
Privacy-Preserving Association Rule Mining in Large-Scale Distributed Systems

Assaf Schuster, Ran Wolff, Bobi Gilburd
Computer Science Department,

Technion – Israel Institute of Technology,
{assaf,ranw,bobi}@cs.technion.ac.il

Abstract

Data privacy is a major concern that threatens the
widespread deployment of data grids in domains such
as health-care and finance. We propose a unique ap-
proach for obtaining knowledge – by way of a data min-
ing model – from a data grid, while ensuring that the data
is cryptographically safe. This is made possible by an in-
novative, yet natural generalization for the accepted
trusted third party model and a new privacy-preserving
data mining algorithm that is suitable for grid-scale sys-
tems. The algorithm is asynchronous, involves no global
communication patterns, and dynamically adjusts to
changes in the data or to the failure and recovery of re-
sources. To the best of our knowledge, this is the first
privacy-preserving mining algorithm to possess these fea-
tures. Simulations of thousands of resources prove that our
algorithm quickly converges to the correct result while us-
ing reasonable communication. The simulations also prove
that the effect of the privacy parameter on both the con-
vergence time and the number of messages, is logarith-
mic.

1. Introduction

The objective of a data grid is to maximize the availabil-
ity and utilization of data that was often obtained through
the investment of much labor and federal capital. Maximal
utilization would be achieved if the owners of different data
(resources) were able to share it with each other and with the
research community at large – i.e., make it available for ev-
eryone. Nevertheless, this is frequently prohibited by legal
obligations or commercial concerns. Such restrictions usu-
ally do not apply to cumulative statistics of the data. Thus,
the data owners usually do not object to having a trusted
third party (such as a federal agency) collect and publish
these cumulative statistics, provided that they cannot be ma-
nipulated to obtain information about a specific record or a
specific data source. Trusted third parties are, however, dif-

ficult to find, and the procedure involved is necessarily com-
plicated and inefficient.

This scenario is most evident in the health maintenance
business. Health Maintenance Organizations (HMOs) have
a high interest in sharing medical data, both for public
health reasons, such as plague control and the evaluation
of different medical protocols, and for commercial reasons,
such as detecting medical fraud patterns or medical mis-
conduct. However, sharing medical data is very problem-
atic: it is legally forbidden to expose specific records – i.e.,
a patient’s medical record – and it is commercially undesir-
able to expose statistics about a single HMO – e.g., mortal-
ity rates or the average expenditure per client. Similar ex-
amples can be found in other domains, such as the finan-
cial domain in which it is desirable to share account infor-
mation in order to detect money laundering. In both these
cases the need for global statistics is so great that federal
agencies do collect them. Still, the procedures involved are
indeed complicated and, at least in the HMO domain, suf-
fer from regular information leaks with serious implications
for some HMOs.

Distributed data mining offers a way by which data can
be shared without compromising privacy. On the one hand,
data mining techniques have been shown to be a leading tool
for data analysis, and as such they are likely to satisfy re-
searchers’ needs as an interface to the data stored in the data
grid. On the other hand, the models produced by data min-
ing tools are statistical and thus satisfy the privacy concerns
of the data owners. Thus, different HMOs can choose to re-
veal their databases not for direct reading but rather to a dis-
tributed data mining algorithm that will execute at the dif-
ferent sites and produce a statistical model of the combined
database. That the algorithm produces statistics is not in it-
self sufficient: an HMO also has to make certain that the
data mining algorithm does not leak information through
its own operation. For instance, an algorithm in which each
HMO computes its mortality rate and then sends it over to
a polling station which computes the global statistics would
not meet this criterion because the polling station would be
informed of the mortality rate for each HMO. This calls for

a specific type of distributed data mining algorithm that is
privacy-preserving.

Privacy-preserving data mining was first introduced by
Agrawal and Srikant in 2000 [3]. The original idea pre-
sented there is to perturb the data by adding random trans-
actions to the database. These perturbations hide the orig-
inal data, but average out in the statistics – i.e., the same
data mining models are created regardless of the perturba-
tions. Perturbation fully guarantees data privacy and thus
this approach is considered sufficient for the sequential set-
ting. Yet in a distributed setting, where there are several data
sources, perturbation does not maintain the privacy of each
of the sources (e.g., the mortality rate for each HMO). Thus,
a different method must be employed in distributed settings.

An alternative approach to privacy-preserving data min-
ing is to replace each message exchange in an ordinary dis-
tributed data mining algorithm with a cryptographic prim-
itive that provides the same information without disclos-
ing the data of the participants: for example, replacing a
sum reduction by a cryptographically secured sum reduc-
tion in which the participants learn only the final sum and
not each other’s partial sums. When practiced well, this ap-
proach guarantees the privacy of both single records and
source statistics. However, all of the algorithms which have
taken this approach so far have failed to scale above a few
computational nodes. They all rely on cryptographic prim-
itives that are both global – requiring all-to-all communi-
cation patterns – and rigid – requiring that the primitive be
evaluated all over again if the data changes even slightly
or a node joins or leaves the system. That would be unac-
ceptable in a data grid system which is expected to scale
to hundreds of nodes (there are hundreds of HMOs in the
US alone) or even to tens of thousands of nodes (a typi-
cal HMO uses the services of hundreds of independent lab-
oratories, clinics, and medical specialists, all of which have
their separate databases), especially since communication is
to be performed at Internet speeds.

