Fu and Fu, 1996), both parallelized versions of Apriori, published shortly after it was
described. However, while clusters may easily and cheaply be scaled to hundreds of
machines, these algorithms were shown not to scale well (Cheung and Xiao, 1998). The
DDM algorithm (Schuster and Wolff, 2001), which overcomes this scalability problem,
was recently described. Unfortunately, all the D-ARM algorithms for share-nothing ma-
chines scan the database as many times as Apriori. Since many business databases con-
tain large frequent itemsets (long patterns), these algorithms are not competitive with
DIC and Sampling.

In this work we present a parallelized version of the Sampling algorithm, called
D-Sampling. The algorithm is intended for clusters of share-nothing machines. The
main obstacle of this parallelization, that of achieving a coherent view of the distributed
sample at reasonable communication costs, was overcome using ideas taken from DDM.
Our distributed algorithm scans the database once, just like the Sampling algorithm,
and is thus more efficient than any D-ARM algorithm known today. Not only does
this algorithm divide the disk-I/O costs of the single scan by partitioning the database
among several machines; it also uses the combined memory to linearly increase the size
of the (global) sample. This increase further improves the performance of the algorithm
because the safety margin required in Sampling decreases accordingly.

Extensive experiments on standard synthetic benchmarks show that D-Sampling is
superior to previous algorithms in every way. When compared to Sampling – one of the
best sequential algorithms known today – it offers superlinear speed-up. When com-
pared to FDM, it improves runtime by orders of magnitude. Finally, on scalability tests,
an increase in both the number of computing nodes and the size of the database does
not degrade D-Sampling performance.

The rest of this paper is structured as follows: We conclude this section with some
notations and a formal definition of the D-ARM problem. In the next section we present
relevant previous work. Section 3 describes the D-Sampling algorithm, and section 4
provides the required statistical background. Section 5 describes the experiments we
conducted to verify D-Sampling performance. We conclude with some open research
problems in section 6.
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1.1. Notation and Problem Definition

Let
�����
	����	���
�������	����

be the items in a certain domain. An itemset is a subset of
�
. A

transaction � is also a subset of
�

which is associated with a unique transaction identifier
– � ��� . A database

���
is a list of such transactions. Let

� ���"!���� � �� � � #����������%$'&
be a partition of

���
into ( parts. Let ) be a list of transactions which were sampled

uniformly from
� �

, and let ) � ! ) �  ) � 
������ ) $ & be the partition of ) induced by
� �

.
For any itemset * and any group of transactions + , )-,/.�.10�2��435*  +76 is the number of
transactions in + which contain all the items of * and 892;:�<=3>*  +?6 �A@/BDCEC#F�G�H�I�JLK MONP M P .
We call 892;:�<RQS* �� ��TSU the local frequency of * in partition

	
and 892;:�<V3>* W��� 6 its

global frequency; likewise, we call 892;:�< Q *  ) T U the estimated local frequency of * in
partition

	
and 892�:�<=35*  )X6 its estimated global frequency.

For some frequency threshold Y[Z]\ 	 ('892;:�<^Z`_ , we say that an itemset * is
frequent in + if 892;:�<V35*  +?6bac\ 	 ('892;:�< and infrequent otherwise. If + is a sam-
ple, we say that * is estimated frequent or estimated infrequent. If + is a partition,
we say that * is locally frequent, and if + is the whole database, then * is glob-
ally frequent. Hence an itemset may be estimated locally frequent in the d H5e partition,
globally infrequent, etc. The group of all itemsets with frequency above or equal tof 2 in + is called gih Gkj +=l . The negative border of g?h Gkj +=l is all those itemsets which
are not themselves in g h G j +=l but have all their subsets in g h G j +ml . Finally, for a pair
of globally frequent itemsets * and n such that *poqn �`r , and some confidence
threshold Y[st\ 	 (vu90�( f Zw_ , we say the rule *yxzn is confident if and only if892;:{<V3S*}|~n ���� 6Va�\ 	 (vu90�( f � 892;:�<L3S* W��� 6 .
Definition 1.1. Given a partitioned database

���
, and given \ 	 ('892;:�< and \ 	 (vu90�( f ,

the D-ARM problem is to find all the confident rules between frequent itemsets ingi� T�$�� GW���R� ���R� .
2. Previous Work

Since its introduction in 1993, the ARM problem (Agrawal, Imielinski and Swami,
1993) has been studied intensively. Many algorithms, representing several different ap-
proaches, were suggested. Some algorithms, such as Apriori, Partition, DHP, DIC, and
FP-growth (Agrawal and Srikant, 1994; Savasere, Omiecinski and Navathe, 1995; Park,
Chen and Yu, 1995a; Brin et al., 1997; Han, Pei and Yin, 1999), are bottom-up, start-
ing from itemsets of size _ and working up. Others, like Pincer-Search (Lin and Ke-
dem, 1998), use a hybrid approach, trying to guess large itemsets at an early stage.
Most algorithms, including those cited above, adhere to the original problem defini-
tion, while others search for different kinds of rules. These may be implication rules
(Brin et al., 1997), generalized rules (Srikant and Agrawal, 1994; Han and Fu, 1995),
quantitative rules (Srikant and Agrawal, 1996), or rules constrained to some meta-form
(Srikant, Vu and Agrawal, 1997; Pei and Han, 2000; Thomas and Chakravarthy, 2000).
Finally, the algorithms also differ in the way the data is stored: horizontally as a � ���
with the list of items in that transaction, vertically as an itemset with the list of TIDs it
appears in (Savasere et al., 1995; Ananthanarayana, Subramanian and Murty, 2000), or
a combination of the two (Zaki, Parthasarathy, Ogihara and Li, 1997a).

