A High-Performance Distributed Algorithm for Mining Association Rules*

Assaf Schuster, Ran Wolff, and Dan Trock
Technion — Israel Institute of Technology
Email: {assaf,ranw,dtrock } @cs.technion.ac.il

Abstract

We present a new distributed association rule mining
(D-ARM) algorithm that demonstrates superlinear speedup
with the number of computing nodes. The algorithm is
the first D-ARM algorithm to perform a single scan over
the database. As such, its performance is unmatched by
any previous algorithm. Scale-up experiments over stan-
dard synthetic benchmarks demonstrate stable run time re-
gardless of the number of computers. Theoretical analysis
reveals a tighter bound on error probability than the one
shown in the corresponding sequential algorithm.

1 Introduction

The economic value of data mining is today well es-
tablished. Most large organizations regularly practice data
mining techniques. One of the most popular techniques is
association rule mining (ARM), which is the automatic dis-
covery of pairs of element sets that tend to appear together
in a common context. An example would be to discover that
the purchase of certain items (say tomatoes and lettuce) in a
supermarket transaction usually implies that another set of
items (salad dressing) is also bought in that same transac-
tion.

Like other data mining techniques that must process
enormous databases, ARM is inherently disk-I/O intensive.
These 1/O costs can be reduced in two ways: by reduc-
ing the number of times the database needs to be scanned,
or through parallelization, by partitioning the database be-
tween several machines which then perform a distributed
ARM (D-ARM) algorithm. In recent years much progress
has been made in both directions.

The main task of every ARM algorithm is to discover the
sets of items that frequently appear together — the frequent
itemsets. The number of database scans required for the
task has been reduced from a number equal to the size of

*This work was supported in part by Microsoft Academic Foundation
and by THE ISRAEL SCIENCE FOUNDATION founded by the Israel
Academy of Sciences and Humanities.

the largest itemset in Apriori [3], to typically just a single
scan in modern ARM algorithms such as Sampling and DIC
[17,5].

Much progress has also been made in parallelized algo-
rithms. With these, the architecture of the parallel system
plays a key role. For instance, many algorithms were pro-
posed which take advantage of the fast interconnect, or the
shared memory, of parallel computers. The latest develop-
ment with these is [18], in which each process makes just
two passes over its portion of the database.

Parallel computers are, however, very costly. Hence,
although these algorithms were shown to scale up to 128
processors, few organizations can afford to spend such re-
sources on data mining. The alternative is distributed al-
gorithms, which can be run on cheap clusters of standard,
off-the-shelf PCs. Algorithms suitable for such systems
include the CD and FDM algorithms [2, 6], both paral-
lelized versions of Apriori, which were published shortly
after it was described. However, while clusters may eas-
ily and cheaply be scaled to hundreds of machines, these
algorithms were shown not to scale well [15]. The DDM
algorithm [15], which overcomes this scalability problem,
was recently described. Unfortunately, all the D-ARM al-
gorithms for share-nothing machines scan the database as
many times as Apriori. Since many business databases con-
tain large frequent itemsets (long patterns), these algorithms
are not competitive with DIC and Sampling.

In this work we present a parallelized version of the Sam-
pling algorithm, called D-Sampling. The algorithm is in-
tended for clusters of share-nothing machines. The main
obstacle of this parallelization, that of achieving a coher-
ent view of the distributed sample at reasonable communi-
cation costs, was overcome using ideas taken from DDM.
Our distributed algorithm scans the database once, just like
the Sampling algorithm, and is thus more efficient than any
D-ARM algorithm known today. Not only does this algo-
rithm divide the disk-I/O costs of the single scan by parti-
tioning the database among several machines, but also uses
the combined memory to linearly increase the size of the
sample. This increase further improves the performance of
the algorithm because the safety margin required in Sam-

pling decreases when the (global) sample size increases.

Extensive experiments on standard synthetic bench-
marks show that D-Sampling is superior to previous algo-
rithms in every way. When compared to Sampling — one of
the best sequential algorithms known today — it offers super-
linear speedup. When compared to FDM, it improves run-
time by orders of magnitude. Finally, on scalability tests, an
increase in both the number of computing nodes and the size
of the database does not degrade D-Sampling performance.
FDM, on the other hand, suffers performance degradation
in these tests.

