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Abstract ficult to find, and the procedure involved is necessarily com-
plicated and inefficient.

_Data privacy is a major concern that threatens the g gcenario is most evident in the health maintenance
widespread deployment of data grids in domains suchy, qiness. Health Maintenance Organizations (HMOs) have
as health-care and finance. We propose a uniqueé ap-, nigh interest in sharing medical data, both for public
proach for obtaining knowledge — by way of a data min- peaith reasons, such as plague control and the evaluation
ing model — from a data grid, while ensuring that the data  yitferent medical protocols, and for commercial reasons,
Is cryptographically safe. This is made possible by an in- g, a5 detecting medical fraud patterns or medical mis-

novative, yet natural generalization for the accepted conqyct. However, sharing medical data is very problem-
trusted.tf'urd party model gnd a_ new pnvagy-preservmg atic: it is legally forbidden to expose specific records — i.e.,
data mining algorithm that is suitable for grid-scale sys- 5 patient's medical record — and it is commercially undesir-
tems. The algorithm is asynchronous, involves no global 56 1 expose statistics about a single HMO — e.g., mortal-
communication patterns, and dynamically adjusts 10 i rates or the average expenditure per client. Similar ex-

changes in the data or to the failure and recovery of re- 5 hje5 can be found in other domains, such as the finan-
sources. To the best of our knowledge, this is the first cial domain in which it is desirable to share account infor-

privacy-'preser.ving mining algorithm to possess these fea- .a+i0n in order to detect money laundering. In both these
tures. Simulations of thousands of resources prove that our.,qas the need for global statistics is so great that federal

algorithm quickly converges to the correct result while us- 540ncies do collect them. Still, the procedures involved are
ing reasonable communication. The simulations also Provendeed complicated and, at least in the HMO domain, suf-

that the eﬁect of the privacy parameter on bOth the cqn- fer from regular information leaks with serious implications
vergence time and the number of messages, is logarith-,. some HMOs.

mic.
Distributed data mining offers a way by which data can

be shared without compromising privacy. On the one hand,

data mining techniques have been shown to be a leading tool
1. Introduction for data analysis, and as such they are likely to satisfy re-

searchers’ needs as an interface to the data stored in the data

The objective of a data grid is to maximize the availabil- grid. On the other hand, the models produced by data min-

ity and utilization of data that was often obtained through ing tools are statistical and thus satisfy the privacy concerns
the investment of much labor and federal capital. Maximal of the data owners. Thus, different HMOs can choose to re-
utilization would be achieved if the owners of different data veal their databases not for direct reading but rather to a dis-
(resources) were able to share it with each other and with thetributed data mining algorithm that will execute at the dif-
research community at large — i.e., make it available for ev- ferent sites and produce a statistical model of the combined
eryone. Nevertheless, this is frequently prohibited by legal database. That the algorithm produces statistics is not in it-
obligations or commercial concerns. Such restrictions usu-self sufficient: an HMO also has to make certain that the
ally do not apply to cumulative statistics of the data. Thus, data mining algorithm does not leak information through
the data owners usually do not object to having a trustedits own operation. For instance, an algorithm in which each
third party (such as a federal agency) collect and publishHMO computes its mortality rate and then sends it over to
these cumulative statistics, provided that they cannot be ma-a polling station which computes the global statistics would
nipulated to obtain information about a specific record or a not meet this criterion because the polling station would be
specific data source. Trusted third parties are, however, dif-informed of the mortality rate for each HMO. This calls for



a specific type of distributed data mining algorithm that is encrypted versions which the recipient cannot decrypt. By
privacy-preserving virtue of the encryption scheme we use, oblivious counters,
Privacy-preserving data mining was first introduced by a resource can still perform most of the steps required by
Agrawal and Srikant in 2000 [3]. The original idea pre- the non-private algorithm by itself.
sented there is to perturb the data by adding random trans- Several steps require the assistance of a manager. Man-
actions to the database. These perturbations hide the origagers are stateless entities, implemented as part of the data
inal data, but average out in the statistics — i.e., the samegrid infrastructure, whose sole purpose is to decrypt mes-
data mining models are created regardless of the perturbasages; thus, there can be many of them and they can be lo-
tions. Perturbation fully guarantees data privacy and thuscated as near to the resource as required — possibly even on
this approach is considered sufficient for the sequential setthe same machine. It is important to note that a manager
ting. Yetin a distributed setting, where there are several datais not a trusted third party. Instead, using its ability to de-
sources, perturbation does not maintain the privacy of eachcrypt messages, it can help the resource perform those steps
of the sources (e.g., the mortality rate for each HMO). Thus, without either of them learning anything other than the fi-
a different method must be employed in distributed settings. nal outcome of the algorithm.