Consider the algorithm described in [10] for the same
distributed association rule mining problem that is the sub-
ject of this paper. On several occasions, that algorithm re-
quires that a message traverse all of the computing nodes
twice, one-by-one, and that the algorithm hang until the
message does so. Furthermore, if the data in even one part
of the distributed database changes just slightly, the whole
algorithm has to be executed all over again. The algorithm
pays no regard to the possibility that one of the nodes might
fail. Clearly, this is unacceptable in large-scale systems.

The main contribution of this paper is in presenting a
cryptographic privacy-preserving association rule mining
algorithm in which all of the cryptographic primitives in-
volve only pairs of participants and are thus scalable. We
use a non-private association rule mining algorithm as a ba-
sis, and replace the message that was sent by resources with

encrypted versions which the recipient cannot decrypt. By
virtue of the encryption scheme we use, oblivious counters,
a resource can still perform most of the steps required by
the non-private algorithm by itself.

Several steps require the assistance of a manager. Man-
agers are stateless entities, implemented as part of the data
grid infrastructure, whose sole purpose is to decrypt mes-
sages; thus, there can be many of them and they can be lo-
cated as near to the resource as required – possibly even on
the same machine. It is important to note that a manager
is not a trusted third party. Instead, using its ability to de-
crypt messages, it can help the resource perform those steps
without either of them learning anything other than the fi-
nal outcome of the algorithm.

Since the basic algorithm we use is extremely scalable
in itself, and since our transformation of it does not require
global operators, our algorithm can be shown to be scal-
able to millions of resources – well above the current re-
quirements of grid systems. Furthermore, the algorithm re-
sponds very efficiently to changes in the databases, espe-
cially if the changes are minute and do not affect the out-
come of the algorithm. A key quality of our algorithm is
that it offers a trade-off between the amount of privacy at-
tainable (measured in the size of the population on which
the statistics are evaluated) and the computational effort re-
quired to attain this privacy. Still, even when the maximal
security level is required, the algorithm maintains some of
its qualities (such as the efficient response to changes in the
data). Finally, the algorithm does not, as our analysis re-
veals, disclose any information other than the list of fre-
quent itemsets and the list of correct rules.

2. Related Work

The distributed association rule mining (ARM) prob-
lem has been studied for nearly a decade. Until recently,
however, none of the algorithms presented for this prob-
lem could scale above several dozens of participants. The
first scalable algorithm for the distributed ARM problem
was presented in [15]. Since our algorithm is based on that
work, we thoroughly describe it in Section 4. Nevertheless,
the algorithm does not preserve privacy; specifically, if a re-
source communicates with the system via a single neigh-
bor, then that neighbor will learn the resource’s statistics
(e.g., the mortality rate for that HMO).

Privacy-preserving data mining has received a lot of at-
tention in the past few years. In [3, 5], techniques based on
perturbing the original data before initiating the mining pro-
cess were used. However, this approach can only secure the
privacy of records and not of the sources (e.g., of the pa-
tients but not of the HMOs).

An alternative to the perturbation approach is to develop
cryptographically secured versions of the data mining al-

gorithm. This has been shown to be possible for three data
mining problems: distributed ARM (the same problem dis-
cussed in this paper) [10], ARM in vertically partitioned
data [14] – i.e., where each transaction is split among sev-
eral nodes, and decision tree induction [11]. The main prob-
lem with these three algorithms is that the cryptographic
primitives they use are global and rigid. The evaluation of
every primitive requires the participation of all of the nodes,
and if the data at even one of the nodes changes or a sin-
gle node joins or leaves the system, the process has to be
repeated from scratch. This means that none of these algo-
rithm can be employed in data grid scales.

3. Problem Definition

A data grid is composed of a group of resource nodes
St – computers which contain parts of the database – and a
group of management nodesMt – computers that manage
the system – all of which communicate by exchanging mes-
sages via an overlay network composed of a set of edgesEt.
The composition of the system may vary with time. That is,
St, Mt andEt may be different fromSt′ , Mt′ andEt′ . Nev-
ertheless, we assume that an underlying mechanism main-
tains a communication tree that spans all the resources. We
refer to the nodes ofSt asresources, and to those ofMt as
managers. We denoteEu

t the set of edges colliding with a
resourceu at timet.

Neither the resources nor the managers trust each other.
Instead, we make two accepted cryptographic assumptions
on them. The first is that they arehonest-but-curious(also
referred to assemi-honest) [7]: they follow the protocol but
may try to learn as much as they can from the computations
they make and from messages they receive. The honest-but-
curious model was found useful in many domains, includ-
ing data-mining [13, 10] and secure information sharing [1].
The second assumption is that colluding [7] is not allowed,
either between a resource and a manager (a similar assump-
tion is made in [13, 4]) or between two resources (as in [10])
or two managers.