The rest of this paper is structured as follows: We con-
clude this section with some notations and a formal def-
inition of the D-ARM problem. In the next section we
present relevant previous work. Section 3 describes the D-
Sampling algorithm, and section 4 provides the required sta-
tistical background. Section 5 describes the experiments we
conducted to verify D-Sampling performance. We conclude
with some open research problems in section 6.

1.1 Notation and Problem Definition

Let I = {i1,42, ..., } be the items in a certain domain.
An itemset is a subset of I. A transaction t is also a subset
of I which is associated with a unique transaction identifier
—TID. A database DB is a list of such transactions. Let
DB = {DB',DB?,...,DB"} be a partition of DB into
n parts. Let S be a list of transactions which were sam-
pled uniformly from DB, and let S = {S*, $%,...,S™} be
the partition of S induced by DB. For any itemset X and
any group of transactions A, Support (X, A) is the number
of transactions in A which contain all the items of X and
Freq(X,A) = S””#ﬂ(x’m. We call Freq (X, DB?) the
local frequency of X in partition ¢ and Freq (X, DB) its
global frequency; likewise, we call Freq (X , Si) the esti-
mated local frequency of X in partition ¢ and Freq (X, .S)
its estimated global frequency.

For some frequency threshold 0 < MinFreq < 1, we
say that an itemset X is frequent in A if Freq(X,A) >
MinF'req and infrequent otherwise. If A is a sample, we
say that X is estimated frequent or estimated infrequent.
If A is a partition, we say that X is locally frequent, and
if A is the whole database, then X is globally frequent.
Hence an itemset may be estimated locally frequent in the
kth partition, globally infrequent, etc. The group of all
itemsets with frequency above or equal to fr in A is called
Fyr [A]. The negative border of Fy, [A] is all those item-
sets which are not themselves in F, [A] but have all their
subsets in Fy, [A]. Finally, for a pair of globally frequent
itemsets X and Y such that X N'Y = @, and some con-
fidence threshold 0 < MinConf < 1, we say the rule
X = Y is confident if and only if Freq(X UY,DB) >
MinConf - Freq (X, DB).

Definition 1 Given a partitioned database DB, and given
MinFreq and MinConf, the D-ARM problem is to find
all the confident rules between frequent itemsets in DB.

2 Previous Work

Since its introduction in 1993 [1], the ARM problem has
been studied intensively. Many algorithms, representing
several different approaches, were suggested. Some algo-
rithms, such as Apriori, Partition, DHP, DIC, and FP-growth
[3, 14, 11, 5, 8], are bottom-up, starting from itemsets of
size 1 and working up. Others, like Pincer-Search [10], use
a hybrid approach, trying to guess large itemsets at an early
stage. Most algorithms, including those cited above, adhere
to the original problem definition, while others search for
different kinds of rules [5, 16, 13].

Algorithms for the D-ARM problem usually can be seen
as parallelizations of sequential ARM algorithms. The CD,
FDM, and DDM [2, 6, 15] algorithms parallelize Apriori
[3], and PDM [12] parallelizes DHP [11]. The major dif-
ference between parallel algorithms is in the architecture of
the parallel machine. This may be shared memory as in the
case of [18], distributed shared memory as in [9], or shared
nothing as in [2, 6, 15].

One of the best sequential ARM algorithms — Sampling
— was presented in 1996 by Toivonen [17]. The idea be-
hind Sampling is simple. A random sample of the database
is used to predict all the frequent itemsets, which are then
validated in a single database scan. Because this approach
is probabilistic, and therefore fallible, not only the frequent
itemsets are counted in the scan but also their negative bor-
der. If the scan reveals that itemsets that were predicted
to belong to the negative border are frequent then a second
scan is performed to discover whether any superset of these
itemsets is also frequent. To further reduce the chance of
failure, Toivonen suggests that mining be performed using
some low_fr < MinFreq, and the results reported only if
they pass the original MinF'req threshold. He also gives a
heuristic which can be used to determine Jow_fr. The cost
of using low_fr is an increase in the number of candidates.
The Sampling algorithm and the DIC algorithm (Brin 1997
[5]) are the only single-scan ARM algorithms known today.
The performance of the two is thus unrivaled by any other
sequential ARM algorithm.

The algorithm presented here combines ideas from sev-
eral groups of algorithms. It first mines a sample of the
database and then validates the result and can, thus, be seen
as a parallelization of the Sampling algorithm [17]. The
sample is stored in a vertical trie structure that resembles
the one in [14, 4], and it is mined using modifications of the
DDM [15] algorithm, which is Apriori-based.

