
A Local Algorithm for Ad Hoc Majority Voting via
Charge Fusion

Liran Liss, Yitzhak Birk, Ran Wolff and Assaf Schuster
Technion — Israel Institute of Technology

E-mail: liranl@tx, birk@ee, ranw@cs, assaf@cs.technion.ac.il

Abstract— We present a local distributed algorithm for
a general Majority Voting problem: different and time-
variable voting powers and vote splits, arbitrary and
dynamic interconnection topologies and link delays, and
any fixed majority threshold. The algorithm combines a
novel, efficient anytime spanning forest algorithm, which
may also have applications elsewhere, with a “charge
fusion” algorithm that roots trees at nodes with excess
“charge” (derived from a node’s voting power and vote
split), and subsequently transfers charges along tree links
to oppositely charged roots for fusion. At any instant, every
node has an ad hoc belief regarding the outcome. Once
all changes have ceased, the correct majority decision is
reached by all nodes, within a time that in many cases
is independent of the graph size. The algorithm’s correct-
ness and salient properties are proved, and experiments
with up to a million nodes provide further validation
and actual numbers. To our knowledge, this is the first
locality-sensitive solution to the Majority Vote problem for
arbitrary, dynamically changing communication graphs.

I. INTRODUCTION

A. Background

Emerging large-scale distributed systems, such as the
Internet-based peer-to-peer systems, grid systems, ad hoc
networks, and sensor networks, impose uncompromising
scalability requirements on (distributed) algorithms used
for performing various functions. Clearly, for an algo-
rithm to be perfectly scalable, i.e., O(1) complexity in
problem size, it must be ”local” in the sense that a node
only exchanges information with nodes in its vicinity.
Also, information must not need to flow across the graph.
For some problems, there are local algorithms whose ex-
ecution time is independent of the graph size. Examples
include Ring Coloring [1] and Maximal Independent Set
[2].

Unfortunately, there are important problems for which
there cannot be such perfectly-scalable solutions. Yet,
locality is a highly desirable characteristic: locality de-
couples computation from the system size, thus en-
hancing scalability; also, handling the effects of input

changes or failures of individual nodes locally cuts down
resource usage and prevents hot spots; lastly, a node is
usually able to communicate reliably and economically
with nearby nodes, whereas communication with distant
nodes, let alone global communication, is often costly
and prone to failures.

With these motivations in mind, efficient local (or
”locality sensitive”) algorithms have also been developed
for problems that do not lend themselves to solutions
whose complexity is completely independent of the
problem instance. One example is an efficient Minimum
Spanning Tree algorithm [2]. Another example is fault-
local mending algorithms [3], [4]. There, a problem is
considered fault-locally mendable if the time it takes to
mend a batch of transient faults depends only on the
number of failed nodes, regardless of the size of the
network. However, the time may still be proportional to
the size of the network for a large number of faults.

The notion of locality that was proposed in [3], [4]
for mending algorithms can be generalized as follows:
an algorithm is local if its execution time does not
depend on the system size, but rather on some other
measure of the problem instance. The existence of such
a measure for non-trivial instances of a problem suggests
(but may not guarantee) the possibility of a solution with
unbounded scalability (in graph size) for these instances.
This observation encourages the search for local algo-
rithms even for problem classes that are clearly global for
some instances. In this paper, we apply this idea to the
Majority Vote problem, which is a fundamental primitive
in distributed algorithms for many common functions;
E.g., leader election, consensus and synchronization.

B. The Majority Vote Problem

Consider a system comprising an unbounded number
of nodes, organized in a communication graph. Each
node has a certain (possibly different) voting power on
a proposed resolution, and may split its votes arbitrarily
between “Yes” and “No”. Nodes may change their con-

nectivity (topology changes) at any moment, and both
the voting power and the votes themselves may change
over time1. In this dynamic setting, we want every node
to decide whether the fraction of Yes votes is greater
than a given threshold. Since the outcome is inherently
ad hoc, it makes no sense to require that a node be aware
of its having learned the “final” outcome, and we indeed
do not impose this requirement. However, we do require
eventual convergence in each connected component.

The time to determine the correct majority decision in
a distributed vote may depend on the significance of the
majority rather than the system size. In certain cases such
as a tie, computing the majority would require collecting
at least half of the the votes, which would indeed take
time proportional to the size of the system. Yet, it
appears possible that whenever the majority is evident
throughout the graph, computation can be extremely fast
by determining the correct majority decision based on
local information alone.

Constantly adapting to the input in a local manner can
also lead to efficient anytime algorithms: when the global
majority changes slowly, every node can track the major-
ity decision in a timely manner, without spending vast
network resources; when a landslide majority decision
flips abruptly due to an instant change in the majority
of the votes, most of the nodes should be able to reach
the new decision extremely fast as discussed above; and,
after the algorithm has converged, it should be possible
to react to a subsequent vote change that increases the
majority with very little, local activity. A less obvious
situation occurs when a vote change reduces the majority
(but does not alter the outcome), because the change
may create a local false perception that the outcome
has changed as well. The challenge to the algorithm
is to squelch the wave of erroneous perceived outcome
fast, limiting both the number of affected nodes and the
duration of this effect.

The Majority Vote problem thus has instances that
require global communication, instances that appear to
lend themselves trivially to efficient, local solutions, and
challenging instances that lie in between.

The main contribution of this paper is a local al-
gorithm for the Majority Vote problem. Our algorithm
comprises two collaborating components: an efficient
anytime spanning forest algorithm and a charge-fusion
mechanism. A node’s initial charge is derived from
its voting power and vote split such that the majority

1Nodes are assumed to trust one another. We do not address
Byzantine faults in this paper.

decision is determined by the sign of the net charge in
the system. Every node bases its ad-hoc belief of the
majority decision according to the sign of its charge or
that of a charged node in its vicinity. The algorithm roots
trees at charged nodes, and subsequently fuses opposite
charges using these trees until only charges of one (the
majority) sign are left, thus disseminating the correct
decision to all nodes.

We provide formal proofs for key properties as well as
simulation results that demonstrate actual performance
and scalability. Offering a preview of our results, our
experiments show that for a wide range of input in-
stances, the majority decision can be computed “from
scratch” in constant time. Even for a tight vote of 52%
vs. 48%, each node usually communicates with only tens
of nearby nodes, regardless of the system size. In [5],
similar behavior was demonstrated using an (unrelated)
algorithm that was suited only for tree topologies. To our
knowledge, the current paper offers, for the first time,
a locality-sensitive solution to the Majority Vote prob-
lem for arbitrary, dynamically changing communication
graphs.

The remainder of the paper is organized as follows:
In Section II we provide an overview of our approach.
Section III presents our spanning forest (SF) algorithm,
and our majority vote (MV) algorithm is detailed in
section IV. In section V, we provide some empirical
results to confirm our assumptions and demonstrate the
performance of our algorithm. Section VI describes at
some length previous related work. We conclude the
paper in Section VII. Due to space limitation, full proofs
are deferred to the Appendix.