Algorithms for the D-ARM problem usually can be seen as parallelizations of se-
quential ARM algorithms. The CD, FDM, FPM and DDM (Agrawal and Shafer, 1996;
Cheung et al., 1996; Cheung and Xiao, 1998; Schuster and Wolff, 2001) algorithms
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parallelize Apriori (Agrawal and Srikant, 1994), and PDM (Park, Chen and Yu, 1995b)
parallelizes DHP (Park et al., 1995a). The major difference between parallel algorithms
is in the architecture of the parallel machine. This may be shared memory as in the
case of (Zaki, Ogihara, Parthasarathy and Li, 1996; Cheung and Xiao, 1998; Zaiane
et al., 2001), distributed shared memory as in (Jarai, Virmani and Iftode, 1998), or
shared nothing as in (Agrawal and Shafer, 1996; Cheung et al., 1996; Schuster and
Wolff, 2001).

The algorithm presented here combines ideas from several groups of algorithms. It
first mines a sample of the database and then validates the result. It can thus be seen as
a parallelization of the Sampling algorithm (Toivonen, 1996). The sample is stored in a
vertical trie structure that resembles the one in (Savasere et al., 1995; Ananthanarayana
et al., 2000), and it is mined using modifications of the DDM (Schuster and Wolff, 2001)
algorithm, which is Apriori-based. We thus include a short description of Apriori and
its parallelizations, and of the sequential Sampling algorithm.

Apriori: A year after the 1993 paper which introduced the ARM problem, Agrawal
and Srikant presented Apriori (Agrawal and Srikant, 1994). Apriori is a levelwise al-
gorithm for identifying frequent itemsets. It begins by assuming that each item is a
candidate to be a frequent itemset of size _ . Then Apriori performs several rounds of a
two-phased computation. In the first phase of the d H5e round, the database is scanned and
frequency counts are calculated for all d -sized candidate itemsets (itemsets containingd items). Those candidate itemsets with a frequency above the user supplied MinFreq
threshold are inserted to g?� T�$�� GE��� j ��� l . In the second phase, candidate itemsets of
size db��_ are generated from the frequent itemsets of size d if and only if all their
size- d subsets are frequent. The rounds terminate when there are no candidates of sized���_ . Because it is a levelwise algorithm, Apriori performs exactly d database scans.

Sampling: In 1996 Toivonen presented a single scan algorithm called Sampling
(Toivonen, 1996). The idea behind Sampling is simple. A random sample of the database
is used to predict all the frequent itemsets, which are then validated in a single database
scan. Because this approach is probabilistic, and therefore fallible, not only are the fre-
quent itemsets counted in the scan but also their negative border. If the scan reveals
that itemsets that were predicted to belong to the negative border are frequent, a second
scan is performed to discover whether any superset of these itemsets is also frequent.
To further reduce the chance of failure, Toivonen suggests that mining be performed
using some �S0�� f 2%s[\ 	 ('892;:�< , and the results reported only if they pass the original\ 	 ('892�:�< threshold. He also gives a heuristic which can be used to determine �50�� f 2 .
The cost of using �S0�� f 2 is an increase in the number of candidates. The Sampling
algorithm and the DIC algorithm (Brin 1997 (Brin et al., 1997)) are the only single-
scan ARM algorithms known today. Their performance is thus unrivaled by any other
sequential ARM algorithm.

FDM: Also in 1996, Cheung, Han, Ng, Fu and Fu presented an algorithm called
FDM (Cheung et al., 1996). FDM is a parallelization of Apriori to ( shared nothing ma-
chines, each with its own partition of the database. At every level and on each machine,
the database scan is performed independently on the local partition. Then a distributed
pruning technique is employed. The pruning technique is based on the inference that
in order for an itemset to appear in the database at a certain frequency, it must appear
with at least that frequency in at least one partition of the database. Thus, in FDM,
every party first names those candidate itemsets which are locally frequent in its par-
tition. Next, support counts are globally summed for those candidate itemsets which
were named by at least one party. According to the global counts, itemsets are iden-
tified as globally frequent. Those frequent itemsets are used to generate the next level
candidates.
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If the probability that an itemset has the potential to be frequent is �92 C#F�H5� $ H T���� , then
FDM only communicates �92 C
F�H5� $ H T��E��� u � of the itemsets, where u is the group of all
candidate itemsets considered by Apriori. The communication complexity of FDM is
thus �[3S�92 C#F�H5� $ H T��E� � u � (v6 . The main problem with FDM is that �92 C#F�H5� $ H T��E� is not scal-
able in ( . It has been shown by Cheung and Xiao that �92 C#F�H5� $ H T��E� quickly increases
to _ as ( increases (Cheung and Xiao, 1998). The convergence to _ is especially fast
in nonhomogeneous databases: as the nonhomogeneity of the database (measured by
a skewness measure) increases or the number of partitions grows, FDM pruning tech-
niques are rendered increasingly ineffective.