3 D-Sampling Algorithm

All distributed ARM algorithms that have been pre-
sented until now are Apriori based and thus require mul-
tiple database scans. The reason why no distributed form
of Sampling was suggested in the six years since its pre-
sentation may lie in the communication complexity of the
problem. As we have seen, the communication complexity
of D-ARM algorithms is highly dependent on the number of
candidates and on the noise level in the partitioned database.
When Sampling reduces the database through sampling and
lowers the Min F'req threshold, it greatly increases both the
number of candidates and the noise level. This may render
a distributed algorithm useless.

This is the reason that the reduced communication com-
plexity of DDM seems to offer an opportunity. The main
idea of D-Sampling is to utilize DDM to mine a dis-
tributed sample using low_fr instead of MinFreq. After
Fiow_gr [S] has been identified, the partitioned database is
scanned once in parallel to find the actual frequencies of
Frow_fr [E] and its negative border. Those frequencies can
then be collected and rules can be generated from itemsets
more frequent than MinF'req.

We added three modifications to this scheme. First, al-
though the given DDM is levelwise, here it is executed on
a memory resident sample. Thus we could modify DDM
to develop new itemsets on-the-fly and calculate their esti-
mated frequency with no disk-I/0O. Second, a new method
for the reduction of MinF'req to low_fr yielded two ad-
ditional benefits: it is not heuristic, i.e., our error bound is
rigorous, and it produces many less candidates than the rig-
orous method suggested previously. Third, after scanning
the database, it would not be wise to just collect the fre-
quencies of all candidates. Since these candidates were cal-
culated according to the lowered threshold, few of them are
expected to have frequencies above the original MinF'req.
Instead, we run DDM once more to decide which candi-
dates are frequent and which are not. We call the modified
algorithm D-Sampling (Algorithm 1).

3.1 Algorithm

D-Sampling begins by loading a sample into memory.
The sample is stored in a trie — a lexicographic tree. This trie
is the main data structure of D-Sampling and is accessed by
all its subroutines. Each node of the trie stores, in addition
to structural information (parents, descendants etc.), the list
of TIDs of those transactions that include the itemset as-
sociated with this node. These lists are initialized from the
sample for the first level of the trie; when a new trie node
— and itemset — are developed, the T'I D lists of two of the
parent nodes are intersected to create the 71D list of the
new node.

The first step of D-Sampling is to run a modification
of DDM on the distributed sample. Then, in order to set
low_fr, the algorithm enters a loop; in each cycle through
the loop it calls another DDM derivative called M-Max to
mine the next M estimated-frequent itemsets. M is a tun-
able parameter we set to about 100. After it finds those
additional itemsets, D-Sampling reduces low_fr to the es-
timated frequency of the least frequent one and re-estimates
the error probability using a formula described in section 4.
When this probability drops below the required error prob-
ability, the loop ends. Then D-Sampling creates the final
candidate set C' by adding to Fjo._s, [S] its negative bor-
der.

Algorithm 1 D-Sampling

For node i out of n

Input:

MinFreq, MinConf, DB, s, M, §

Qutput:

The set of confident associations between globally frequent
itemsets

Main:

Set p_error < Llow_fr < MinFreq

Load a sample S*? of size s from DB? into memory
Initialize the trie with all the size-1 itemsets and calculate
their T'ID lists

Fiow-_fr [S] < MDDM (MinFreq)

While p_error > §

1. Frow_fr F] — Frow_fr [m UM_Max (M)

2. Set low_fr to the frequency of the least frequent item-
set in Fiouw_gr [S]

3. Set p-error to the new error bound according to
MinFreq, low_fr and Fioy_gr [E]

Let C be Fiow_gr [3] U Negative_Border (ﬂow_fr [3])
Scan the database and compute F'req (c, DBi) foreachc €
C'. Update the frequencies in the trie to the computed ones
Compute FMinFreq |[DB] by running
MDDM (MinFreq), this time with the actual fre-
quencies

If exists ¢ € Fuinrreq [DB] such that ¢ & Fiow_pr [S]
(i.e., from negative border) report failure

Gen_Rules (Fatinpreq [DB] , MinConf)

Once the candidate set is established, each partition of
the database is scanned exactly once and in parallel, and the
actual frequencies of each candidate are calculated. With
these frequencies D-Sampling performs yet another round
of the modified DDM. In this round the original MinFreq
is used; thus, unless there is a failure, this round should
never develop a candidate which is outside the negative bor-

der. If indeed no failure occurs, then all frequent itemsets
will be evaluated according to the actual frequencies which
were found in the database scan. Hence, after this round it
is known which of the candidates in C' are globally frequent
and which are not. In this case, rules are generated from
FuinFreq | DB] using the known global frequencies.