An alternative approach to privacy_preserving data min- Since the ba.SiC algorithm we use iS extremely Scalable
ing is to replace each message exchange in an ordinary disin itself, and since our transformation of it does not require
tributed data mining algorithm with a cryptographic prim- 9lobal operators, our algorithm can be shown to be scal-
itive that provides the same information without disclos- able to millions of resources — well above the current re-
ing the data of the participants: for example, replacing a duirements of grid systems. Furthermore, the algorithm re-
sum reduction by a cryptographically secured sum reduc-Sponds very efficiently to changes in the databases, espe-
tion in which the participants learn only the final sum and cially if the changes are minute and do not affect the out-
not each other’s partial sums. When practiced well, this ap-come of the algorithm. A key quality of our algorithm is
proach guarantees the privacy of both single records andhat it offers a trade-off between the amount of privacy at-
source statistics. However, all of the algorithms which have tainable (measured in the size of the population on which
taken th|s approach SO far have fa||ed to Sca|e above a fev\’:he StatiStiCS are eVaanted) and the Computational effort re-
Computationa| nodes. They all re'y on Cryptographic prim_ quired to attain thIS priVacy. Stl||, even When the maXimal
itives that are both global — requiring all-to-all communi- security level is required, the algorithm maintains some of
cation patterns — and rigid — requiring that the primitive be its qualities (such as the efficient response to changes in the
evaluated all over again if the data changes even slightlydata). Finally, the algorithm does not, as our analysis re-
or a node joins or |eaves the System_ That Wou|d be unac_VeaIS, disclose any information other than the list of fre-
ceptable in a data grid system which is expected to scaleduent itemsets and the list of correct rules.
to hundreds of nodes (there are hundreds of HMOs in the
US alone) or even to tens of thousands of nodes (a typi-2.  Related Work
cal HMO uses the services of hundreds of independent lab-
oratories, clinics, and medical specialists, all of which have  The distributed association rule mining (ARM) prob-
their separate databases), especially since communication iigm has been studied for nearly a decade. Until recently,
to be performed at Internet speeds. however, none of the algorithms presented for this prob-

Consider the algorithm described in [10] for the same lem could scale above several dozens of participants. The
distributed association rule mining problem that is the sub- first scalable algorithm for the distributed ARM problem
ject of this paper. On several occasions, that algorithm re-was presented in [15]. Since our algorithm is based on that
quires that a message traverse all of the computing nodesvork, we thoroughly describe it in Section 4. Nevertheless,
twice, one-by-one, and that the algorithm hang until the the algorithm does not preserve privacy; specifically, if a re-
message does so. Furthermore, if the data in even one pagource communicates with the system via a single neigh-
of the distributed database changes just slightly, the wholebor, then that neighbor will learn the resource’s statistics
algorithm has to be executed all over again. The algorithm (e.g., the mortality rate for that HMO).
pays no regard to the possibility that one of the nodes might  Privacy-preserving data mining has received a lot of at-
fail. Clearly, this is unacceptable in large-scale systems.  tention in the past few years. In [3, 5], techniques based on