The association rule mining (ARM) problem is tradi-
tionally defined as follows: LetI = {i1, i2, ..., im} be
the items in a certain domain. An itemset is some sub-
setX ⊆ I. A transactiont is also a subset ofI, associ-
ated with a unique transaction identifier. A databaseDB
is a list that contains|DB| transactions. Given an item-
setX and a databaseDB, Support (X, DB) is the num-
ber of transactions inDB which contain all the items ofX
andFreq (X, DB) = Support(X,DB)

|DB| . For some frequency
thresholdMinFreq ∈ [0, 1], we say that an itemsetX is
frequentin a databaseDB if Freq (X,DB) ≥ MinFreq
and infrequentotherwise. For two distinct frequent item-
setsX and Y , and a confidence thresholdMinConf ∈
[0, 1], we say the ruleX ⇒ Y is confident in DB if

Freq (X ∪ Y, DB) ≥ MinConf · Freq (X,DB). We call
confident rules between frequent itemsetscorrect and the
remaining rulesfalse. The solution of the ARM problem is
R [DB] – all the correct rules in the given database.

In many applications the database is updated over
time (for instance, in the HMO application, patient
records are accumulated), and hence,DBt will de-
note the database at timet andR [DBt] the rules that are
correct in that database. In distributed association rule min-
ing the database is also partitioned among the resources
(i.e., different HMOs connected to the data grid). We de-
note the union of partitions belonging to a group of re-
sourcesS ⊆ St by DBS

t ; that is,DBt equalsDBSt
t . When

the number of resources is large and the frequency of up-
dates is high, it may not be feasible to propagate the changes
to the entire system at the rate they occur. Thus, it is ben-
eficial if an incremental algorithm can compute ad hoc
results quickly and improve them as more data is propa-
gated. Such algorithms are calledanytime algorithms. The
performance of an anytime algorithm is measured by its av-
eragerecall andprecision. Let R̃u [DBt] be the ad hoc so-
lution known to the resourceu at time t. The recall and

precision of u at that time are
|R̃u[DBt]∩R[DBt]|

|R[DBt]| and
|R̃u[DBt]∩R[DBt]|

|R̃u[DBt]| . An anytime algorithm is said to be cor-

rect if during static periods, in which the database and the
system do not change, both the average recall and the av-
erage precision converge to one. An important measure of
efficiency for an anytime algorithm is the rate of that con-
vergence.

A distributed ARM algorithm is said to beprivacy-
preservingif an observer that has access to all of the data
of a single resource or a single manager (database, internal
variables, and all of the messages it received), plus some do-
main knowledgeH (e.g., the demographic characteristics of
a certain HMO clientele), does not learn more than can be
deduced from the resultR [DBt] andH. In other words,
that observer cannot outperform a random guesser that is
only givenR [DBt] andH, when computing any predicate
on the data. The algorithm is said to bek-resources-private
if the observer cannot outperform a random guesser that is
givenH and is allowed to choose a set ofk or more re-
sources (HMOs) –Sk ⊆ St – and told the rules that are cor-

rect in their joint databases –R
[
DBSk

t

]
. The algorithm is

said to bẽk-transactions-privateif that observer cannot out-
perform a random guesser that is givenH and is allowed to
choose a group of̃k transactions (patients) –dbk̃ ⊆ DBt –

and told the set of rules that are correct fromdbk̃ – R
[
dbk̃

]
.

For simplicity, in this paper we setk andk̃ to be equal and
define an algorithm ask-private if it is both k-resources-
privateandk-transactions-private.

4. Prerequisites

The work presented here relies on two bodies of re-
search: a scalable algorithm for association rule mining
which does not require global communication and a cryp-
tographic technique called oblivious counters. Following is
a short description of these methods.

4.1. A Scalable Distributed Association Rule Min-
ing Algorithm – Majority-Rule

In a previous paper [15] we describeMajority-Rule– a
highly scalable distributed ARM algorithm. The algorithm
is based on two main inferences: That the distributed ARM
problem is reducible to a sequence of majority votes, and
that if the vote is not tied, majority voting can be done by
a scalable algorithm – which we also present in that paper.
Since it turns out that the frequency of an overwhelming
number of candidate itemsets is significantly different from
MinFreq (i.e., the vote is not tied), the outcome of these two
observations is a local, and thus highly scalable, distributed
ARM algorithm.

The idea behind the scalable majority voting algorithm –
Scalable-Majority– is to have every node agree with its im-
mediate neighbors about the majority. In the case of a dis-
agreement with a neighbor, the node will share with that
neighbor the evidence it has for the majority. The node will
make sure it does not mislead its neighbor by taking care to
update it whenever that evidence is weakened as a result of
other updates or as a result of a change in its vote.