If an itemset belonging to the negative border of
Fiow_r [S] does turn out to be frequent, this means that D-
Sampling has failed: a superset of that candidate, which was
not counted, might also turn out to be frequent. In this case
we suggest the same solution offered by Toivonen: to create
a group of additional candidates that includes all combina-
tions of anticipated and unanticipated frequent itemsets, and
then perform an additional scan. The size of this group is
limited by the number of anticipated frequent itemsets times
the number of possible combinations of unanticipated fre-
quent itemsets. Since failures are very rare events, and the
probability of multiple failure is exponentially small, the
additional scan will incur costs that are of the same scale as
the first scan.

3.2 MDDM - A Modified Distributed Decision
Miner

The original DDM algorithm, as described in [15], is lev-
elwise. When the database is small enough to fit into mem-
ory, the levelwise structure of the algorithm becomes super-
fluous. Modified Distributed Decision Miner, or MDDM
(Algorithm 2), therefore starts by developing all the locally
frequent candidates, regardless of their size. It then contin-
ues to develop candidates whenever they are required, i.e.,
when all their subsets are assumed frequent (according to
the local hypothesis - P) or when another node refers to the
associated itemset.

The remaining steps in MDDM are the same as in DDM.
Each party looks for itemsets for which the global hypoth-
esis and local hypothesis disagree and communicate their
local counts to the rest of the parties. When no such item-
set exists, the party passes (it can return to activity if new
information arrives). If all of the parties pass, the algo-
rithm terminates and the itemsets which are predicted to be
frequent according to the public hypothesis H are the esti-
mated globally frequent ones. If a message is received for
an itemset which has not yet been developed, it is developed
on-the-fly and its local frequency is calculated.

3.3 M-Max Algorithm

The modified DDM algorithm identifies all itemsets with
frequency above MinFreq. D-Sampling, however, re-
quires a further decrease in the frequency of itemsets which
are included in the database scan. The reason for this, as
we shall see in section 4, is that three parameters affect the

Algorithm 2 Modified Distributed Decision Miner
For node i out of n

Input:
fr — the target frequency
Qutput:
Fir [S]
Definitions:
. Sj|Freq (X, 89)
P(X,S") = Z |
JEG(X) 151
> |S7| Freq (X, S%)
JEG(X) |S|
Yica(x) |S7| Freq (X,57)
- G(X)#0
H(X)= EjeG(X) 17| (X) #
0 otherwise
Main:

Develop all the candidates which are more frequent than fr
according to P
Do

e Choose a candidate X that was not yet chosen and
for which either H (X) < fr < P(X,S%) or
P (X,8") < fr <H(X)

e Broadcastm = (id (X), Freq (X, S%))
e If no such itemset exists broadcast {pass)

Until |Passed| = N

R +all X with H (X) > fr

Return R

When node i receives a message m from party j:

1. If m = (pass) insert j into Passed

2. Elsem = (id (X), Freq (X, 7))
If j € Passed remove j from Passed
If X was not developed then: develop it, set G (X) =

(), Calculate X .tid_list by intersecting the T 1D lists of

two of X’s immediate subsets and set Freg (X, S%) =
| X.tid_list|
[S%]

Insert j to G (X)
Recalculate H (X) and P (X, S%)

chances for failure. These are the size of the sample N,
the size of the negative border, and the estimated frequency
of the least frequent candidate. The first parameter is given,
the second is a rather arbitrary value which we can calculate
or bound, and the last parameter is the one we can control.

The frequency of the least frequent candidate can be con-
trolled by reducing low_fr. However, this must be done
with care: lowering the frequency threshold increases the
number of candidates. This increase depends on the distri-
bution of itemsets in the database and is therefore nondeter-
ministic. The larger number of candidates affects the scan
time: the more candidates you have, the more comparisons
must be made per transaction. In a distributed setting, the
number of candidates is also strongly tied to the communi-
cation complexity of the algorithm.