The main contribution of this paper is in presenting a perturbing the original data before initiating the mining pro-
cryptographic privacy-preserving association rule mining cess were used. However, this approach can only secure the
algorithm in which all of the cryptographic primitives in- privacy of records and not of the sources (e.g., of the pa-
volve only pairs of participants and are thus scalable. We tients but not of the HMOS).
use a non-private association rule mining algorithm as aba- An alternative to the perturbation approach is to develop
sis, and replace the message that was sent by resources wittryptographically secured versions of the data mining al-



gorithm. This has been shown to be possible for three dataFreq (X UY, DB) > MinConf - Freq (X, DB). We call

mining problems: distributed ARM (the same problem dis-
cussed in this paper) [10], ARM in vertically partitioned
data [14] — i.e., where each transaction is split among sev-
eral nodes, and decision tree induction [11]. The main prob-
lem with these three algorithms is that the cryptographic
primitives they use are global and rigid. The evaluation of
every primitive requires the participation of all of the nodes,
and if the data at even one of the nodes changes or a sin
gle node joins or leaves the system, the process has to b
repeated from scratch. This means that none of these algo
rithm can be employed in data grid scales.

3. Problem Definition

A data grid is composed of a group of resource nodes

confident rules between frequent itemsetsrect and the
remaining rulegalse The solution of the ARM problem is
R [DB] - all the correct rules in the given database.

In many applications the database is updated over
time (for instance, in the HMO application, patient
records are accumulated), and hendepB; will de-
note the database at timeand R [D B;] the rules that are

8orrect in that database. In distributed association rule min-

Ing the database is also partitioned among the resources
(i.e., different HMOs connected to the data grid). We de-
note the union of partitions belonging to a group of re-
sourcesS C S, by DB?; that is,D B, equalsDB;*. When

the number of resources is large and the frequency of up-
dates is high, it may not be feasible to propagate the changes

to the entire system at the rate they occur. Thus, it is ben-

Sy — computers which contain parts of the database — and aficial if an incremental algorithm can compute ad hoc

group of management nodé$, — computers that manage
the system — all of which communicate by exchanging mes-
sages via an overlay network composed of a set of eHges
The composition of the system may vary with time. That is,
S;, M; andE; may be different fronb, M; andE}.. Nev-

ertheless, we assume that an underlying mechanism main-
tains a communication tree that spans all the resources. We

refer to the nodes of; asresourcesand to those ofi/; as
managersWe denoteF}* the set of edges colliding with a
resourcey at timet.

results quickly and improve them as more data is propa-
gated. Such algorithms are calladytime algorithmsThe
performance of an anytime algorithm is measured by its av-
eragerecall andprecision Let R,, [DB;] be the ad hoc so-
lution known to the resource at timet. The recall and

recision of v at that time arew and
Ru[

7o lDB] . An anytime algorithm is said to be cor-

rect if during static periods, in which the database and the
system do not change, both the average recall and the av-

DBNR[DB,]|

Neither the resources nor the managers trust each othelgrage precision converge to one. An important measure of
Instead, we make two accepted cryptographic assumptiongficiency for an anytime algorithm is the rate of that con-

on them. The first is that they ah®nest-but-curiougalso
referred to asemi-hone$t[7]: they follow the protocol but
may try to learn as much as they can from the computations

vergence.

A distributed ARM algorithm is said to berivacy-

they make and from messages they receive. The honest-butPreservingif an observer that has access to all of the data
curious model was found useful in many domains, includ- of a single resource or a single manager (database, internal
ing data-mining [13, 10] and secure information sharing [1]. variables, and all of the messages it received), plus some do-
The second assumption is that colluding [7] is not allowed, main knowledgé+ (e.g., the demographic characteristics of
either between a resource and a manager (a similar assump certain HMO clientele), does not learn more than can be

tion is made in [13, 4]) or between two resources (as in [10]) deduced from the resulk [DB;] and . In other words,
that observer cannot outperform a random guesser that is

only givenR [D B;] and’H, when computing any predicate
on the data. The algorithm is said to keesources-private

if the observer cannot outperform a random guesser that is
given ’H and is allowed to choose a set bfor more re-
sources (HMOs) -S* C S, —and told the rules that are cor-

rect in their joint databasesR [DBfk]. The algorithm is

or two managers.