II. OVERVIEW OF OUR APPROACH

Consider a vote on a proposition. The voting takes
place at a set of polls, which are interconnected by
communication links. We propose the following sim-
ple protocol for determination of the global majority
decision. For each unbalanced poll, transfer its excess
votes to a nearby poll with an opposite majority, leaving
the former one balanced. Every balanced poll bases its
current belief regarding the majority decision on some
unbalanced poll in its vicinity. We continue this poll con-
solidation process until all remaining unbalanced polls
posses excess votes of the same type, thus determining
the global majority decision. We next state the problem
formally, and elaborate on our implementation of the
foregoing approach.

Let G(V,E) be a graph, and let λ = λn/λd be a rational
threshold between 0 and 1. Every node i is entitled to

2

Vi votes; we denote the number of node i’s Yes votes by
Yi. For each connected component X in G, the desired
majority vote decision is Yes if and only if the fraction
of Yes votes in X is greater than the threshold:∑

i∈X Yi∑
i∈X Vi

> λ.

Since a node can change its current vote in any time,
we need to distinguish between a node’s current vote and
the votes or “tokens” that we transfer between nodes
during the consolidation process. In order to prevent
confusion, we introduce the notion of the (“electrical”)
charge of a node, and base the majority decision on
the sign of the net charge in the system. The following
equivalent criterion for determining a Yes majority vote
decision allows us to work with integers and only deal
with linear operations (addition and subtraction):

λd

∑
i∈X

Yi − λn

∑
i∈X

Vi > 0.

A node i’s charge, Ci, is initially set to λdYi − λnVi.
Subsequent single-vote changes at a node from No to
Yes (Yes to No) increase (decrease) its charge by λd.
An addition of one vote to the voting power of a node
reduces its charge by λn if the new vote is No, and
increases it by λd−λn if the vote is Yes. A reduction in
a node’s voting power has an opposite effect. Charge may
also be transferred among nodes, affecting their charges
accordingly but leaving the total charge in the system
unchanged. Therefore, the desired majority vote decision
is Yes if and only if the net charge in the system is non-
negative: ∑

i∈X

Ci ≥ 0.

Our Majority Vote algorithm (MV) entails transfer-
ring charge among neighboring nodes, so as to ”fuse”
and thereby eliminate equal amounts of opposite-sign
charges and, in so doing, also relay ad hoc majority
decision information. Eventually, all remaining charged
nodes have an identical sign, which is the correct global
majority decision. Therefore, if we could transfer charge
such that nearby charged nodes with opposite signs
canceled one another without introducing a livelock, and
subsequently disseminate the resulting majority decision
to neutral nodes locally, we would have a local algorithm
for the Majority Vote problem.

We solve the aforementioned livelock problem with
the aid of a local spanning forest algorithm (SF) that
we will introduce shortly. The interplay between SF and
MV is as follows. The roots of SF’s trees are set by MV

at charged nodes. SF gradually constructs distinct trees
over neutral nodes. MV then deterministically routes
charges of one sign over directed edges of the forest con-
structed by SF towards roots containing opposite charge.
The charges are fused, leaving only their combined net
charge. Finally, MV unroots nodes that turned neutral,
so SF will guarantee that all neutral nodes join trees
rooted at remaining charged ones in their vicinity. Each
node bases its (perceived global) majority decision on the
charge sign of its tree’s root. Therefore, disseminating a
majority decision to all nodes is inherently built into the
algorithm.

We note that although the system is dynamic, we
ensure that the total charge in any connected component
of the graph always reflects the voting power and votes
of its nodes. By so doing, we guarantee that the correct
majority decision is eventually reached by every node
in any given connected component, within finite time
following the cessation of all changes.

III. SPANNING FOREST ALGORITHM

In this section, we describe SF, an efficient algorithm
for maintaining a spanning forest in dynamic graphs, and
prove its loop-freedom and convergence properties. In
the next section, we will adapt this algorithm and utilize
it as part of MV.

A. SF Algorithm description

Given a (positive) weighted graph and a set of nodes
marked as active roots, the algorithm gradually builds
trees from these nodes. At any instant, edges and nodes
can be added or removed, edge weights can change, and
nodes can be marked/unmarked as active roots on the fly.
However, the graph is always loop-free and partitioned
into distinct trees. Some of these trees have active roots,
while others are either inactive singletons (the initial
state of every node) or rooted at nodes that used to be
active. We denote a tree as active or inactive based on
the activity state of its root.

Whenever the system is stable, each connected compo-
nent converges to a forest in which every tree is active (if
active roots exist). Loop freedom ensures that any node
whose path to its root was cut off, or whose root became
inactive, will be able to join an active tree in time pro-
portional to the size of its previous tree. Unlike shortest
path routing algorithms that create a single permanent
tree that spans the entire graph (for each destination),
SF is intended to create multiple trees that are data-
dependent, short-lived, and local. Therefore, in order
to reduce control traffic, an edge-weight change does

3

not by itself trigger any action. Nevertheless, expanding
trees do take into account the most recent edge weight
information. So, although we do not always build a
shortest path forest, our paths are short.

Algorithm 1 (see end of paper) presents SF. In ad-
dition to topological changes, the algorithm supports
two operations to specify whether a node should be
treated as an active root (Rooti and UnRooti), and
one query (NextHopi) that returns a node’s downtree
neighbor, or ⊥ if the node is a root. (We denote by
downtree the direction from a node towards its root.)
To its neighbors, a node i’s state is represented by its
perceived tree’s activity state Ti, its current shortest path
weight Wi, and an acknowledgement number Ai. The
algorithm converges in a similar manner to Bellman-
Ford algorithms [6]: after each event, node i considers
changing its next hop pointer (Pi) to a neighbor that
minimizes the weight of its path to an active root (step
2b). More formally, to a neighbor j that is believed by i
to be active (λi(Tj) = 1) and for which λi(Wj)+d(i, j)
is minimal.

Loops are prevented by ensuring that whenever a
portion of a tree is inactivated due to an UnRoot
operation or a link failure, a node will not point to a
(still active) node that is uptree from it [7]. (Edge weight
increases can also cause loops. However, we do not
face this problem because such increases do not affect a
node’s current weight in our algorithm.) This is achieved
both by limiting a node i’s choice of its downtree node
(next hop) to neighbors that reduce i’s current weight,
and by allowing i to increase its current weight only
when i and all its uptree nodes are inactive (step 2a).

In order to relay such inactivity information, we use
an acknowledgement mechanism as follows: a node i
will not acknowledge the fact that the tree state of its
downtree neighbor has become inactive (step 4), before
i is itself inactivated (Ti is set to 0 and Ai is incremented
in step 2c) and receives acknowledgements for its own
inactivation from all its neighbors (IsAck(i) becomes
true). Note that i will acknowledge immediately an
inactivation of a neighbor that is not its downtree node.
Therefore, if a node i is inactive and has received the last
corresponding acknowledgement, all of i’s uptree nodes
must be inactive and their own neighbors are aware of
this fact.