DDM: In a previous paper (Schuster and Wolff, 2001) we described another Apriori-
based D-ARM algorithm – DDM. As in FDM, candidates in DDM are generated level-
wise and are then counted by each node in its local database. The nodes then perform
a distributed decision protocol in order to find out which of the candidates are frequent
and which are not. DDM differs from FDM in that the DDM protocol allows some of
the nodes to choose to publish the local frequency of a candidate and others not to. The
protocol is directed by two hypotheses which are maintained about each candidate: in
one, called the public hypothesis, each node assumes that the global frequency of the
itemset is equal to the average of the local frequencies published for it thus far (or zero
if none was published); in the other, called the private hypothesis, each node assumes
that its local frequency is shared by all those which have not published their own lo-
cal frequency for the candidate. If a node finds that the public and private hypotheses
about an itemset disagree (i.e., one predicts that the itemset is frequent while the other
predicts that it is infrequent), it will publish the local frequency. It is easy to show that
when the protocol dictates that no node should publish the local frequency of a certain
itemset, the public hypothesis for that itemset correctly predicts whether it is frequent
or infrequent. DDM improves the communication complexity of previous solutions to�[35�92 �D� F��D� � u � (v6 , where �92 �D� F��D� is the chance of an itemset being locally frequent at
a specific partition. �92 �D� F��D� is by definition smaller than �92 C#F�H5� $ H T��E� and is also inde-
pendent of ( . DDM is thus far more communication efficient, scalable, and resilient to
data skewness.

3. D-Sampling Algorithm

The distributed algorithms described in the previous section are based on Apriori. In-
deed, all parallel algorithms that have been presented until now are levelwise and re-
quire multiple database scans1. The reason why no distributed form of Sampling was
suggested in the six years since its presentation may lie in the communication com-
plexity of the problem. As we have seen, the communication complexity of D-ARM
algorithms is highly dependent on the number of candidates and on the noise level in
the partitioned database. When the Sampling algorithm samples the database and low-
ers the \ 	 ('892;:{< threshold, it greatly increases both the number of candidates and the
noise level. This may render a distributed algorithm useless.

This is the reason that the reduced communication complexity of DDM seems to
offer an opportunity. The main idea of D-Sampling is to utilize DDM to mine a dis-
tributed sample using �50�� f 2 instead of \ 	 ('892;:�< . After g � F�� h G � ) � has been identi-�

The only exception is a parallelization (Zaiane et al., 2001) of the two-scans FP-Growth algorithm (Han
et al., 1999). But that algorithm is intended for shared memory machines. When it is executed over clusters
of share-nothing machines, its performance quickly degrades as the number of computers grows (Iko and
Kitsuregawa, 2003).
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Estimated locally frequent

Estimated locally infrequent

(a)

Estimated globally frequent

Estimated globally infrequent

(b)

Estimated globally low_fr frequent

Negative−Border

Estimated globally low_fr infrequent

(c)

Globally frequent

Globally infrequent

(d)

Fig. 1. The development of the trie throughout D-Sampling: First (a) the trie is developed according to the
local frequencies of the itemsets. Then (b) MDDM is performed once and the estimated globally frequent
itemsets are identified. The error reduction phase (c) follows, by the end of which low fr is set and the itemsets
which are frequent according to this threshold are identified. At this stage the negative border is calculated, the
database is scanned, and actual frequencies are counted for the combined candidate set. Finally (d), MDDM
is run once more with these frequencies and the original MinFreq. The frequent itemsets are identified. If one
of them belongs to the negative border, failure is reported; otherwise, rules are calculated.
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1.0, 1.0

{1,3}
0.6, 0.0
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0.9, 0.0

{2}
0.6, 0.0

{4}
0.2, 0.0

{m}
0.2, 0.0

H

P
{3}

0.6, 0.0

(a) The trie is initialized with
the size-1 itemsets and then de-
veloped until no more locally
frequent itemsets can be found.
Written below the itemset are P
– the private hypothesis and H
– the global hypothesis.At first,
the H values are all zero.

{m}
0.2, 0.0

{}
1.0, 1.0

0.6, 0.0
{1,3}

Outgoing

<{1},0.9>
<{4},0.8>
<{3},1.0>

{2}
0.6, 0.0

{3}
0.8, 1.0

{4}
0.5, 0.8

{1}
0.9, 0.9

Incoming

(b) Some of the itemsets may be
selected and sent – as in the case
of � 1 � . Others, like � 2 � , � 3 �
and � 4 � , may have the value
of their hypotheses changed be-
cause of incoming messages.

{m}
0.2, 0.0

{}
1.0, 1.0

0.6, 0.0
{1,3}

{2}
0.6, 0.0

{4}
0.5, 0.8

{3,4}
0.5, 0.8

Outgoing Incoming

<{3,4},0.8>

{1}
0.9, 0.9

{3}
0.8, 1.0

(c) A message may arrive con-
cerning an itemset which has
not yet been developed. In that
case, it is developed and in-
serted into the trie.

Fig. 2. The development of the trie during MDDM, assuming two nodes

fied, the partitioned database is scanned once in parallel to find the actual frequencies ofg � F�� h G � ) � and its negative border. Those frequencies can then be collected and rules
can be generated from itemsets more frequent than \ 	 ('892;:�< .