The association rule mining (ARM) problem is tradi-
tionally defined as follows: Lefl = {iy,i2,...,%m} be
the items in a certain domain. An itemset is some sub-
setX C [I. A transactiont is also a subset of, associ-
ated with a unique transaction identifier. A databakB
is a list that containgDB| transactions. Given an item-
setX and a databasP B, Support (X, DB) is the num-
ber of transactions i B which contain all the items ok’
andFreq (X,DB) = Wpolgig‘CDB)_ For some frequency
thresholdMinFreq € [0, 1], we say that an itemseX is
frequentin a databasé B if Freq(X,DB) > MinFreq
and infrequentotherwise. For two distinct frequent item-
sets X and Y, and a confidence threshoMinConf &
[0,1], we say the ruleX = Y is confidentin DB if

said to bek-transactions-privaté that observer cannot out-
perform a random guesser that is givigrand is allowed to
choose a group df transactions (patients)db* C DB, —
and told the set of rules that are correct frabfi — R [dbk] .
For simplicity, in this paper we sétand# to be equal and

define an algorithm ak-privateif it is both k-resources-
private andk-transactions-private



4. Prerequisites the sum of the evidence collected frars vote and its other
neighbors, with the result that*¥ be set taA™“.

The work presented here relies on two bodies of re-  To see howScalable-Majoritytranslates into an associ-
search: a scalable algorithm for association rule mining ation rule mining algorithnMajority-Rule consider a ma-
which does not require global communication and a cryp- jority vote in which the transactions vote over every candi-
tographic technique called oblivious counters. Following is date itemset, with each transaction voting one if it contains
a short description of these methods. the itemset and zero otherwise, and witlset toMinFreq,

Similarly, to decide whether a rule is confident, the transac-

4.1. A Scalable Distributed Association Rule Min-  tions again must vote. This time only transactions that in-
ing Algorithm — Majority-Rule clud(_a the Ieft-har_1d S|de_ of the rule_ vote, and their vote is

one if they contain the right-hand side and zero otherwise;

In a previous paper [15] we describdajority-Rule—a A IS setthistime tdinConf.

highly scalable distributed ARM algorithm. The algorithm It is left to show how candidates are generated. Note
is based on two main inferences: That the distributed ARM thatMajority-Rulecandidates must be rules. This is because
problem is reducible to a sequence of majority votes, and Majority-Ruleis an anytime algorithm, and as such, it can-
that if the vote is not tied, majority voting can be done by NOt wait for termination before it produces rules. Here a
a scalable algorithm — which we also present in that paper.géneralization of Apriori's [2] criterion is used: Each re-
Since it turns out that the frequency of an overwhelming Sourceu generates initial candidate rules of the fofm--
number of candidate itemsets is significantly different from {7} for eachi € I. Then, each time it updates the candidate
MinFreq(i.e., the vote is not tied), the outcome of these two "ule set, itgenerates, for each rllle> X € R, [DB;], new

observations is a local, and thus highly scalable, distributedcandidate rulest \ {i} = {i} for all : ¢ X Additionally,
ARM algorithm. the resource will look for pairs of rules iR, [D B;] which

The idea behind the scalable majority voting algorithm — have the same left-hand side and right-hand sides that dif-

Scalable-Majority- is to have every node agree with its im- fer onlyinthe lastitem X' = Y'U{i, } andX = Y'U{i»}.
mediate neighbors about the majority. In the case of a dis-FOT €veryis < Y, the resource will verify that the rule
agreement with a neighbor, the node will share with that X = Y U {i1,42} \ {i3} is also correct, and then gener-
neighbor the evidence it has for the majority. The node will até the candidat&’ = Y" U {i, i»}. It can be shown that
make sure it does not mislead its neighbor by taking care toth€ minimal set of candidate rules is created whgrD B;]
update it whenever that evidence is weakened as a result ofs 100% precise.
other updates or as a result of a change in its vote.