An active root expands and shrinks its tree at the
fastest possible speed according to minimum path con-
siderations. However, once a root is marked inactive, it
takes a three-phase process to mark all nodes in the
corresponding tree as inactive and reset their weight

to ∞. First, the fact that the tree is inactive (Ti = 0)
propagates to all the leaves. Next, Acks are aggregated
from the leaves and returned to the root. Note that node
weights remain unchanged. Finally, the root increases its
weight to ∞. This weight increase propagates towards
the leaves, resetting the weight of all nodes in the
tree to ∞ on its way. It may seem that increasing the
weight of the leaves only in the third phase is wasteful.
However, this extra phase actually speeds up the process
by ensuring that nodes in “shorter” branches do not
choose as their next hop nodes in “longer” branches,
which haven’t yet been notified that the tree is being
inactivated. (This phase corresponds to the wait state in
[7].)

B. Loop Freedom

For facility of exposition, given a node i we define
Ŵi to equal Wi if Ti = 1, and ∞ otherwise.

Lemma 1: After any event in which Ŵi increases
for some nonisolated node i, Ŵi = ∞, Ti = 0 and
IsAck(i) = false.

Proof: Follows directly from the algorithm.
Lemma 2: If Pi �= ⊥, either Ŵi > λi(ŴPi

) or Ŵi =
λi(ŴPi

) = ∞.
Proof: By induction on events.

Lemma 3: 1) For every node i, if IsAck(i) =
true then for every j uptree from i or j = i, and
for every neighbor m of j: (a) λm(Ŵj) ≥ Ŵi, and
(b) for every in-transit update message u sent by
j with weight Ŵu: Ŵu ≥ Ŵi.

2) For every node i, if IsAck(i) = false then the
same claims hold when replacing Ŵi with Wi.

Proof: By induction on events.
Theorem 1: There are no cycles in the graph at any

instance.
Proof: Let i be a node that closes a cycle at time t0.

Therefore, at t+o we have λi(ŴPi
) = λi(WPi

) < Wi =
Ŵi. According to 1) or 2) of Lemma 3, λi(ŴPi

) ≥ Ŵi,
since Pi is also uptree from i. A contradiction.

C. Convergence

We assume that the algorithm was converged at time
0, after which a finite number of topological and root
changes occurred. Let t0 be the time of the last change.

Lemma 4: There exists a time t1 > t0 s.t. for every
t > t1, if IsAck(j) changes from true to false for some
node j, there exists a node i for which IsAck(i) = false
and Wi < Wj .

Lemma 5: If IsAck(i) = false for some node i,
IsAck(i) will change to true in finite time.

4

Proof: By contradiction.
Lemma 6: There exists a time t2 > t0, s.t. for every

t > t2 IsAck = true for all nodes.
Theorem 2: The algorithm converges in finite time

after all topological and root changes have stopped.
Proof: Let t2 be the time stated in Lemma 6.

After this time, there are no restrictions on choosing next
hops. The algorithm can then be reduced to a normal
Bellman-Ford algorithm, in which remaining active roots
are simulated by zero weighted edges connected to a
single destination node. Therefore, normal proofs for
Bellman-Ford algorithms apply here [8].

IV. MAJORITY VOTE

In this section, we first describe the required adapta-
tions to SF for use in our Majority Vote algorithm (MV).
Then we provide a detailed description of MV, followed
by a correctness proof. Finally, we prove MV’s locality
properties.

A. SF adaptation

We augment SF as follows:

1) To enable each neutral node to determine its major-
ity decision according to its tree’s root, we expand
the SF root and tree state binary variables (Ri

and Ti) to include the value of −1 as well. While
inactive nodes will still bear the value of T = 0,
the tree state of an active node i will always equal
the sign of its next hop (downtree neighbor) as
known to i: Ti = λi(TPi

) or the sign of Ri if i
itself is an active root.

2) We attach a “Tree ID” variable to each node
for symmetry breaking as explained next. It is
assigned a value in every active root, and this value
is propagated throughout its tree.

3) To enable controlled routing of charge from the
root of one tree to that of an opposite-sign tree
that collided with it, each node also maintains an
inverse hop, which designates a weighted path to
the other tree’s root.
Node i considers a neighbor j as a candidate for
its inverse hop in two cases: (a) i and j belong
to different trees and have opposite signs (Ti =
−Tj); (b) i is j’s next hop, both nodes have the
same sign (Ti = Tj), and j has an inverse hop.
We further restrict i’s candidates only to those
designating a path towards a root with a higher
Tree ID. (Different IDs ensure that only one of
the colliding trees will develop inverse hops.) If

TABLE I

SF INTERFACE

Procedure Function

Rooti (sign, ID, expand) Mark i as an active root with a
corresponding sign, ID, and
expansion property

UnRooti Unmark i as an active root
TreeSigni Return i’s tree state
TreeIDi Return i’s tree ID
NextHopi Return i’s next hop, or ⊥ if i is a root

InvHopi Returns i’s preferred inverse hop,
or ⊥ if there is none

there are remaining candidates, i selects one that
offers a path with minimal weight, or ⊥ otherwise.

4) To guarantee that paths do not break while routing
charges, we prevent an active node from changing
its next hop. However, as will be explained shortly,
there are cases where new active roots should be
able to take over nodes of neighboring active trees.
Therefore, we extend the Root operation to include
an expansion flag. Setting this flag creates a one-
shot expansion wave, by repeatedly allowing any
neighboring nodes to join the tree. The wave will
die out when it stops improving the shortest path
of neighboring nodes.

Proposition 1: The adaptations above do not inval-
idate the correctness or the convergence of the SF
algorithm.

Proof: 1-3) merely add information, and hence
do not affect the behavior of the algorithm. 4) only
restricts next-hop choices of active nodes. Therefore, 4)
cannot cause loops. Finally, inactive nodes can always
join active trees. So when SF stops, all nodes will belong
to active trees as required.

The interface of the augmented SF algorithm exposed
to MV is summarized in Table I.

B. MV Algorithm description

MV is an asynchronous reactive algorithm. It operates
by expressing local vote changes as charge, relaying
charge sign information among neighboring nodes using
SF, and fusing opposite charges to determine the major-
ity decision based on this information. Therefore, both
events that directly affect the current charge of a node,
and events that relay information on neighboring charges
(via SF), cause an algorithm action.

Every distinct charge in the system is assigned an
ID. The ID need not be unique, but positive and neg-
ative charges must have different IDs (e.g., by using

5

the sign of a charge as the least significant bit of its
ID). Whenever a node remains charged following an
event, it will be marked as an active root (using the
SF Root operation), with the corresponding sign and
charge ID. If the event was a vote change, we also set the
root’s expansion flag to balance between the size of the
new tree and its neighborhood. This improves overall
tree locality, since a vote change has the potential of
introducing a new distinct charge into the system.