This is achieved by storing at each node its input bit
(its vote), the last message it sent to each of its neighbors,
and the last message it received from them. Each message
contains evidence which consists of two integers,count
and sum. The first is the number of input bits the mes-
sage counts. The latter is the number of those which are
set. Each pair of neighbors computes the evidence that has
been agreed upon:∆uv = ∆vu = sumuv + sumvu −
λ (countuv + countvu), wheresumuv andcountuv com-
prise the evidence stored in the last message sent fromu
to v, sumvu and countvu comprise the most recent evi-
dence sent fromv to u, andλ is the majority threshold. Ad-
ditionally, nodeu computes the total evidence it has been
informed of:∆u =

∑
v∈Nu

t
(sumvu − λcountvu), where

Nu
t is the set ofu’s neighbors plus{⊥} (which represents

u itself), count⊥u is defined as one, andsum⊥u is one if
u’s input bit is set and zero otherwise. Upon initialization,
each node that votes one sends this evidence to its neigh-
bors. Then, whenever∆u or ∆uv changes,u will evaluate
the following condition in order to decide whether it should
send its current evidence tov: ∆uv ≥ 0 and∆uv > ∆u

or ∆uv < 0 and ∆uv < ∆u. This is referred to as the
Majority-Rule Condition. If it evaluates true,u will sendv

the sum of the evidence collected fromu’s vote and its other
neighbors, with the result that∆uv be set to∆u.

To see howScalable-Majoritytranslates into an associ-
ation rule mining algorithmMajority-Rule, consider a ma-
jority vote in which the transactions vote over every candi-
date itemset, with each transaction voting one if it contains
the itemset and zero otherwise, and withλ set toMinFreq.
Similarly, to decide whether a rule is confident, the transac-
tions again must vote. This time only transactions that in-
clude the left-hand side of the rule vote, and their vote is
one if they contain the right-hand side and zero otherwise;
λ is set this time toMinConf.

It is left to show how candidates are generated. Note
thatMajority-Rulecandidates must be rules. This is because
Majority-Ruleis an anytime algorithm, and as such, it can-
not wait for termination before it produces rules. Here a
generalization of Apriori’s [2] criterion is used: Each re-
sourceu generates initial candidate rules of the form∅ ⇒
{i} for eachi ∈ I. Then, each time it updates the candidate
rule set, it generates, for each rule∅ ⇒ X ∈ R̃u [DBt], new
candidate rulesX \ {i} ⇒ {i} for all i ∈ X. Additionally,
the resource will look for pairs of rules iñRu [DBt] which
have the same left-hand side and right-hand sides that dif-
fer only in the last item –X ⇒ Y ∪{i1} andX ⇒ Y ∪{i2}.
For everyi3 ∈ Y , the resource will verify that the rule
X ⇒ Y ∪ {i1, i2} \ {i3} is also correct, and then gener-
ate the candidateX ⇒ Y ∪ {i1, i2}. It can be shown that
the minimal set of candidate rules is created whenR̃u [DBt]
is 100% precise.

4.2. Oblivious Counters

We denote public-key cryptosystems by(E, D):
Epub(m) is the encryption of a given plain textm us-
ing the public keypub and Dpriv(c) is the decryption
of a given cipher textc using the corresponding pri-
vate keypriv. As we deal with a single key-pair, we write
E (m) instead ofEpub (m) andD (c) instead ofDpriv (c).

A public-key cryptosystem(E,D) is calledprobabilis-
tic [9] if the encryption process involves, in addition to the
plain and public key, a random element, such that given
two ciphers encrypted with uniformly selected random el-
ements, it is hard to verify that they encode the same plain.

We denoteẼ (x) – the rerandomization ofE (x) – an-

other element in the cipher range, such thatD
(
Ẽ (x)

)
=

D (E (x)) but Ẽ (x) 6= E (x) with high probability.
A public-key cryptosystem(E,D, A+, A−) is calledad-

ditively homomorphicif there exist polynomial algorithms
A+ andA− such that for allE(x), E(y):

A+ (E (x) , E (y))) = E (x + y) ,

A− (E (x) , E (y)) = E (x− y) .

An additively homomorphic public-key cryptosystem can
be used to implement oblivious counters by which one
can add two ciphers without knowing their plain. By us-
ing A+ iteratively, one can easily calculateE (m · x) from
E (x) for somem ∈ N. In the interest of clarity, we mark
E (x) +̇E (y) for A+ (E (x) , E (y)), E (x) −̇E (y) for
A− (E (x) , E (y)), m∗̇E (x) for E (m · x), and

∑̇
E (xi)

for A+ (...A+ (A+ (E (x1) , E (x2)) , E (x3)) ...).
There are several cryptosystems which are both prob-

abilistic and additively homomorphic. In such cryptosys-
tems, the rerandomization operator can be implemented,

for example, byẼ (x) = E (x) +̇E (0). For implementing
the oblivious counters, the algorithm proposed in this paper
uses the popular Paillier cryptosystem [12] – an additively-
homomorphic probabilistic cryptosystem overZn. How-
ever, any other such cryptosystem can be used. Finally, we
note that in order to support the encryption of negative inte-
gers, standard shifting techniques can be applied.