This is achieved by storing at each node its input bit 4.2. Oblivious Counters
(its vote), the last message it sent to each of its neighbors,
and the last message it received from them. Each message We denote public-key cryptosystems byE, D):
contains evidence which consists of two integexsnt E,.(m) is the encryption of a given plain text us-
and sum. The first is the number of input bits the mes- ing the public keypub and D,,i,(c) is the decryption
sage counts. The latter is the number of those which areof a given cipher textc using the corresponding pri-
set. Each pair of neighbors computes the evidence that hagate keypriv. As we deal with a single key-pair, we write
been agreed upom\*’ = A" = sum" + sum"™ — E (m) instead ofE,,,;, (m) and D (c) instead ofD,,.;,, (¢).
A (count™ + count®), wheresum™ and count"” com- A public-key cryptosysteniE, D) is calledprobabilis-
prise the evidence stored in the last message sentfrom tjc [9] if the encryption process involves, in addition to the
to v, sum"" and count” comprise the most recent evi- plain and public key, a random element, such that given
dence sent from to u, and is the majority threshold. Ad-  two ciphers encrypted with uniformly selected random el-
ditionally, nodeu computes the total evidence it has been ements, it is hard to verify that they encode the same plain.
informed of: A" = 3¢y (sum®* — Acount™), where  \ye genoteE (z) — the rerandomization off (z) — an-
N} is the set ofu’s neighbors plug_L} (which represents other element in the cipher ranae. such tﬁa(bf(\/)) _
u itself), count'* is defined as one, andim* is one if - P ge. ¢
u’s input bit is set and zero otherwise. Upon initialization, D (E (z)) but E (z) # FE (x) with high probability.
each node that votes one sends this evidence to its neigh- A public-key cryptosystemi&, D, A+, A~) is calledad-
bors. Then, whenevek* or A** changesy will evaluate  ditively homomorphidf there exist polynomial algorithms
the following condition in order to decide whether it should A+ and A~ such that for allE(z), E(y):
send its current evidence to A*Y > 0 and A*Y > A%
or A*" < 0 and A*Y < A". This is referred to as the AT (E(x),E(y)) =E(x+y),
Majority-Rule Conditionf it evaluates truey will sendv A (E(z),E(y)=E(z —v).



An additively homomorphic public-key cryptosystem can
be used to implement oblivious counters by which one
can add two ciphers without knowing their plain. By us-
ing At iteratively, one can easily calculate(m - =) from

E (x) for somem € N. In the interest of clarity, we mark
E(z)+E(y) for AT (E(2),E(y), E(x)—E(y) for

A~ (E(z),E (y)), m¥E (z) for E(m-z), and>_E (z;)

for At (...AT (AT (E (x1), E (x2)), E (x3)) ...).

There are several cryptosystems which are both prob-

abilistic and additively homomorphic. In such cryptosys-

5.1. Private-Majority-RuleAlgorithm

Consider a system composed of resources running
Majority-Rule with all votes, and consequently all mes-
sages, encrypted in oblivious counters. Instead of maintain-
ing sum™’, count“’, sum®", count’, A", and A"?, it
will maintain sum®? .., count® ., sumt¥., count®®,., A¥, .,
and A*" . — their encrypted versiongount counts trans-
actions. But, in order to maintain k-resources privacy, we

also need to count resources. For this purpose we add the

tems, the rerandomization operator can be implementedcounternum. When the resource needs to send a neigh-

P

for example, byF (z) = E (z) +E (0). For implementing

the oblivious counters, the algorithm proposed in this paper

uses the popular Paillier cryptosystem [12] — an additively-
homomorphic probabilistic cryptosystem ovéy,. How-

ever, any other such cryptosystem can be used. Finally, we

note that in order to support the encryption of negative inte-
gers, standard shifting techniques can be applied.

5. K-Private Distributed Association Rule
Mining

We now describ@rivate-Majority-Rule a k-private dis-
tributed association rule mining algorithm. The master plan
of Private-Majority-Rulds similar to that oMajority-Rule

the resources perform majority votes over candidate rules
to decide whether they are frequent and confident. How-

ever, in Private-Majority-Ruleall of the counters are en-

crypted into oblivious counters that cannot be decrypted byéhe irue result from amongst the returned values. A re-

the resources. This ensures that a resource can never di

cover the data of its neighbors. The only ones which can

bor a message that sums the evidence provided by the rest of
its neighbors, it will use the- algorithm to sum the oblivi-

ous counters. Problems arise only when it needs to evaluate
the counters: when it needs to decide whether a mes-
sage should be sent or what the majority is. In both these
cases it must consult with a manager. Nevertheless, it is es-
sential that the manager not learn the contents of the oblivi-
ous counters.