When trees of opposite signs collide, one of them (the
one with the lower ID) will develop inverse hops as
explained above. Note that inverse hops are not created
arbitrarily: they expand along a path leading directly
to the root. Without loss of generality, assume that the
negative tree develops inverse hops. Once the negative
root identifies an inverse hop, it sends all its charge
(along with its ID) to its inverse hop neighbor and
subsequently unmarks itself as an active root (using the
SF UnRoot operation). The algorithm will attempt to
pass the charge along inverse hops of (still active) neutral
nodes that belonged to the negative tree (using the SF
InvHop query), and then along next hops of nodes that
are part of the positive tree (using the SF NextHop
query).

As long as the charge is in transit, it does not develop
a new root. If it reaches the positive root, fusion takes
place. The algorithm will either inactivate the root or
update the root’s sign and charge ID, according to the
residual charge. In case the propagation was interrupted
(due to topological changes, vote changes, expanding
trees, etc.), the charge will be added to that of its current
node, possibly creating a new active root.

Algorithm 2 (see end of paper) details MV formally.
Ci(j) keeps track of every charge transferred between
a node and each of its neighbors. It is used to ensure
that charges remain within the connected component they
were generated. GenID(charge) can be any function
that returns a positive integer, as long as different IDs are
generated for positive and a negative charges. However,
we have found it beneficial to give higher IDs to charges
with greater absolute values, which will cause them to
”sit in place” as roots. This scheme results in faster fu-
sion since charges with opposite signs and lower absolute
values will be routed towards larger charges in parallel.
It also discourages fusion of large identical-sign charges
when multiple charges in transit overwhelm a common
destination node, before the algorithm propagates its new
state.

After updating a node i’s charge information following
an event, the algorithm performs two simple steps.

In step 1, if i is charged, the algorithm attempts to
transfer the charge according to i’s tree sign and current
next/inverse hop information obtained from SF. In step
2, i’s root state is adjusted according to its remaining
charge. The output of the algorithm, i.e., the estimated
majority decision at every node, is simply the sign of
the node’s tree state (using SF’s TreeSign query). For
inactive nodes, we arbitrarily return true.

C. Correctness

We prove the correctness and termination of the al-
gorithm when the system is stable using the following
simple lemmas. Assume that all external events (link
state changes, bit changes, etc.) stop at some time t0.

Lemma 7: There exists a time t1 > t0 for which a
node can change its next hop only if its corresponding
tree root is inactive.

Lemma 8: For every t > t1, the charge of a neutral-
ized node (a node that has been robbed of its charge)
will reach a neighboring charged root with an opposite
sign if this root itself is not neutralized as well during
this time.

Lemma 9: Algorithm 2 stops in finite time after t1
Lemma 10: When the algorithm stops, either all

charged nodes are positive, or all charged nodes are
negative.

Lemma 11: For any connected component X, if no
transfer messages are underway then:∑

i∈X

Ci = λd

∑
i∈X

Yi − λn

∑
i∈X

Vi

Theorem 3: Algorithm 2 stops in finite time after all
external events have ceased with the correct output in
every node.

Proof: Termination is guaranteed from Lemma 9.
Let X be a connected component after the algorithm
stopped. Assume that the majority decision for all nodes
in X should be true, i.e., λd

∑
i∈X Yi−λn

∑
i∈X Vi ≥ 0.

Hence, according to Lemma 11,
∑

i∈X Ci ≥ 0. It follows
from Lemma 10 that ∀i ∈ X : Ci ≥ 0. Since there
are no negative trees, all nodes in X decide true. The
corresponding case is shown similarly.

D. Locality properties

The locality of an execution of the algorithm depends
on the input instance. In all cases in which the majority
is evident throughout the graph, the algorithm takes
advantage of this by locally fusing minority and majority
charges in parallel. Many input instances follow this
pattern, especially when the majority is significant.

6

The algorithm operates in a way that preserves the
charge distribution because: 1) further vote changes
create new roots uniformly, and 2) our charge ID scheme
discourages fusion of charges of the same sign. There-
fore, we conjecture that for many input instances, the size
of remaining trees after the algorithm has converged will
be determined by the majority percentile, rather than by
the graph size. For example, consider a fully connected
graph of size N for which each node has a single vote,
a threshold of 1/2, and a tight vote of 48% vs. 52%.
After the algorithm converges, the absolute net charge is
4% · N . Assuming that the remaining charge is spread
uniformly so that every charge unit establishes an active
root of its own, the number of nodes in each tree is about

N
4%·N = 25, regardless of whether the graph contains a
hundred or a million nodes.

From this conjecture it follows that, for these in-
stances, there exists a non-trivial upper bound R on the
radius of any tree in the graph. We initially prove that
the algorithm is local for single vote changes and when
several changes occur far from one another. We then
show that the algorithm is local for any fixed number
of changes. In the next section, we will use simulations
to verify our conjecture empirically, and demonstrate the
local characteristics of our algorithm for arbitrary vote
changes.

Lemma 12: Let E be an environment for which the
algorithm has converged with sign S (all trees are of the
same sign), and let R be an upper bound on the radius
of any tree in E. If a single node i in E forms a new
tree of opposite sign and maximal ID then, after at most
R time steps, the growth rate of the new tree’s radius is
at most half the one-way propagation speed.

Theorem 4: Assume that all vote and topological
changes have stopped, and MV has converged. Let R be
an upper bound on the radius of any tree in the graph.
If some node changes a single vote, then the algorithm
convergence time is a function of R, independent of the
overall graph size.

Corollary 1: Assume that all vote and topological
changes have stopped, and MV has converged. Let R
be an upper bound on the radius of any tree in the
graph. If vote changes occur at multiple nodes such
that the resulting protocol actions do not coincide with
one another, then the algorithm convergence time is a
function of R.

For the general case of a number of vote changes, we
do not give a bound on convergence time. However, we
show that the algorithm is still local by proving finite
convergence time even for infinite graphs.

Theorem 5: Let G be an infinite graph, and let R
be an upper bound on the radius of any tree in the
graph. Also, assume that MV has converged following
the cessation of all changes. If m < ∞ vote changes
occur and do not change the majority decision then the
algorithm converges in finite time.

V. EMPIRICAL STUDY

We simulated the algorithm’s execution on large
graphs. The coded algorithm includes several details,
such as Ack management, that were partly omitted from
the discussion for brevity, as well as various small local
optimizations that do not alter correctness. We examined
the time required until various levels of convergence
are achieved (in terms of the fraction of nodes that
have reached the correct outcome and do not retract),
as well as the mean number of messages per edge. For
simplicity, we only considered a 50% majority threshold
and one vote per node. However, simulations were run
for several Yes/No voting percentages, thereby checking
the sensitivity of the results to the proximity of the vote
to the decision threshold.

Two representative graph topologies were used: a
mesh for computing centers and sensor networks, and
de Bruijn graphs for structured peer-to-peer systems [9].
For each, graph sizes varied from 256 nodes to 1024K
nodes. Finally, both “bulk” (“from scratch”) voting and
ongoing voting were simulated.

In bulk mode, all nodes voted simultaneously at t =
0 with the desired percentage of Yes votes, and we
measured the time until various fractions (90%, 95%,
100%, etc.) of the nodes decided on the correct outcome
without subsequently retracting. Multiple experiments
were carried out for a (graph type, size, Yes fraction)
combination, with i.i.d drawings of the votes in the
different experiments, and the results were averaged.