We added three modifications to this scheme. First, although the given DDM is
levelwise, here it is executed on a memory resident sample. Thus we could modify
DDM to develop new itemsets on-the-fly and calculate their estimated frequency with
no disk-I/O. Second, a new method for the reduction of \ 	 ('892�:�< to �50�� f 2 has two
additional benefits: it uses a rigorous erro bound, compared to the heuristic one used
in Sampling, and it produces far fewer candidates than the rigorous method suggested
previously. Third, after scanning the database, it would not be wise to merely collect
the frequencies of all candidates. Since these candidates were calculated according to
the lowered threshold, few of them are expected to have frequencies above the original



A High-Performance Distributed Algorithm for Mining Association Rules 7\ 	 ('892�:�< . Instead, we run DDM once more to decide which candidates are frequent
and which are not. We call the modified algorithm D-Sampling (Algorithm 1).

Algorithm 1 D-Sampling
For node

	
out of (

Input:\ 	 ('892�:�< , \ 	 (vu90�( f ,
���%T

, � , \ , �
Output:
The set of confident associations between globally frequent itemsets
Main:
Set . :#2�2;0�2���_ , �S0�� f 29�A\ 	 ('892;:�<
Load a sample ) T of size � from

� �%T
into memory

Initialize the trie with all the size- _ itemsets and calculate their � ��� listsg � F�� h G � ) � � \ ��� \¡3¢\ 	 ('892;:�<�6
While . :{2{2;0�2�£¤�

1. g � F�� h G7� ) � �`g � F�� h G9� ) � |¥\ \§¦�¨%3S\©6
2. Set �50�� f 2 to the frequency of the least frequent itemset in g � F�� h G � ) �
3. Set . :{2�2;0�2 to the new error bound according to \ 	 ('892;:�< , �S0�� f 2 and g � F�� h G9� ) �
Let u be g � F�� h G � ) � |~ª«:#¬¦/� 	¢® : � 0�2;¯�:{2�QSg � F�� h G � ) � U
Scan the database and compute 892;:{<�QS° ����%T¢U for each °7±«u . Update the frequencies
in the trie to the computed ones
Compute g � T�$�� GW��� � ���R� by running \ ��� \²3¢\ 	 ('892;:�<�6 , this time with the actual
frequencies
If there exists °�±}gi� T�$�� GE��� � ��� � such that °´³±}g � F�� h G � ) � (i.e., from negative
border) report failureµ :{( ¶?,4�5:;� Q gi� T�$�� GW���7� ���R�k \ 	 (vu90�( f U
3.1. Algorithm

D-Sampling begins by loading a sample into memory. The sample is stored in a trie –
a lexicographic tree. This trie is the main data structure of D-Sampling and is accessed
by all its subroutines. Each node of the trie stores, in addition to structural informa-
tion (parents, descendants etc.), the list of � �/� s of those transactions that include the
itemset associated with this node. These lists are initialized from the sample for the first
level of the trie; when a new trie node – and itemset – are developed, the � ��� lists of
two of the parent nodes are intersected to create the � �/� list of the new node.

Figure 1 describes the development of the trie throughout D-Sampling. The first
step of D-Sampling is to run a modification of DDM on the distributed sample. Then, in
order to set �S0�� f 2 , the algorithm enters a loop; in each cycle through the loop it calls
another DDM derivative called M-Max to mine the next \ estimated-frequent item-
sets. \ is a tunable parameter we set to about _{Y�Y . After it finds those additional item-
sets, D-Sampling reduces �50�� f 2 to the estimated frequency of the least frequent one
and reestimates the error probability using a formula described in section 4. When this
probability drops below the required error probability, the loop ends. Then D-Sampling
creates the final candidate set u by adding to g � F�� h GR� ) � its negative border.
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Once the candidate set is established, each partition of the database is scanned ex-
actly once and in parallel, and the actual frequencies of each candidate are calculated.
With these frequencies D-Sampling performs yet another round of the modified DDM.
In this round the original \ 	 ('892;:�< is used; thus, unless there is a failure, no candidates
outside the negative border need be used. If indeed no failure occurs, then all frequent
itemsets will be evaluated according to the actual frequencies which were found in the
database scan. Hence, after this round it is known which of the candidates in u are glob-
ally frequent and which are not. In this case, rules are generated from g � T�$�� GE���7� ��� �
using the known global frequencies.

If an itemset belonging to the negative border of g � F�� h G � ) � does turn out to be
frequent, this means that D-Sampling has failed: a superset of that candidate, which
was not counted, might also turn out to be frequent. In this case we suggest the same
solution offered by Toivonen: to create a group of additional candidates that includes all
combinations of anticipated and unanticipated frequent itemsets, and then perform an
additional scan. The size of this group is limited by the number of anticipated frequent
itemsets times the number of possible combinations of unanticipated frequent itemsets.
Since failures are very rare events, and the probability of multiple failure is exponen-
tially small, the additional scan will incur costs that are of the same scale as the first
scan.