Our first step, thus, is describing a secure primitive —
PrivateEvalCondAlgorithm 1) — by which a resource can
use a manager to evaluate a condition without disclosing to
the manager the contents of the respective oblivious coun-
ters. The primitive’s input is a tuple of encrypted values,
z1,...,Zp, and a condition which should be evaluated on
them. The algorithm proceeds in three main steps: First, the
tuple is hidden amongd// similar ones. Then, the group
of tuples is sent to a manager, which decrypts them all
and returns a vector containing the results of evaluating the
condition on each tuple. Finally, the resource will choose

source will use this primitive on two occasions. The first

decrypt the counters are managers; however, a manager wilfs When its input has changed and it has to decide whether

never be given the oblivious counter directly. Instead, when-
ever a resource has to decide whether to send a message

its neighbor, it performs a secure protocol with a manager,

by the end of which the resource learns whether the mes- ] .
orvenznum"’ < k (meaning the resource does not retain

sage should be sent and the manager learns nothing. Als

to update a neighbor. The condition in this case is that,
{8r the candidate rule considered, either Majority-Rule
condition evaluates true, 9, y.count™’ < k (mean-
ing the resource does not retdirtransactions privacy), or

whenever new candidates should be generated, the resourdgTesources privacy). The second occasion is when the re-

performs a similar protocol with a manager, by the end of

which the resource learns the new candidate set and noth¢onditionis thatSign (A*)

ing more and the manager learns nothing.

The private majority voting procedure we use is simi-
lar to the one described in [6], with one important differ-
ence: In [6], the resource is not allowed to learn the ma-
jority. However, in privacy-preserving association rule min-

ing many majority votes are performed — one for each can-

source needs to know whether the rule is correct; here, the
>0, andZveNg' count™’ >k,

andZ,UeNtunum“” > k.

Using this secure primitiveRrivate-Majority-Rulecon-
tinues as follows: Where a resoureein Majority-Rule
would evaluate the condition oA* and A" to decide
whether a message should be sent to a neighbadn
Private-Majority-Ruleu will initiate the PrivateEvalCond

didate — and those votes are dependent in the sense that primitive and send the message if the result is true. When

vote taking place fof) = {a,b} signifies that the major-
ity for both®) = {a} and() = {b} is one. What this means

u heeds to generate new candidates, it will again initiate
thePrivateEvalCondgrimitive in order to discover, for each

is that, unlike the model discussed in [6], our majority vot- candidate whose oblivious counters have changed, whether
ing algorithm must remain privacy-preserving even though the rule is correct. It will then generate new candidates
a resource does learn the majority. according to the criteria defined in théajority-Rule al-



Algorithm 1 PrivateEvalCong (Cond, x4, ..., xp) Algorithm 2 Private-Scalable-Majority Algorithm for a

Inputs: Romeo (the resource) knows (z;) , ..., E (z,), resource : :

and the public key. Maria (the manager) knows the private INPUt: (sum, count, A) — Private dynamigum andcount

key. They both knowX, .. ., X, — the distributions of val-  registers, and the rational majority ratio= A, /Aq.

ues ofwy, ..., z. Local variables: The set of colliding edgeE}, the privacy

Outputs: Romeo should learn onlf’ond (x1,...,2,).  parametek, and the managers’ common public key.

Maria should learn nothing. o

Privacy parameters: T, M. Definitions: N = {L} U{v € V; : uv € Ef'}, sumg,. =

The algorithm: E (sum), countyy. = E(count), numgy, = E(1),
1. For eachi € {1,...,p}, Romeo randomly generates At,c = X eny (Aaksumiy, —Apkcountly.), AL, =

vector 4; [1,..., M] of values from the cipher range, Az (sum?¥ +sum?,) =A% (count?? +count?,).

WhereAij — xity, xp o~ X, b ~ U[l, .7T], and

encrypts it usingub. Output(): Return the output ofPrivateEvalCong with

my, WhereCO’ﬂd’(Il,IQ,Ig) = (:v} >k)N\ (xa > k) A

2. Romeo selectsy ~ U [1,..., M]. . » 2=

3. For eachi € {1,...,p}, Romeo setsA; [m] « (3 > 0), USING) ¢ vuCOUNEE e D e N MUMEgcs A
ti+E (v;) wheret; ~ U [1,...,T]. as the inputs1, xs, x3 respectively.