Figure 1 (a) and (b) depict the results for a percentile
of 95% and 100% for graphs with 256 to 1024K nodes
and several Yes/No ratios. As can be seen from Figure
1(a), the time it takes for 95% of the nodes to reach the
correct outcome depends only on the percentage of Yes
votes and is independent of graph size. This is evidence
of the algorithm’s local behavior. Figure 1(b) presents
the time for 100% convergence, i.e., the time until the
last node reaches the correct outcome. This measurement
is deemed to be very noisy. When averaging the results
over several runs, we observe that for de Bruijn graphs,
the time to 100% convergence is nearly constant regard-
less of graph size. For mesh graphs, the time appears
proportional to the logarithm of graph size. Note that

7

Fig. 1. Bulk mode convergence and scale-up

0

50

100

150

200

250

1 10 100 1000

T
im

e
(A

ve
ra

ge
 E

dg
e

D
el

ay
s)

Number of Nodes (Thousands)

(a) De-Broijn and Mesh 95% Convergence Time vs. Size

De-Broijn 40% Yes
De-Broijn 45% Yes
De-Broijn 48% Yes
De-Broijn 52% Yes
De-Broijn 55% Yes

Mesh 40% Yes
Mesh 45% Yes
Mesh 48% Yes
Mesh 52% Yes
Mesh 55% Yes

0

100

200

300

400

500

600

1 10 100 1000

T
im

e
(A

ve
ra

ge
 E

dg
e

D
el

ay
s)

Number of Nodes (Thousands)

(b) De-Broijn and Mesh 100% Convergence Time vs. Size

De-Broijn 40% Yes
De-Broijn 45% Yes
De-Broijn 48% Yes
De-Broijn 52% Yes
De-Broijn 55% Yes

Mesh 40% Yes
Mesh 45% Yes
Mesh 48% Yes
Mesh 52% Yes
Mesh 55% Yes

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 20 40 60 80 100 120 140 160 180 200

F
ra

ct
io

n
of

 N
od

es
 C

on
ve

rg
ed

Time (Average Edge Delays)

Fraction of Nodes Converged vs. Time (48% Yes Votes)

De-Broijn 64K
De-Broijn 256K

De-Broijn 1024K
Mesh 64K

Mesh 256K
Mesh 1024K

Fig. 2. Messages per edge

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 10 100 1000

N
um

be
r

of
 M

es
sa

ge
s

pe
r

E
dg

e

Number of Nodes (Thousands)

De-Broijn and Mesh Number of Messages vs. Size

De-Broijn 20% Yes
De-Broijn 30% Yes
De-Broijn 40% Yes
De-Broijn 45% Yes
De-Broijn 48% Yes

Mesh 20% Yes
Mesh 30% Yes
Mesh 40% Yes
Mesh 45% Yes
Mesh 48% Yes

this worst case (over graph nodes) result is nonetheless
averaged over multiple voting instances.

Figure 1 (c) focuses on the “convergence percentile”,
providing the probability density of “converged” nodes
over time. Two things are readily evident from the figure:
1) beyond the mean time to convergence, the number of
unconverged nodes declines exponentially with time; 2)
this distribution is independent of graph size. In fact, the
distributions for different graph sizes barely distinguish-
able. This strongly suggests taht locality and scalability
hold for virtually every percentile except 100%.

Next, we investigated the communication resources
consumed by the algorithm. We measured the number
of messages per edge versus graph size and the fraction
of Yes voters. As depicted in Figure 2, the number of
messages per edge depends only on the percentage of
Yes votes and not on graph size.

Our algorithm may send up to 50 messages per

edge, compared with only two in the optimal centralized
algorithm. However, in our algorithm those messages are
sent concurrently throughout the graph and nodes do not
wait for one another. In many practical scenarios (e.g.,
token ring protocols), refraining from sending a message
is itself wasteful.

So far, we only considered bulk voting. In our last set
of experiments we investigated an ongoing operation.
Here, a given fraction (0.1%) of the nodes changes
its vote with every message that is sent. However, the
overall percentage of Yes votes remains the same. We
view this operation mode as the closest to real-life. In
this setting we wish to evaluate the time it takes for the
effect of a single change to subside and to validate that
our algorithm does not converge to some pathological
situation. An example of a pathological situation is one
in which all charge converges at a single node, whose
tree then spans the entire graph.

In these experiments, we ran the system for some
time. Subsequently, we stopped all changes and made
two measurements: the time it takes for the system to
converge, and the number of nodes in each tree upon
convergence. As expected, convergence time (Figure
3(a)) in on-going mode does not differ from convergence
in bulk mode (Figure 1(a)). As depicted in Figures
3(b)(c), tree sizes are tightly distributed about their mean.
There are only few large trees, the largest of which
spans approximately one percent of the graph. These
experiments thus confirm our conjecture that tree sizes
are small, and demonstrate that locality is maintained in
the on-going mode as well.

VI. RELATED WORK

Our work bears some resemblance to Directed Diffu-
sion [10], a technique to collect aggregate information

8

Fig. 3. On-going mode convergence and locality

0

10

20

30

40

50

60

70

80

10 100

T
im

e
(A

ve
ra

ge
 E

dg
e

D
el

ay
s)

Number of Nodes (Thousands)

De-Broijn and Mesh 95% Convergence Time vs. Size

De-Broijn 40% Yes
De-Broijn 45% Yes
De-Broijn 48% Yes

Mesh 40% Yes
Mesh 45% Yes
Mesh 48% Yes

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 50 100 150 200 250 300 350

F
ra

ct
io

n
of

 T
re

es

Tree Size (Number of Nodes)

Distribution of Tree Sizes (48% Yes Votes)

De-Broijn 64K
De-Broijn 256K

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 100 200 300 400 500 600 700

F
ra

ct
io

n
of

 T
re

es

Tree Size (Number of Nodes)

Distribution of Tree Sizes (48% Yes Votes)

Mesh 64K
Mesh 256K

in sensor networks. As in their work, our routing is
data-centric and based on local decisions. However, our
induced routing tables are relatively short-lived, and
do not require refreshments or enforcements. The SF
algorithm we present, builds upon previous research in
distributed Bellman-Ford routing algorithms which avoid
loops such as [7] and [8].

Several alternative approaches can be used to con-
duct majority voting such as sampling, pseudo-static
computation, and flooding. With sampling the idea is
to collect data from a small number of nodes selected
with uniform probability from the system, and compute
the majority based on that sample. One such algorithm
is the gossip based work of Kempe et al. [11]. Yet
sampling can not guarantee correctness and is sensitive
to biased input distributions. Moreover, gossip based
algorithms make assumptions on the mixing properties
of the graph which do not hold for any graph. Pseudo-
static computation suggests to perform a straightforward
algorithm that would have computed the correct result
had the system been static, and then bound the error
due to possible changes. Such is the work by Bawa et.
al. [12] for example. In flooding, input changes of each
node are flooded over the whole graph, so every node
can compute the majority decision directly. Simple as it
may sound, flooding guarantees convergence to an exact
solution in stable periods. However, the communication
costs of flooding are immense. Furthermore, the memory
requirements of the method are proportional to the size
of the system.