3.2. MDDM – A Modified Distributed Decision Miner

The original DDM algorithm, as described in section 2, is levelwise. When the database
is small enough to fit into memory, the levelwise structure of the algorithm becomes
superfluous. Modified Distributed Decision Miner, or MDDM (Algorithm 2), therefore
starts by developing all the locally frequent candidates, regardless of their size. It then
continues to develop candidates whenever they are required, i.e., when all their subsets
are assumed frequent (according to the local hypothesis - � ) or when another node
refers to the associated itemset.

The remaining steps in MDDM are the same as in DDM. Each party looks for item-
sets for which the global hypothesis and local hypothesis disagree and communicate
their local counts to the rest of the parties. When no such itemset exists, the party passes
(it can return to activity if new information arrives). If all of the parties pass, the algo-
rithm terminates and the itemsets which are predicted to be frequent according to the
public hypothesis · are the estimated globally frequent ones.

Figure 2 exemplifies the development of the trie as messages are sent and received.
First, the locally frequent itemsets are developed, their TID lists calculated, and their
public hypothesis and private hypothesis evaluated ( · and � respectively). The starting
value of · is zero and that of � is the local frequency. As messages are received, those
values change. Itemsets are sent when their · and � are on opposite sides of \ 	 ('892;:�< .
Therefore, in this toy example, where \ 	 ('892�:�< is Y �¹¸�º , itemset

� _ � is sent (not all
eligible candidates have to be sent on each communication cycle). When a message is
received about an itemset which has already been developed (as is the case for

��»�
,
�#¼�

and
�
½¾�

), it causes the reevaluation of · and � . If a message is received for an itemset
which has not yet been developed (as is the case for

�#¼¿�½¿�
), it is developed on-the-fly

and its local frequency is calculated.
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Algorithm 2 Modified Distributed Decision Miner
For node

	
out of (

Input:f 2 – the target frequency
Output:g h G7� ) �
Definitions:�ÀQS*  ) T Ui� ÁÂDÃ�Ä I�JLN ÅÅ ) Â ÅÅ 892;:�< Q *  ) Â U� ) � �ÁÂ�ÆÃ�Ä I�JVN ÅÅ ) Â ÅÅ 892;:�<7Q¢*  ) T5U� ) �

·}3>*Ç6 �ÉÈÊ ËcÌ ÂDÃ�Ä I�JVN ÅÅ ) Â ÅÅ 892�:�<9QS*  ) Â UÌ ÂDÃ�Ä I�JVN � ) Â � G 35*Ç6?³�ÍrY 0���Î¿:{2�� 	 �{:
Main:
Develop all the candidates which are more frequent than

f 2 according to �
Do

– Choose a candidate * that was not yet chosen and for which either ·Ï3>*Ç6?s f 2bZ�§QS*  ) TSU or �ÀQS*  ) TSU s f 2�Z[·Ï3>*Ð6
– Broadcast Ñ ��ÒW	 ¯?3>*Ç6  892�:�< Q *  ) T U;Ó
– If no such itemset exists broadcast ÔÕ.1¦�{��Ö
Until � �R¦×���{:�¯ � � ª¶Ø� all * with ·Ï35*Ç6La f 2
Return ¶
When node

	
receives a message Ñ from party Ù :

1. If Ñ � ÔÚ.�¦���{Ö insert Ù into �R¦×���{:�¯
2. Else Ñ ��ÒW	 ¯i3>*Ð6  892;:{< Q *  ) Â U�Ó

If ÙÛ±Ü�R¦�{�{:�¯ remove Ù from �R¦×���{:�¯
If * was not developed then: develop it, set

µ 35*Ç6 �wr , Calculate * � � 	 ¯ � 	 �#� by
intersecting the � �/� lists of two of * ’s immediate subsets and set 892�:�<�QS*  ) TSU9�P JLÝ H T�Þ �ÚT�ß H PP @/à P
Insert Ù to

µ 35*Ð6
Recalculate ·Ï35*Ç6 and �©QS*  ) T¢U

3.3. M-Max Algorithm

The modified DDM algorithm identifies all itemsets with frequency above \ 	 ('892;:{< .
D-Sampling, however, requires a further decrease in the frequency of itemsets which
are included in the database scan. The reason for this, as we shall see in section 4, is
that three parameters affect the chances for failure. These are the size of the sampleª , the size of the negative border, and the estimated frequency of the least frequent
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candidate. The first parameter is given, the second we can calculate or bound, and the
last parameter is the one we can control.

The frequency of the least frequent candidate can be controlled by reducing �S0�� f 2 .
However, this must be done with care: lowering the frequency threshold increases the
number of candidates. This increase depends on the distribution of itemsets in the
database and is therefore nondeterministic. The larger number of candidates affects
the scan time: the more candidates you have, the more comparisons must be made per
transaction. In a distributed setting, the number of candidates is also strongly tied to the
communication complexity of the algorithm.

To better control the reduction of �50�� f 2 , we propose another version of DDM
called M-Max (Algorithm 3). M-Max increases the number of frequent itemsets by a
given factor rather than decreasing the threshold value by an arbitrary value. Although
worst case analysis shows that an increase of even one frequent itemset may require that
any number of additional candidates be considered, the number of such candidates tends
to remain small and roughly proportional to the number of additional frequent itemsets.
We complement this algorithm with a new bound for the error (presented in section 4).
The combined scheme is both rigorous and economical in the number of candidates.