4. Romeo sendsl, ..., 4, to Maria. Updatev): sumi’, « Zw#em SUmM®h | count'’,

5. For eachi ¢ {1..M}, Maria sets B[i] « . - - L —
Cond (D (A1 ]i]),...,D (A, [i])). Finally, she sends Dwpve Ny COUNEETL, MU, = 3y pye Ny MU,
B to Romeo. Send{sum@®  count®™. num* ) tov.

6. Romeo’s output i3 [n]. MajorityCond(v): Return the output oPrivateEvalCong

with m}, where Cond (z1,22,23,24) = (v1 <k) V

goflhm._tl'hegalgl_ot:ithm_ oftDrivate_:-I\/_Itajorits_/-RuIeis g(i;/en (2 <k)\ (25 <OAzg <0)V (z3 > 0Azy4 > 0), US-
in Algorithm 3. The private majority voting procedure — < va % vu Au Auw A
Private-Scalable-Majority- is given in Algorithm 2. :sgt%évienjgﬁ f;?nizncx:;;fIr\/é“;gégf\?élyAenc Ane™Bene
Privacy analysis.To show thaPrivate-Majority-Ruleis o .
indeedk-private we make three observations: The first js On initialization for each wv € E, or on failure or re-
that as long as data gathered for a rule is not based on afOvery Of a neighborv: Setsumgy., sumgy., county.,
leastk resources and at ledstransactions, the resource be- COunteye, nume,, andnumg,;. 0 E (0).
havior is independent of the data and therefore does notdison  receiving  (sum/, count’, num’) from v: Set
close anything about it. The second observation is that thes,m v — sum/, count?, — count’, num?®, «— num’.
PrivateEvalCondprimitive does not leak information. This i )
is because the chances of guessing where the true inputs afgn change insum from s to s": Setsum to min(s, 5//) -
hidden are lower thar;. Moreover, consecutive calls are | and callOnChangg), then setsum t0 maz(s, s") +
independent and thus can not assist in boosting this probal a@nd call OnChangg), finally set sum to s" and call
bility. OnChangé).

The third, somewhat more involved observation is that On a change in one of the local counters ©nChange):
whenu’s vote changes, it is impossible to guess the changeFor each neighbar: if MajorityCondv), call Updatgv).
unless it affects the majority in a group (of either transac- . ]
tions or resources) of size Assume, for example, thats the decrease. An increase/i does not trigger messages
vote does change the majority in such a group. In this case, 4/ A" is already positive. The same argument holds when
random guesser that is given the majority before the changethere is a majority of zeroes. Hence, the pattern of mes-
the majority after the change, and the information that there S29€s is indeed independent of the data, and nothing can be
has been a change, would do just as well in guessing the aclearnt fromit.
tual change. Now assume that the change’snvote does
not affect the majority and suppose, first, that the major- 6. Experimental Results
ity is of ones. We claim that the resulting pattern of mes-
sages is independent of the data and thus nothing can be To evaluate the performance Bfivate-Majority-Rule
learned by looking at such patterns. This is true becausewe implemented a simulator capable of running thou-
in Private-Scalable-Majoritysum is first decreased below sands of simulated resources. The network topol-
the new value and then increased to the new value (see Al-ogy was generated using the BRITE topology gen-
gorithm 2). Thus, the change will first decreds® and then erator  http://www.cs.bu.edu/brite . Syn-
increase it. If messages are sent, they will be in response tdhetic databases were produced using the stan-




Algorithm 3 Private-Majority-Rule- Algorithm for a re-
source

Inputs of resourceu: Local databasé By, the set of col-
liding edgesE}, the set of itemd, the frequency threshold
MinFreq, the confidence threshoMinConf, and the man-
agers’ public key.

Output of resource u: The ad hoc set of ruleB,, [DBy].

Local variables: (X = Y,\) denotes a candidate-rule
X =Y with desired majority threshold. C' is a set of
candidate-rules together with countersum andr.count,
both initially set to zero.