One related problem which has been addressed by
local algorithms is the problem of local mending or
persistent bit. In this problem all nodes have a state bit
which is initially the same. A fault changes a minority
of the bits and the task of the algorithm is to restore the
bits to their initial value. A local solution was given for

this problem in [3], which is correct so long as the size
of the minority is smaller than N/ log N . Our algorithm
can solve the same problem for any size of the minority.
Another algorithm for this problem was given in [4].
This second algorithm accepts a minority of any size.
However, it only works for a static topology and with
lockstep execution. Our algorithm, in contrast, allows
topology changes and asynchronous communication.

Finally, [5] also conducts majority votes in dynamic
settings. However, their algorithm assumes the underly-
ing topology is a spanning tree. Although this algorithm
can be layered on top of another distributed algorithm
that provides a tree abstraction, a tree overlay does
not make use of all available links as we do, and its
costs must be taken into account. Even when assuming
that once a tree is constructed its links do not break,
simulations have shown that while [5] is faster in cases
of a large majority, our algorithm is much faster as the
majority is closer to the threshold.

VII. CONCLUSIONS

We presented a local Majority Vote algorithm intended
for dynamic, large-scale asynchronous systems. It uses
an efficient, anytime spanning forest algorithm as a
subroutine, which may also have other applications.
The Majority Vote algorithm closely tracks the ad hoc
solution, and rapidly converges to the correct solution
upon cessation of changes. Detailed analysis revealed
that if the occurrences of voting changes are randomly
and uniformly spread across the system, the performance
of the algorithm depends only on the number of changed
votes and the current majority size, rather than the sys-
tem size. A thorough empirical study demonstrated the
excellent scalability of the algorithm for up to millions
of nodes – the kind of scalability that is required by
contemporary distributed systems.

9

APPENDIX

A. Loop freedom of the Spanning Forest algorithm (SF)

Proof of Lemma 1
Follows directly from the algorithm. Increases in Wi are
possible only when Ti = 0 (step 2a), and therefore do
not affect Ŵi whose value is already ∞. Therefore, the
only increase in Ŵi is due to Ti becoming 0, setting Ŵi

to ∞. Because i is nonisolated and Ai is incremented,
IsAck(i) = false (step 2c).

Proof of Lemma 2
By induction on events. Initially all nodes are isolated,
so the Lemma holds trivially. Consider an event at node
i at t = t0. We will show that if the Lemma holds at t−0 ,
it will also hold at t+0 . If i changes its next hop at t0 to
some node j or λi(Wj) has not increased for an existing
next hop j, step 2b ensures that Wi = λi(Wj) + d(i, j).
Therefore, λi(ŴPi

) < Ŵi < ∞ because Ti = λi(Tj) =
1 and d(i, j) > 0. Otherwise, λi(Tj) has increased for an
existing next hop j. Following Lemma 1, λi(Ŵj) must
be ∞, causing Ŵi to also be set to ∞ in step 2c.

Proof of Lemma 3
By induction on events. Initially all nodes are isolated
so the Lemma holds trivially. Consider an event at t0,
and assume that the Lemma was correct with respect to
some node i at t−0 . We show that the Lemma still holds
at t+0 by contradiction. The Lemma can be violated in
the following cases:

1) The event occurs in i. Since for any update mes-
sage u sent by i at t+0 : Ŵu = Ŵi(t+0), the Lemma
can be violated only due to update messages in
transit from i or due to nodes uptree from i, as a
result of i’s new state. We reach a contradiction by
examining all IsAck(i)’s possible state transitions:

• IsAck(i)(t−0) = IsAck(i)(t+0) = true.
Lemma 1 guarantees that Ŵi cannot increase.
Therefore, 1) cannot be violated.

• IsAck(i)(t−0) = IsAck(i)(t+0) = false.
Since Wi can only increase in step 2a, and
IsAck(i)(t−0) = false, Wi cannot increase.
Therefore, 2) cannot be violated.

• IsAck(i) changes from true to false. Since
this change can only occur if Ti(t−0) = 1,
it follows from the algorithm that Wi cannot
change, and we have: Ŵi(t−0) = Wi(t−0) =
Wi(t+0). Therefore, 2) holds at t+0 due to our
assumption that 1) held at t−0 .

• IsAck(i) changes from false to true. This
change can only occur if the event is the

reception of an Ack message for i’s latest
inactivation. If Ti(t−0) = 1, it follows from the
algorithm that Wi cannot change, and we have:
Wi(t−0) = Wi(t+0) = Ŵi(t+0). Therefore, 1)
holds at t+0 due to our assumption that 2)
held at t−0 . If Ti(t−0) = 0, every node j
uptree from i has set Tj = 0, and received
an acknowledgement from all its neighbors
before returning an acknowledgement to its
downtree node. Therefore, for every j uptree
from i at t0, Ŵj = ∞ and there are no update
messages in transit from j. Likewise, for every
neighbor m of j at t0: λm(Ŵj) = ∞. 1) holds
trivially.

2) The Lemma is violated by a change in λm(Ŵj),
where m is a neighbor of some node j uptree of
i. However, this change can only occur due to an
update message u sent by j before t0, contradicting
the assumption for u.

3) The Lemma is violated by a message u sent by
node j uptree from i at t+o . Since Ŵu = Ŵj(t+0),
this would contradict either Lemma 2 or the value
of λj(ŴPj

), for which we have shown in 2) that
the Lemma holds.

4) The Lemma is violated indirectly due to a node
k changing its next hop towards a node j up-
tree from i. In this case: Ŵk(t+0) = Wk(t+0) >
λk(Wj)(t+0) = λk(Ŵj)(t+0) > W0, where W0

is either Wi or Ŵi according to the induction
hypothesis with respect to IsAck(i). Since we
proved in 1) that the Lemma holds for any node
k that encounters an event with respect to itself, it
must also hold with respect to i. A contradiction.

B. Convergence of SF

Proof of Lemma 4
Let t1 be a time by which all messages that were sent
before t0 have reached their destination or were dropped.
For every t > t1, IsAck(j) changes to false for some
node j only due to the receipt by j of an update message
u with Tu = 0, from a node i = Pj . Since Tj(t−) = 1,
when i sent u, IsAck(i) must have changed to false and
will remain so because i has not received an Ack from j.
Therefore, it follows from Lemma 3 that: λj(Ŵi)(t−) ≥
Wi(t−) = Wi(t+). The proof is completed by observing
that Wj(t−) > λj(Wi)(t−) = λj(Ŵi)(t−) and Wj does
not change at t+.

Proof of Lemma 5
Assume that IsAck(i) = false forever. Therefore, some

10

neighbor j did not send i an acknowledgement. This can
happen only if Pj = i and IsAck(j) = false. Since
the graph is finite and there are no cycles, applying the
same argument for j and its uptree nodes produces a
contradiction.