The M-Max algorithm is based on the inference that changing the \ 	 ('892�:�< thresh-
old to the · -value of the \ -largest itemset2 every time an itemset is developed or a
hypothesis value is changed will result in all parties agreeing on the \ most frequent
itemsets when DDM terminates. This is easy to prove. Take any final state of the mod-
ified algorithm. The · value of each itemset is equal in all parties; hence, the final\ 	 ('892�:�< is equal in all parties as well. Now compare this state to the corresponding
state under DDM, with the static \ 	 ('892;:�< value set to the one finally agreed upon.
The state attained by M-Max is also a valid final state for this DDM. Thus, by virtue of
DDM correctness, all parties must be in agreement on the same set of frequent itemsets.

As a stand-alone ARM algorithm, M-Max may be impractical because a node may
be required to refer to itemsets it has not yet developed. If the database is large, this
would require an additional disk scan whenever new candidates are developed. Nev-
ertheless, at the �S0�� f 2 correction stage of D-Sampling, the database is the memory-
resident sample. It is thus possible to evaluate the frequency of arbitrary itemsets with
no disk-I/O.

4. Statistical Analysis

Two statistical issues should be settled in order to validate that D-Sampling has the
required failure probability. The first is bounding the probability of failure that follows
the error adjustment phase. The second is showing how a distributed database can be
sampled uniformly.

4.1. A Bound on the Sampling Error

Let YÀs f 2�sA_ be the frequency of some arbitrary itemset * in
���

. Consider a
random sample ) of size ª from

���
. We will assume that transactions in the sample

are independent. Hence, the number of rows in ) which contain * can be seen as a
random variable, ¨~á ��	 (X35ª  f 2�6 .��â

is used when the ã largest ä is zero.
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Algorithm 3 M-Max
For node

	
out of (

Input:�50�� f 2
Output:
The M most frequent itemsets not yet in g � F�� h G7� ) �
Definitions: same as for algorithm 3.2
Let
�

denote the initial size of g � F�� h G9� ) � , f 2 � �S0�� f 2
Main:
Do

1. call �{:{� f 2
2. Choose * that was not yet chosen and for which either ·Ï35*Ç6Rs f 2¥Z�� Q *  ) T U

or � Q *  ) T U s f 2�Z[·}3>*Ç6
Broadcast Ñ � Ò 	 ¯?3>*Ç6  892�:�< Q *  ) T U;Ó

3. If no such itemset exists broadcast ÔÕ.1¦×����Ö
Until � �R¦×���{:�¯ � � ª¶Ø� all * in the trie with ·Ï3>*Ç6La f 2 which are not in g � F�� h G7� ) �
Return ¶
When node

	
receives a message Ñ from party Ù :

1. If Ñ � ÔÚ.�¦���{Ö insert Ù into �R¦×���{:�¯
2. Else Ñ ��ÒW	 ¯i3>*Ð6  892;:{< Q *  ) Â U�Ó

If ÙÛ±Ü�R¦�{�{:�¯ remove Ù from �R¦×���{:�¯
If * was not developed then: develop it, set

µ 35*Ç6 �wr , Calculate * � � 	 ¯ � 	 �#� by
intersecting the � �/� lists of two of * ’s immediate subsets and set 892�:�< Q *  ) T U �P JLÝ H T�Þ �ÚT�ß H PP @/à P
Insert Ù to

µ 35*Ð6
Recalculate ·Ï35*Ç6 and � Q *  ) T U
call �{:{� f 2

procedure �{:#� f 2 :
Do M times:

– Select the next most frequent itemset outside g � F�� h G � ) � and develop its descendants
if they have not been developed yet

Set
f 2 to the · value of the last itemset selected. For itemsets with · � Y consider �

instead.

The frequency of * in ª transactions, � f 2 � ¨Oå�ª , is an estimate for
f 2 , which

improves as ª increases. The best-known way to bound the chance that � f 2 will devi-
ate from

f 2 is with the Chernoff bound. We use a tighter bound for the case of binomial
distributions (see (Hagerup and Rub., 1989/90)):�92L3 � f 27æç� f 2 � £¤è�6LZwé×ê _=æ f 2_=æç� f 21ë �Eì ß h G ê f 2� f 24ë ß h GWívî
Lemma 4.1. Given a random uniform sample ) of N transactions from

���
, a fre-

quency threshold \ 	 ('892;:�< , the lowered frequency threshold �50�� f 2 , and the negative
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border of g � F�� h Gkj )ïl , denoted ª � , the probability .Oh ��T�� B�GW� that any *ð±Øª � will
have frequency larger than or equal to \ 	 ('892;:�< (hence causing failure) is bounded by:� ª � � � éê _=æç\ 	 ('892;:{<_=æÐ�S0�� f 2të ��ì � F�� h G ê \ 	 ('892;:�<�50�� f 2pë � F�� h GEí î
Proof. For any specific itemset in ª � , the probability that this itemset will cause failure
is the probability that its estimated frequency is below �50�� f 2 while its actual frequency
is above \ 	 ('892;:�< . Substituting \ 	 ('892�:�< for

f 2 and �50�� f 2 for � f 2 , the bound
gives us:�92L3 � 892;:�<=3>* ���� 6ïæÐ892;:�<=3>*  )X6 � £[ñ�6LZé/ê _=æq\ 	 ('892;:�<_=æq�50�� f 2të �Eì � F�� h G ê \ 	 ('892;:�<�50�� f 2të � F�� h G í î