Initialization: SetC' «— {( = {i},MinFreq) |i € I}.
Repeat the following continuously:

For each ruler € C for which there is no active
Private-Scalable-Majorityinstance, initiate one using
(r.sum, r.count,r.\) as the input.

Cyclically, read a few transactions from the database
DBy'. For each transactionl’, and rule r
(X =Y, \) € C which was generated aftdt was last
read: If X C T, increaser.count. If X UY C T, in-
creaser.sum.

Once every few cycles:

— SetR, [DB] to the set of rules € C which their cor-
respondingPrivate-Scalable-Majorityinstance out-
puts true.

— Foreach- = () = X, MinFreq) € R, [DB],i € X:
if v = (X\ {i} = {i},MinConf) ¢ C, addr’ to C.

— For each nr (X=YU{ir},\),ra =
<X =Y U{ix},\) € R,[DBy, in < iy if
r <X =Y U {11,12} /\> ~€ C and Vmey
(X =Y U {i, iz} \ {is},\) € R, [DBy], addr’ to
C.

On receiving a Private-Scalable-Majoritymessage rele-
vant to rule r (X =Y, \), from a neighbor v: If

r ¢ C,addittoC. If (= XUY )\ ¢ C, add

r’ to C' as well. Anyway, forward the message to the appro-
priate localPrivate-Scalable-Majoritynstance.

dard generation tool from IBM Quest
[http://lwww.almaden.ibm.com/cs/quest ]-

group

10,000 transactions, which it processes in batches of about
150. After processing each batch, it decides what messages
should be sent, and on every fifth batch it also communi-
cates with its manager to create new candidate rules. We
simulate dynamic databases by incrementing every resource
with ten additional transactions at each batch. We simulate
dynamic composition changes by using 50 resources at the
outset and adding an average of five at each batch, stop-
ping at about 2,500 resources. Transactions continue to be
added and messages exchanged until the systems reach a
near-stasis (the computation never really terminates because
transactions continue to be added). Throughout this process
we measure the recall and precision compared to the precal-
culated result, of the result at each resource. In addition, we
count the number and type of messages that are exchanged.

The main results are presented in Figure 1. Figure 1a de-
scribes the recall of the algorithm. In all three databases,
by the time each resource scans its part of the database for
the second time, the recall has already reached 90%. This
is in comparison to just one scan in thiajority-Rulealgo-
rithm [15]. In the Private-Majority-Rulealgorithm, a rule
cannot be found correct before the algorithm gathers infor-
mation fromk resources. Thus, candidate generation occurs
more slowly, and hence the delay in the convergence of the
recall.

Figure 1b describes the precision of the algorithm. The
average precision also climbs above 90% in about two
database scans. An interesting phenomenon is the decline
in precision for the T20.16 database toward the end of the
first scan. A deeper look reveals that the choictofFreq
and MinConf led to the creation, around that time, of a
very large number of candidate rules. Sheer numbers dic-
tate that only a few of these candidates would be false pos-
itives. However, since the number of correct rules is only
about a hundred, these false positives led to a noticeable de-
cline in precision. Note, however, that the false positives
were quickly identified and did not significantly impair the
convergence rate of the precision for this database.

Figure 1c describes the communication pattern of the
algorithm broken down according to the context of the
message: resource-to-resource communication for the pur-
pose of an update, resource-to-manager communication for
the purpose of deciding whether to send a message, and

Three databases were generated: T512, T1014, and T20I6resource-to-manager communication for the purpose of de-
where the number after the T denotes the average transaceiding whether a rule is correct and generating new candi-

tion length and the number after the | stands for the av-

dates accordingly. At the beginning, many candidates are

erage pattern length. Each database contains a milliongenerated. Because the resource has not yet gathered infor-
transactions. Using standard, pair-wise independent hashmation fromk resources, the manager will give a positive
ing techniques, transactions are sampled from the databasanswer every time it is asked whether an update should be

to simulate the local database of each resource. Ex-

cept in Figure 2b, the privacy argument k always equals
10.

sent. This explains the large quantity of update messages in
the first database scan.

Another notable pattern is an increase in the amount of

At the beginning of the simulation each resource samplesmanager consultation messages. However, as time passes,
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this number declines, signifying that the result is in most References
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