Proof of Lemma 6
According to Lemmas 4 and 5, the minimum value of W
over nodes for which IsAck = false after t1 increases
with time. Following the same line of proof as [8], we
claim that W can either be ∞ or have one of a finite
number of possible values, because the cardinality of any
parameter that W depends on is finite. Therefore, there
will be no more transitions of IsAck to false in finite
time. Lemma 5 guarantees that there exists a time t2
for which all remaining nodes with IsAck = false will
change to true.

C. Correctness of MV

Proof of Lemma7
Once there are no vote or link changes, the effects of
the last tree expansion wave will expire in finite time
because there are no loops and the graph is finite. Once
this happens, no node will change its next hop unless it is
inactive. As there are no topological changes, it follows
from the SF algorithm that a node can be inactivated
only if the node’s tree root is inactive.

Proof of Lemma8
Let i be a charged root that establishes an inverse hop
representing a path to a (nearby) charged root j with
an opposite sign and a higher ID. Assuming that j is
not neutralized, at the time that i establishes the inverse
hop there exists a path from i to j over tree edges of
the two roots’ trees and the inverse hop edge connecting
those trees. Since messages are delivered in FIFO order
and the algorithm transfers the charge in step (1) before
calling UnRoot in step (2), the charge will traverse each
inverse hops before it is deleted. It will then follow next
hops of j’s nodes (which are not changed) and fuse with
j’s charge in finite time.

Proof of Lemma9
Since fused charges are never separated and no new
charges are introduced to the system, the number of
distinct charges (whether counted as roots or transfer
messages) is positive and a nonincreasing function of
time. Therefore, there exists a time t2 s.t. for every
t > t2 this function has a constant value N . Let
Ck, k ∈ {1...N} denote the remaining charges after t2 in
decreasing ID order. If C1 is in transit, it will turn into a

charged root in finite time since all nodes marked with
a higher ID will either be inactivated or join active trees
with a lower ID. (Any previously charged root with a
higher ID must have been Unrooted, and SF guarantees
that its nodes will be inactivated in finite time. In the
meantime, C1 can travel but no higher-ID roots will be
created.) Once C1 establishes a charged root, it will never
be neutralized. Now examine C2. If it has the same sign
as C1, the same logic applies. If C2 has the opposite sign,
it can eventually follow only the tree edges of C1’s root.
From Lemma 8 and the fact that the number of charges
is constant, it follows that C2 will establish a permanent
root in finite time. Using the same line of arguments,
we conclude that all charges establish permanent roots
in finite time, thereby guaranteeing termination.

Proof of Lemma10
Let i and j be charged roots of neighboring trees of
opposite signs. Assume TreeIDi > TreeIDj . Examine
a path along j’s tree connecting j and a node k in j’s
tree, which has a neighbor from i’s tree. Each node along
this path from k to j, either has an inverse hop towards
i, or towards another root i′ with an opposite sign and a
higher ID than j’s. In any case j must transfer its charge,
thus contradicting termination.

Proof of Lemma11
The following equation holds for every node i at all
times: ∑

j∈N i

Ci(j) + Ci = λdYi − λnVi

(On vote changes, ∆λd is added to both sides. In every
other event charge is only transferred between the terms
on the left.) Therefore, for every group of nodes X at all
times: ∑

i,j∈X

Ci(j) +
∑
i∈X

Ci = λd

∑
i∈X

Yi − λn

∑
i∈X

Vi

If no transfers are underway, then for every two neigh-
bors i, j : Ci(j) = −Cj(i). If X forms a connected
component, then the term

∑
i,j∈X Ci(j) evaluates to

zero, yielding the expected result.

D. Locality properties of MV

Proof of Lemma12
Without loss of generality, assume that all trees in E
are positive. Let j be a charged root of such a tree,
and farther than 2R from i. Denote by Treex all nodes
uptree from some root x. For any node k in Treej ,
d(k, i) > d(k, j). This means that k can join Treei only
after Treej is inactivated, and k’s weight is increased.

11

As discussed in section III-A, inactivating a tree takes
at least twice its maximum radius (accounting for the
inactivation and acknowledgement phases). On one hand,
the length of any expansion path of Treei through nodes
that belonged to Treej is at most Treej’s diameter.
On the other hand, Treei is stalled at least by Treej’s
diameter before it can expand into Treej . Therefore,
Treei requires at least twice the network delay to
increase its radius through nodes of Treej . Since E is
totally covered by positive trees we have the result.

Proof of Theorem4
Initially, all trees in the graph have the same sign. (If
there are no trees, we define R as the graph diameter so
the proof is trivial.) If the vote change is one that brings
about a change in the majority decision, the problem is
known to be global and convergence time depends on
the diameter of the graph. We therefore only consider
the case in which the vote change does not alter the
majority.
Without loss of generality, consider positive roots, i.e.,
the majority decision is true. (We know that all roots
have the same sign.) Let i be a node that changed a
vote, and let j be the root of the tree to which i belongs.
(i = j is possible.) If i’s charge remained or changed
to positive, i will either create a new root or adjust the
ID of an existing root in O(R) time steps. If i’s load is
now negative, there are two possibilities:

1) i’s new ID is lower than Treej’s ID, and i �= j.
In this case the new negative load will be routed
to j. According to our optimized ID policy, j’s
charge is at least as high as i’s. Therefore, j will
remain positive or cancel itself. In either case the
algorithm will adjust in O(R) time steps.

2) i will start creating a new tree. As long as i’s
ID is higher than the IDs of neighboring trees, i
will remain an active root. Since i’s new charge
resulted from a single vote change (a change in
several votes or in i’s voting power is proven
similarly), the absolute value of i’s charge is at
most λd. Therefore, after at most O(λdR) = O(R)
time steps, enough positive charges will have been
routed to cover i or to cause i’s negative charge
to be routed to a positive charge with a higher
ID as in the previous case. Once i’s charge is
non-negative, this information will be propagated
along Treei at full speed. Following Lemma 12,
since Treei’s expansion propagates with at most
half this speed, all nodes with a negative tree
state will either flip their sign or be inactivated

in O(log(λdR)) = O(log(R)) time steps. Finally,
since there are no remnants of the negative trees,
the algorithm will converge in O(R) additional
steps.

Proof of Theorem5
Without loss of generality, assume that all the exist-
ing charged roots are positive. After R time steps, all
messages carrying a set expansion flag die out, since
none of the new trees can initially expand farther than
R before encountering nodes with lower weights. Fol-
lowing Lemmas 7,8 and 9, there exists a time t2 s.t. for
any t > t2, the number of distinct negative charges is
constant. Therefore, no more fusions take place. Assume
that there are still N negative charges after this time. Let
Ck, k ∈ {1...N} denote the remaining negative charges
in decreasing ID order. Consider C1. After a finite time,
any node whose tree sign is positive and whose tree ID
is higher than C1, is part of an active positive tree that
is never unrooted. Therefore, if C1 is in transit it would
eventually fuse with a positive charge, since it can only
traverse positive nodes with a higher ID. We conclude
that C1 must become a static charged root in finite time.
Now apply the same argument for positive charges whose
IDs fall in the range (C1, C2), then for C2 and so on.
Hence all charges become static in finite time. If there are
still negative charges, eventually two trees with opposite
signs will collide, resulting in the transfer of one of
the static. This contradicts the assumption that there are
remaining negative charges after t2. Finally, following
the same line of proof as step 2 of Theorem 4, all
remnants of negative trees will disappear, guaranteeing
convergence in finite time.