As for the entire ª � :�92L3¢ò×*ó±~ª �}ô * f ¦ 	 �¢�{6õZ ÁJ Ã îLö �92L3S* f ¦ 	 �¢�{6õZ� ª � � é ê _=æç\ 	 ('892�:�<_=æÐ�S0�� f 2të ��ì � F�� h G ê \ 	 ('892;:{<�S0�� f 2të � F�� h GWívî
Since calculating the negative border is in itself a costly process, we choose to re-

lax this bound by substituting � � �
� g � F�� h Gkj )-l � for � ª � � . Obviously, any itemset ing � F�� h Gkj )ïl can only be extended by at most � � � items, and thus this relaxed bound
holds.

Corollary 4.1. (Toivonen 1996) If none of the itemsets in the negative border caused
failure, then no other itemset can cause failure.

Proof. Any other itemset * outside g � F�� h G j )ïl and ª � must include a subset fromª � . Hence its frequency must be less than or equal to the frequency of this subset.
It follows that if the frequency of each itemset in ª � is below \ 	 ('892;:�< , so is the
frequency of * .

4.2. Uniformly Sampling a Partitioned
Database

Uniform sampling is not a simple task in any database. At worst it may require as much
as a full scan of the database to ensure uniformity. Partitioning the database, as we
do, adds a further complication. Here we show that any existing method for uniformly
sampling a single database can be leveraged into a scheme for sampling partitioned
databases.

The scheme we use is simple. In order to randomly choose a single transaction
from the partitioned database, we first uniformly choose a partition3 and then uniformly
choose a transaction from the chosen partition. Extending this to a sample of size � ) � ,
we first choose randomly, for each transaction in the sample, the partition from which÷

If the partitions are not equal in size, this choice is weighted according to the partition sizes.
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it will be sampled. Then, knowing exactly how many transactions should be sampled
from each partition, we randomly choose that number of transactions. Note that the
theoretical bound we use allows sampling with repetitions; the algorithm, however, will
require slight modifications for a single � �/� to appear twice in the sample.

This does not yet mean that D-Sampling works well with every partitioned sample.
Since local sample sizes are selected randomly, one of these local samples may be small.
Small samples are, by definition, noisier than large ones. Since the performance of DDM
depends on �92 �D� F��D� and hence on the noisiness of the data, a sample which is biased
against a specific partition may result in a longer run time.

The choice of the number of transactions to be sampled from each partition is dis-
tributed multinomially. The expected number of transactions from each of the ( par-
titions is hence

P @ P$ . Since we choose the partitions independently, we can apply the
Chernoff bound to the size of the sample from a specific partition:�92 ê ÅÅ ) T ÅÅ ZÀ3�_=æqñE6 � ) �(Íë Z�: ìVø�ù
ú û;úù¢ü
Taking ñ � _#Y×ý , we get �92%þ ÅÅ ) T ÅÅ Z�Y � ÿ P @ P$�� Zc: ìÍú û;úù����Sü . In our experiments, � ) � �� Y  Y�Y�Y � ( . This is based on the size of the sample in Toivonen’s experiments: between» Y  Y�Y�Y and

� Y  Y�Y�Y transactions. The chance of having a _#Y×ý smaller sample with these
figures is negligible: less than : ì����	� . Obviously, a _#Y/ý difference in sample size will
not have any noticeable effect on the noise level or on the run time.

Since the chances of a sample that is largely biased toward a specific partition are
slim, the best thing to do if such a sample does occur is to sample once again. Moreover,
in many practical scenarios it is known that the partitioning of the data was random.
In that case, it is justified to simply sample an equal portion of each partition. In our
experiments, we used this last method.

5. Experiments

We carried out four sets of experiments. The first set tested D-Sampling to see how
much faster it is to run the algorithm with the database split among ( machines than
to run it on a single node. The second set compared D-Sampling and FDM on a range
of \ 	 ('892�:�< values. The third set checked scale-up: the change in runtime when the
number of machines is increased together with the size of the database. The last one
examined the number of redundant itemsets D-Sampling generates and compared it to
FDM, which generates no redundant candidates.

We ran our experiments on two clusters: the first cluster, which was used for the
first, second and fourth sets of experiments, consisted of 15 Pentium computers with
dual 1.7GHz processors. Each of the computers had at least 1 gigabyte of main memory.
The computers were connected via an Ethernet-100 network. The second cluster, which
we used for the scale-up experiments, was composed of 32 Pentium computers with a
dual 500MHz processor. Each computer had 256 megabytes of memory. The second
cluster was also connected via an Ethernet-100 network.

All of the experiments were performed with synthetic databases produced by the
standard gen tool (Srikant, 1993). The databases were built with the same parameters
which were used by Toivonen in (Toivonen, 1996). The only change we made was
to enlarge the databases to about 18 gigabytes each; had we used the original sizes,
the whole database would fit, when partitioned, into the memory of the computers.
The database T5.I2.D600M has 600M transactions, each containing an average of five
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Fig. 3. D-Sampling speed-up.

items, and patterns of length two. T10.I4.D375M and T20.I6.D200M follow the same
encoding. When the database was to be partitioned, we divided it arbitrarily by writing
transaction � �/� into the � ��� ý�( partition.