5. K-Private Distributed Association Rule
Mining

We now describePrivate-Majority-Rule, ak-private dis-
tributed association rule mining algorithm. The master plan
of Private-Majority-Ruleis similar to that ofMajority-Rule:
the resources perform majority votes over candidate rules
to decide whether they are frequent and confident. How-
ever, in Private-Majority-Ruleall of the counters are en-
crypted into oblivious counters that cannot be decrypted by
the resources. This ensures that a resource can never dis-
cover the data of its neighbors. The only ones which can
decrypt the counters are managers; however, a manager will
never be given the oblivious counter directly. Instead, when-
ever a resource has to decide whether to send a message to
its neighbor, it performs a secure protocol with a manager,
by the end of which the resource learns whether the mes-
sage should be sent and the manager learns nothing. Also,
whenever new candidates should be generated, the resource
performs a similar protocol with a manager, by the end of
which the resource learns the new candidate set and noth-
ing more and the manager learns nothing.

The private majority voting procedure we use is simi-
lar to the one described in [6], with one important differ-
ence: In [6], the resource is not allowed to learn the ma-
jority. However, in privacy-preserving association rule min-
ing many majority votes are performed – one for each can-
didate – and those votes are dependent in the sense that a
vote taking place for∅ ⇒ {a, b} signifies that the major-
ity for both∅ ⇒ {a} and∅ ⇒ {b} is one. What this means
is that, unlike the model discussed in [6], our majority vot-
ing algorithm must remain privacy-preserving even though
a resource does learn the majority.

5.1. Private-Majority-RuleAlgorithm

Consider a system composed of resources running
Majority-Rule with all votes, and consequently all mes-
sages, encrypted in oblivious counters. Instead of maintain-
ing sumuv, countuv, sumvu, countvu, ∆u, and ∆uv, it
will maintainsumuv

enc, countuv
enc, sumvu

enc, countvu
enc, ∆u

enc,
and∆uv

enc – their encrypted versions.count counts trans-
actions. But, in order to maintain k-resources privacy, we
also need to count resources. For this purpose we add the
counternum. When the resource needs to send a neigh-
bor a message that sums the evidence provided by the rest of
its neighbors, it will use thė+ algorithm to sum the oblivi-
ous counters. Problems arise only when it needs to evaluate
the counters: when it needs to decide whether a mes-
sage should be sent or what the majority is. In both these
cases it must consult with a manager. Nevertheless, it is es-
sential that the manager not learn the contents of the oblivi-
ous counters.

Our first step, thus, is describing a secure primitive –
PrivateEvalCond(Algorithm 1) – by which a resource can
use a manager to evaluate a condition without disclosing to
the manager the contents of the respective oblivious coun-
ters. The primitive’s input is a tuple of encrypted values,
x1, . . . , xp, and a condition which should be evaluated on
them. The algorithm proceeds in three main steps: First, the
tuple is hidden amongM similar ones. Then, the group
of tuples is sent to a manager, which decrypts them all
and returns a vector containing the results of evaluating the
condition on each tuple. Finally, the resource will choose
the true result from amongst the returned values. A re-
source will use this primitive on two occasions. The first
is when its input has changed and it has to decide whether
to update a neighbor. The condition in this case is that,
for the candidate rule considered, either theMajority-Rule
condition evaluates true, oṙ

∑
v∈Nu

t
countuv < k (mean-

ing the resource does not retaink-transactions privacy), or∑̇
v∈Nu

t
numuv < k (meaning the resource does not retain

k-resources privacy). The second occasion is when the re-
source needs to know whether the rule is correct; here, the
condition is thatSign (∆u) ≥ 0, and

∑̇
v∈Nu

t
countuv ≥ k,

and
∑̇

v∈Nu
t
numuv ≥ k.

Using this secure primitive,Private-Majority-Rulecon-
tinues as follows: Where a resourceu in Majority-Rule
would evaluate the condition on∆u and ∆uv to decide
whether a message should be sent to a neighborv, in
Private-Majority-Ruleu will initiate the PrivateEvalCond
primitive and send the message if the result is true. When
u needs to generate new candidates, it will again initiate
thePrivateEvalCondprimitive in order to discover, for each
candidate whose oblivious counters have changed, whether
the rule is correct. It will then generate new candidates
according to the criteria defined in theMajority-Rule al-

Algorithm 1 PrivateEvalCondp (Cond, x1, . . . , xp)
Inputs: Romeo (the resource) knowsE (x1) , . . . , E (xp),
and the public key. Maria (the manager) knows the private
key. They both knowX1, . . . , Xp – the distributions of val-
ues ofx1, . . . , xp.
Outputs: Romeo should learn onlyCond (x1, . . . , xp).
Maria should learn nothing.
Privacy parameters:T, M .
The algorithm:

1. For eachi ∈ {1, . . . , p}, Romeo randomly generates
vectorAi [1, . . . , M] of values from the cipher range,
whereAij ← xiti, xi ∼ Xi, ti ∼ U [1, . . . , T], and
encrypts it usingpub.