REFERENCES

[1] N. Linial, “Locality in distributed graph algorithms,” SIAM J.
Computing, vol. 21, pp. 193–201, 1992.

[2] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, “Compact
distributed data structures for adaptive network routing,” pp.
230–240, May 1989.

[3] S. Kutten and D. Peleg, “Fault-local distributed mending,”
August 1995.

[4] S. Kutten and B. Patt-Shamir, “Time-adaptive self-
stabilization,” pp. 149–158, August 1997.

[5] R.Wolff and A. Schuster, “Association rule mining in peer-to-
peer systems,” In Proc. of the IEEE Conference on Data Mining
(ICDM), November 2003.

[6] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princton
University Press, 1962.

[7] J.M. Jaffe and F.H. Moss, “A responsive routing algorithm for
computer networks,” IEEE Transactions on Communications,
pp. 1758–1762, July 1982.

[8] J.J. Garcia-Luna-Aceves, “A distributed, loop-free, shortest-path
routing algorithm,” pp. 1125–1137, June 1988.

12

[9] F. Kaashoek and D. Karger, “Koorde: A simple degree-optimal
distributed hash table,” February 2003.

[10] R. Govindan C. Intanagonwiwat and D. Estrin, “Directed
diffusion: A scalable and robust communication paradigm for
sensor networks,” August 2000.

[11] David Kempe, Alin Dobra, and Johannes Gehrke, “Computing
aggregate information using gossip,” 2003.

[12] Mayank Bawa, Hector Garcia-Molina, Aristides Gionis, and
Rajeev Motwani, “Estimating aggregates on a peer-to-peer
network,” Tech. Rep., Stanford University, Database group,
2003, Available from: http://www-db.stanford.edu/
∼bawa/publications.html.

Algorithm 1 Spanning Forest (SF)
Variables for node i :

• Ri, Ti,Wi, Ai, Pi - Root and tree activity states {0,1},
path weight and Ack number (positive Int), and a next
hop pointer, respectively.

• ∀j ∈ N i : λi(Tj), λi(Wj), λi(Aj) - A neighbor j’s tree
state, weight and Ack as known to i.

Macros:
Inactive(i) ≡ (Ti = 0)

∨
(Pi �= ⊥∧

λi(TPi
) = 0)

IsAck(i) - Evaluates to true iff i’s neighbors have all
acknowledged i’s most recent (highest) Ack number. New
neighbors are considered to have sent and received all Acks
that could have been pending to or from their neighbors.
(The details of ack management are omitted for brevity, but
are included in the running code.)

Events: /* trigger + event specific action */

• Initi() : Ri = 0, Ti = 0,Wi = ∞, Pi = ⊥, Ai = 0,
∀j ∈ N i : LinkDowni(j).

• LinkUpi(j): send Update(Ti,Wi, Ai) to j.
• LinkDowni(j) : λi(Tj) = 0, λi(Wj) = ∞,

λi(Aj) = ⊥. if (Pi = j) Pi = ⊥.
• Rooti operation: Ri = 1.
• UnRooti operation: Ri = 0.
• receive Update(T,W,A) from j:

update λi(Tj), λi(Wj), and λi(Aj).
• receive Ack(A) from j: record the most recent ver-

sion of i’s Ack number acknowledged by j.
After every event also do: /* common actions */

1) if Ri = 1: /* set i as an active root: */

a) Ti = 1,Wi = 0, Pi = ⊥
2) else: /* Ri = 0 */

a) /* if i is inactive and all uptree nodes have
acknowledged, update i’s weight according to its
next hop: */
if (Ti = 0

∧
IsAck(i) = true)

Wi =
{ ∞, Pi = ⊥∨

λi(WPi
) = ∞

λi(WPi
) + d(i, Pi), otherwise

b) /* improve i’s path or join an active tree with the
same weight if i is inactive or about to become
inactive: */
let j ∈ N i s.t. W (j) is minimal, where

W (j) =
{

λi(Wj) + d(i, j), λi(Tj) �= 0
∞, otherwise

if (W (j) < Wi

∨
(W (j) = Wi

∧
W (j) < ∞ ∧

Inactive(i)))
Pi = j,Wi = λi(Wj), Ti = λi(Tj)

c) /* if i is turning inactive, increment i’s Ack: */
if (Ti �= 0

∧
(Pi = ⊥∨

λi(TPi
) = 0))

Ti = 0, Ai = Ai + 1

3) send Update(Ti,Wi, Ai) to all neighbors if some-
thing changed.

4) send Ack(λi(Aj)) to each unacknowledged neigh-
bor j, with the exception of Pi if IsAck(i) = false.

The answer to the NextHopi query is Pi’s current value.

13

Algorithm 2 Majority Vote
Variables for node i :

• Yi, Vi, Ci, IDi - “Yes” votes, total votes,charge and
charge ID, respectively.

• ∀j ∈ N i : Ci(j) - total charge transferred between i and
a neighbor j, from i’s perspective.

Macros:
GenID(charge) generates a new charge ID
Charge(V, Y) = λd · Y − λn · V

Events: /* trigger + event specific action */

• Initi: Vi, Yi, Ci = Charge(Vi, Yi),
IDi = GenID(Ci),∀j ∈ N(i) : Ci(j) = 0.

• LinkUpi(j): do nothing.
• LinkDowni(j): Ci+ = Ci(j), Ci(j) = 0.
• ChangeV otei(V, Y):

Ci+ = (Charge(V, Y) − Charge(Vi, Yi)),
Vi = V, Yi = Y, IDi = GenID(Ci).

• Receive Transfer(C, ID) from j:
if (Ci = 0) /* i is currently neutral */

IDi = ID
else /* fusion is taking place - update charge id */

IDi = GenID(Ci + C).
Ci+ = C,Ci(j)− = C.

/* common actions */
After each of the events above or an event in SF do:

1) /* if i is charged, try to transfer the charge: */
if (Ci �= 0 ∧ TreeIDi ≥ IDi)

if (Sign(Ci) = −TreeSigni)
temp = NextHopi else temp = InvHopi.

if (temp �= ⊥) send Tansfer(Ci, IDi) to temp,
Ci(j)+ = Ci;Ci = 0.

2) /* if i remained charged, verify it is marked as an active
root. Otherwise, unmark it: */
if (Ci = 0) UnRooti else Rooti(Sign(Ci), IDi, f)
where f = true if invoked by a ChangeV otei

operation.

Output: true if TreeSigni ≥ 0, and false otherwise.

14