5.1. Speed-up Results

The speed-up experiments were designed to demonstrate that parallelization works well
for Sampling. We thus ran D-Sampling with ( � _ (with ( � _ , D-Sampling reverts
to Sampling) on a large database. Then we tested how splitting the database between (
computers affects the algorithm’s performance.

As figure 3 shows, the basic speed-up of D-Sampling is slightly sublinear. However,
when the number of candidates is large, the speed-up becomes superlinear. This is be-
cause the global sample size increases with the number of computers. This larger sample
size translates into a higher �50�� f 2 value and thus to a smaller number of candidates
than with ( � _ .
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Fig. 4. Runtime of D-Sampling, DDM, and FDM for varying MinFreq.

5.2. Dependency on 
�����������
The second set of experiments (figure 4) investigates D-Sampling’s performance de-
pendency on \ 	 ('892�:�< , which determines the number and size of the candidates. We
compared the D-Sampling runtime to that of both DDM and FDM. D-Sampling turned
out to be insensitive to the reduction in \ 	 ('892�:�< ; its runtime increased by no more
than 50% across the whole range. On the other hand, the runtime of DDM and FDM in-
creased rapidly as \ 	 ('892;:{< decreased. This is because of the additional scans required
as increasingly larger itemsets become frequent. Because it performs just one database
scan, D-Sampling is expected to be superior to any levelwise D-ARM algorithm, just as
Sampling is superior to all levelwise ARM algorithms.

5.3. Scale-up

The third set of tests was aimed at testing the scalability of D-Sampling. Here the par-
tition size was fixed. We used a database of about 1.5 gigabytes on each computer. A
scalable algorithm should have the same runtime regardless of the number of computers.

D-Sampling creates the same communication load per candidate as DDM. However,
because it generates more candidates, it uses more communication. As can be seen from
the graphs in figure 5, D-Sampling is scalable in two of the tests. In fact, for mid-range
numbers of computers, D-Sampling runs even faster than with ( � _ due to the su-
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perlinear speed-up discussed earlier. The mild slowdown seen in figure 5c is due to the
smaller average pattern size and the smaller number of candidates in T5.I2.D1200M.
The larger the number of candidates, the greater the saving in candidates when the
number of computers increases. If there are enough large patterns, this saving will com-
pensate for the increasing communication overhead. Such is not the case, however, with
T5.I2.D1200M.

5.4. Number of Candidates

Since the main disadvantage of the sequential Sampling algorithm is the large number
of candidates it generates, our last set of experiments was aimed at testing how many
of the candidates are actually redundant. We first obtained the optimal number of can-
didates by running FDM on a set of small databases and then ran D-Sampling on these
databases. As before, we used samples of

� Y�� transactions and maximum error proba-
bility � � Y � Y�Y¿_ .

Figure 6 compares the number of candidates resulting from Chernoff and from
Hagerup error bounds in D-Sampling, as opposed to the number of candidates in FDM.
It can be seen that the number of candidates in D-Sampling is strongly tied to the bound
the algorithm uses for calculating the probability of error. The Chernoff bound sug-
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Trans. No. MinFreq FDM D-Sampling D-Sampling

length items (%) Hagerup Chernoff

5 1000 0.5 66172 90803 (37%) 231080 (249%)

5 2000 0.5 72841 111868 (53%) 469169 (544%)

10 1000 0.75 104623 121864 (16%) 214164 (104%)

10 2000 0.75 122721 149220 (21%) 406376 (231%)

20 1000 1 170314 183348 (7%) 266502 (56%)

20 2000 1 248995 279910 (12%) too many

Fig. 6. The number of candidates produced by FDM and D-Sampling using the Chernoff bound (as sug-
gested by Toivonen), and D-Sampling using the Hagerup bound, for various databases and when using eight
computers

gested by Toivonen in sequential Sampling produces relatively many candidates to sat-
isfy the error probability condition. The Hagerup bound we use is tighter and produces
significantly fewer candidates. The table summarizes the overhead of candidates posed
by D-Sampling for some databases and values of \ 	 ('892�:�< . Our experiments show that
D-Sampling does not pose large candidates overhead when compared to the number of
candidates generated by FDM.
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6. Conclusions and Future Research

We presented a new D-ARM algorithm that uses the communication efficiency of the
DDM algorithm to parallelize the single-scan Sampling algorithm. Experiments prove
that the new algorithm has superlinear speed-up and outperforms FDM with any \ 	 ('892;:�<
value. The exact improvement in relation to FDM or DDM depends on the number of
database scans they require. Experiments demonstrate good scalability, provided the
database scan is the major bottleneck of the algorithm.

Some open questions still remain. First, it would be interesting to continue parti-
tioning the database until every partition becomes memory resident. This approach may
lead to a D-ARM algorithm that mines a database by loading it into the memory of
large number of computers and then runs with no disk-I/O at all. Second, it would be
interesting to have a parallelized version of the other single-scan ARM algorithm – DIC
– on a share-nothing cluster, or of the two-scans partition algorithm. Finally, we feel
that the full potential of the M-Max algorithm has not yet been realized; we intend to
research additional applications for this algorithm.
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