2. Romeo selectsm ∼ U [1, . . . , M].
3. For eachi ∈ {1, . . . , p}, Romeo setsAi [m] ←

ti∗̇E (xi) whereti ∼ U [1, . . . , T].
4. Romeo sendsA1, . . . , Ap to Maria.
5. For each i ∈ {1...M}, Maria sets B [i] ←

Cond (D (A1 [i]) , . . . , D (Ap [i])). Finally, she sends
B to Romeo.

6. Romeo’s output isB [m].

gorithm. The algorithm ofPrivate-Majority-Ruleis given
in Algorithm 3. The private majority voting procedure –
Private-Scalable-Majority– is given in Algorithm 2.

Privacy analysis.To show thatPrivate-Majority-Ruleis
indeedk-private we make three observations: The first is
that as long as data gathered for a rule is not based on at
leastk resources and at leastk transactions, the resource be-
havior is independent of the data and therefore does not dis-
close anything about it. The second observation is that the
PrivateEvalCondprimitive does not leak information. This
is because the chances of guessing where the true inputs are
hidden are lower than1M . Moreover, consecutive calls are
independent and thus can not assist in boosting this proba-
bility.

The third, somewhat more involved observation is that
whenu’s vote changes, it is impossible to guess the change
unless it affects the majority in a group (of either transac-
tions or resources) of sizek. Assume, for example, thatu’s
vote does change the majority in such a group. In this case, a
random guesser that is given the majority before the change,
the majority after the change, and the information that there
has been a change, would do just as well in guessing the ac-
tual change. Now assume that the change inu’s vote does
not affect the majority and suppose, first, that the major-
ity is of ones. We claim that the resulting pattern of mes-
sages is independent of the data and thus nothing can be
learned by looking at such patterns. This is true because,
in Private-Scalable-Majority, sum is first decreased below
the new value and then increased to the new value (see Al-
gorithm 2). Thus, the change will first decrease∆u and then
increase it. If messages are sent, they will be in response to

Algorithm 2 Private-Scalable-Majority- Algorithm for a
resource
Input: 〈sum, count, λ〉 – Private dynamicsum andcount
registers, and the rational majority ratioλ = λn/λd.

Local variables: The set of colliding edgesEu
t , the privacy

parameterk, and the managers’ common public key.

Definitions: Nu
t = {⊥} ∪ {v ∈ Vt : uv ∈ Eu

t }, sum⊥u
enc =

E (sum), count⊥u
enc = E (count), num⊥u

enc = E (1),
∆u

enc =
∑̇

v∈Nu
t

(
λd∗̇sumvu

enc−̇λn∗̇countvu
enc

)
, ∆uv

enc =
λd∗̇

(
sumvu

enc+̇sumuv
enc

) −̇λn∗̇
(
countvu

enc+̇countuv
enc

)
.

Output(): Return the output ofPrivateEvalCond3 with
mu

t , whereCond (x1, x2, x3) = (x1 ≥ k)
∧

(x2 ≥ k)
∧

(x3 ≥ 0), using
∑̇

v∈Nu
t
countvu

enc,
∑̇

v∈Nu
t
numvu

enc, ∆u
enc,

as the inputsx1, x2, x3 respectively.

Update(v): sumuv
enc ←

∑̇
w 6=v∈Nu

t

˜sumwu
enc, countuv

enc ←∑̇
w 6=v∈Nu

t

˜countwu
enc, numuv

enc ← ∑̇
w 6=v∈Nu

t
ñumwu

enc.
Send〈sumuw

enc, countuw
enc, numuw

enc〉 to v.

MajorityCond(v): Return the output ofPrivateEvalCond4
with mu

t , where Cond (x1, x2, x3, x4) = (x1 < k)
∨

(x2 < k)
∨

(x3 < 0
∧

x4 < 0)
∨

(x3 ≥ 0
∧

x4 > 0), us-
ing

∑̇
v∈Nu

t
countvu

enc,
∑̇

v∈Nu
t
numvu

enc, ∆u
enc, ∆uw

enc−̇∆u
enc

as the inputsx1, x2, x3, x4 respectively.

On initialization for each uv ∈ Eu
t , or on failure or re-

covery of a neighborv: Setsumvu
enc, sumuv

enc, countvu
enc,

countuv
enc, numvu

enc andnumuv
enc to E (0).

On receiving 〈sum′, count′, num′〉 from v: Set
sumvu

enc ← sum′, countvu
enc ← count′, numvu

enc ← num′.

On change insum from s to s′: Setsum to min(s, s′)−
1 and call OnChange(), then setsum to max(s, s′) +
1 and call OnChange(), finally set sum to s′ and call
OnChange().

On a change in one of the local counters –OnChange():
For each neighborv: if MajorityCond(v), call Update(v).

the decrease. An increase in∆u does not trigger messages
if ∆u is already positive. The same argument holds when
there is a majority of zeroes. Hence, the pattern of mes-
sages is indeed independent of the data, and nothing can be
learnt from it.

6. Experimental Results

To evaluate the performance ofPrivate-Majority-Rule,
we implemented a simulator capable of running thou-
sands of simulated resources. The network topol-
ogy was generated using the BRITE topology gen-
erator [http://www.cs.bu.edu/brite]. Syn-
thetic databases were produced using the stan-

Algorithm 3 Private-Majority-Rule- Algorithm for a re-
source
Inputs of resourceu: Local databaseDBu

t , the set of col-
liding edgesEu

t , the set of itemsI, the frequency threshold
MinFreq, the confidence thresholdMinConf, and the man-
agers’ public key.

Output of resourceu: The ad hoc set of rules̃Ru [DBt].
Local variables: 〈X ⇒ Y, λ〉 denotes a candidate-rule
X ⇒ Y with desired majority thresholdλ. C is a set of
candidate-rules together with countersr.sum andr.count,
both initially set to zero.

Initialization: SetC ← {〈∅ ⇒ {i} , MinFreq〉 |i ∈ I}.
Repeat the following continuously:

• For each ruler ∈ C for which there is no active
Private-Scalable-Majorityinstance, initiate one using
〈r.sum, r.count, r.λ〉 as the input.

• Cyclically, read a few transactions from the database
DBu

t . For each transactionT , and rule r =
〈X ⇒ Y, λ〉 ∈ C which was generated afterT was last
read: If X ⊆ T , increaser.count. If X ∪ Y ⊆ T , in-
creaser.sum.

• Once every few cycles:

– SetR̃u [DBt] to the set of rulesr ∈ C which their cor-
respondingPrivate-Scalable-Majorityinstance out-
puts true.

– For eachr = 〈∅ ⇒ X, MinFreq〉 ∈ R̃u [DBt], i ∈ X:
if r′ = 〈X \ {i} ⇒ {i} , MinConf〉 6∈ C, addr′ to C.

– For each r1 = 〈X ⇒ Y ∪ {i1} , λ〉 , r2 =
〈X ⇒ Y ∪ {i2} , λ〉 ∈ R̃u [DBt], i1 < i2: if
r′ = 〈X ⇒ Y ∪ {i1, i2} , λ〉 6∈ C and ∀i3∈Y

〈X ⇒ Y ∪ {i1, i2} \ {i3} , λ〉 ∈ R̃u [DBt], addr′ to
C.

On receiving a Private-Scalable-Majoritymessage rele-
vant to rule r = 〈X ⇒ Y, λ〉, from a neighbor v: If
r 6∈ C, add it toC. If r′ = 〈∅ ⇒ X ∪ Y, λ〉 6∈ C, add
r′ to C as well. Anyway, forward the message to the appro-
priate localPrivate-Scalable-Majorityinstance.

dard generation tool from IBM Quest group
[http://www.almaden.ibm.com/cs/quest].
Three databases were generated: T5I2, T10I4, and T20I6,
where the number after the T denotes the average transac-
tion length and the number after the I stands for the av-
erage pattern length. Each database contains a million
transactions. Using standard, pair-wise independent hash-
ing techniques, transactions are sampled from the database
to simulate the local database of each resource. Ex-
cept in Figure 2b, the privacy argument k always equals
10.

At the beginning of the simulation each resource samples

10,000 transactions, which it processes in batches of about
150. After processing each batch, it decides what messages
should be sent, and on every fifth batch it also communi-
cates with its manager to create new candidate rules. We
simulate dynamic databases by incrementing every resource
with ten additional transactions at each batch. We simulate
dynamic composition changes by using 50 resources at the
outset and adding an average of five at each batch, stop-
ping at about 2,500 resources. Transactions continue to be
added and messages exchanged until the systems reach a
near-stasis (the computation never really terminates because
transactions continue to be added). Throughout this process
we measure the recall and precision compared to the precal-
culated result, of the result at each resource. In addition, we
count the number and type of messages that are exchanged.

The main results are presented in Figure 1. Figure 1a de-
scribes the recall of the algorithm. In all three databases,
by the time each resource scans its part of the database for
the second time, the recall has already reached 90%. This
is in comparison to just one scan in theMajority-Rulealgo-
rithm [15]. In thePrivate-Majority-Rulealgorithm, a rule
cannot be found correct before the algorithm gathers infor-
mation fromk resources. Thus, candidate generation occurs
more slowly, and hence the delay in the convergence of the
recall.

Figure 1b describes the precision of the algorithm. The
average precision also climbs above 90% in about two
database scans. An interesting phenomenon is the decline
in precision for the T20.I6 database toward the end of the
first scan. A deeper look reveals that the choice ofMinFreq
and MinConf led to the creation, around that time, of a
very large number of candidate rules. Sheer numbers dic-
tate that only a few of these candidates would be false pos-
itives. However, since the number of correct rules is only
about a hundred, these false positives led to a noticeable de-
cline in precision. Note, however, that the false positives
were quickly identified and did not significantly impair the
convergence rate of the precision for this database.

Figure 1c describes the communication pattern of the
algorithm broken down according to the context of the
message: resource-to-resource communication for the pur-
pose of an update, resource-to-manager communication for
the purpose of deciding whether to send a message, and
resource-to-manager communication for the purpose of de-
ciding whether a rule is correct and generating new candi-
dates accordingly. At the beginning, many candidates are
generated. Because the resource has not yet gathered infor-
mation fromk resources, the manager will give a positive
answer every time it is asked whether an update should be
sent. This explains the large quantity of update messages in
the first database scan.

Another notable pattern is an increase in the amount of
manager consultation messages. However, as time passes,

0

20

40

60

80

100

0.01 0.1 1 10

A
ve

ra
ge

 r
ec

al
l (

%
)

transactions read (x 10,000)

(a) Recall

T5I2
T10I4
T20I6

0

20

40

60

80

100

0.01 0.1 1 10

A
ve

ra
ge

 p
re

ci
si

on
 (

%
)

transactions read (x 10,000)

(b) Precision

T5I2
T10I4
T20I6

0

2

4

6

8

10

12

0.01 0.1 1 10

in

-f
lig

ht
 m

es
sa

ge
s

pe
r

re
so

ur
ce

 (
x

1,
00

0)

transactions read (x 10,000)

(c) Communication

Res.<=>res. update
Res.<=>mngr. cond.
Res.<=>mngr. can.

Total

Figure 1. Recall, precision, and communication load of Private-Majority-Rule

this number declines, signifying that the result is in most
cases negative. Note however that the number of messages
to the manager does not decline, but rather stabilizes to a
few condition messages for each candidate generation mes-
sage. This is due to our dynamic database simulation – we
continuously add transactions to the database. Every change
in the counters leads the resource to consult the manager
each time a transaction is added.

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0.01 0.1 1 10 100

tr

an
s.

 (
x

10
,0

00
)

un
til

 9
0%

 r
ec

al
l

resources (x 10,000)

(a) Scalability

2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
3.1

0 5 10 15 20 25

tr

an
s.

 (
x

10
,0

00
)

un
til

 9
0%

 r
ec

al
l

k

(b) The effect of the privacy parameter

Figure 2. Scalability and the effect of k

Two additional experiments are shown in Figure 2. Fig-
ure 2a presents the number of transactions read until 90%
recall is reached on a single itemset, when the number of re-
sources is increased towards a million. The curve converges
to a constant and, hence, the algorithm is infinitely scalable.
Figure 2b measures the number of transactions read until
90% recall is reached when run over the database T10I4,
versus the privacy argumentk. The graph shows that for
each increase of ten in the privacy parameterk, there is a
penalty of about one thousand transactions.

References

[1] R. Agrawal, A. Evfimievski, and R. Srikant. Information
sharing across private databases. InProc. of ACM SIG-
MOD‘03 Conference, June 2003.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules. InProc. of VLDB’94, pages 487–499, Santi-
ago, Chile, September 1994.

[3] R. Agrawal and R. Srikant. Privacy-preserving data min-
ing. In Proc. of ACM SIGMOD’00, pages 439–450, Dallas,
Texas, USA, May 14-19 2000.

[4] O. Baudron and J. Stern. Non-interactive private auctions. In
Proc. of Financial Cryptography 2001. Springer-Verla, 2001.

[5] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Pri-
vacy preserving mining of association rules. InProc. of ACM
SIGKDD’02, pages 217–228, Canada, July 23-26 2002.

[6] B. Gilburd, A. Schuster, and R. Wolff. Privacy-preserving
majority vote in peer-to-peer systems.(submitted), 2003.

[7] O. Goldreich. Secure multi-party computation, 2002.
http://www.wisdom.weizmann.ac.il/˜oded/
PS/prot.ps .

[8] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game or a completeness theorem for protocols with
honest majority. InProc. of STOC‘87, pages 218–229, 1987.

[9] S. Goldwasser and S. Micali. Probabilistic encryption.Jour-
nal of Computer and System Sciences, 28:270–299, 1984.

[10] M. Kantarcioglu and C. Clifton. Privacy-preserving dis-
tributed mining of association rules on horizontally parti-
tioned data. InProc. of DMKD’02, June 2002.

[11] Y. Lindell and B. Pinkas. Privacy preserving data mining.
Proc. of Crypto’00, LNCS, 1880:20–24, August 2000.

[12] P. Paillier. Public key cryptosystems based on composite de-
gree residuosity classes. InProceedings of Eurocrypt ’99,
pages 223–238. Springer-Verlag, 1999.

[13] B. Pinkas. Cryptographic techniques for privacy-preserving
data mining. ACM SIGKDD Explorations Newsletter,
4(2):12–19, December 2002.

[14] J. Vaidya and C. Clifton. Privacy preserving association
rule mining in vertically partitioned data. InProc. of ACM
SIGKDD‘02, Edmonton, Alberta, Canada, July 2002.

[15] R. Wolff and A. Schuster. Association rule mining in peer-
to-peer systems. InProc. ICDM‘03, November 2003.