To better control the reduction of low_fr, we propose
another version of DDM called M-Max (Algorithm 3). M-
Max increases the number of frequent itemsets by a given
factor rather than decreasing the threshold value by an ar-
bitrary value. Although worst case analysis shows that an
increase of even one frequent itemset may require that any
number of additional candidates be considered, the number
of such candidates tends to remain small and roughly pro-
portional to the number of additional frequent itemsets. We
complement this algorithm with a new bound for the error
(presented in section 4). The combined scheme is both rig-
orous and economical in the number of candidates.

The M-Max algorithm is based on the inference that
changing the Min F'req threshold to the H-value of the M -
largest itemset! every time an itemset is developed or a hy-
pothesis value is changed will result in all parties agreeing
on the M most frequent itemsets when DDM terminates.
This is easy to prove. Take any final state of the modi-
fied algorithm. The H value of each itemset is equal in
all parties; hence, the final MinF'req is equal in all parties
as well. Now compare this state to the corresponding state
under DDM, with the static MinFreq value set to the one
finally agreed upon. The state attained by M-Max is also a
valid final state for this DDM. Thus, by virtue of DDM cor-
rectness, all parties must be in agreement on the same set of
frequent itemsets.

As a stand-alone ARM algorithm, M-Max may be im-
practical because a node may be required to refer to item-
sets it has not yet developed. If the database is large, this
would require an additional disk scan whenever new candi-
dates are developed. Nevertheless, at the low_fr correction
stage of D-Sampling, the database is the memory-resident
sample. It is thus possible to evaluate the frequency of arbi-
trary itemsets with no disk-1/0.

P is used when the M largest H is zero.

Algorithm 3 M-Max

For node i out of n,

Input:

low_fr

Output:

The M most frequent itemsets not yet in Fyoy_gr [S]
Definitions: same as for algorithm 3.2

Let B denote the initial size of Fioy_gr [S], fr = low_fr
Main:

Do

1. call set_fr

2. Choose X that was not yet chosen and for which either
H(X) < fr < P(X,8%) or P(X,5%) < fr <
H(X)

Broadcastm = (id (X), Freq (X, S%))
3. If no such itemset exists broadcast (pass)

Until |Passed| = N
R ¢all X in the trie with H (X)) > fr which are not in

f‘low_fT [3]
Return R
When node i receives a message m from party j:

1. If m = (pass) insert j into Passed

2. Blse m = (id (X), Freq (X, S7))
If j € Passed remove j from Passed
If X was not developed then: develop it, set G (X) =

(), Calculate X .tid_list by intersecting the T'1 D lists of

two of X ’s immediate subsets and set Freg (X, S%) =
| X.tid_list|
[S7]

Insert j to G (X)
Recalculate H (X) and P (X, S%)
call set_fr

procedure set_fr:
Do M times:

e Select the next most frequent itemset outside
Frow_gr [?] and develop its descendants if they have
not been developed yet

Set fr to the H value of the last itemset selected. For item-
sets with H = (consider P instead.

4 Statistical Analysis

The M-Max subroutine requires that we estimate the
probability of an error — i.e., an itemset which is actually
frequent but appears with frequency of less than the lowered
frequency threshold in the sample. An over estimation may
result in an unnecassary decrease in low_fr which would
result in a larger than required number of candidates. Here
we describe the probability bound we have used in our im-
plementation which outperforms the naive Chernoff bound
discussed in the original paper which described the Sam-
pling algorithm.

Let0 < fr < 1 be the frequency of some arbitrary item-
set X in DB. Consider a random sample S of size NV from
DB. We will assume that transactions in the sample are in-
dependent. Hence, the number of rows in S which contain
X can be seen as a random variable, z ~ Bin(N, fr).

The frequency of X in N transactions, s_fr = x/N, is
an estimate for fr, which improves as N increases. The
best-known way to bound the chance that s_fr will deviate
from fr is with the Chernoff bound. We use a tighter bound
for the case of binomial distributions (see Hagerup and Rub

[7D:

1—fr \'""(fr "
Pr(|fr—s_f7’|>6)§[(l—75_fr) (ﬁ)]

Lemma 1 Given a random uniform sample S of N transac-
tions from DB, a frequency threshold MinF'req, the low-
ered frequency threshold low_fr, and the negative border
of Fiow_gr [S], denoted N B, the probability pyeiure that
any X € N B will have frequency larger than or equal to
MinFreq (hence causing failure) is bounded by:

N
INB|- (1 — MinFreq) 1=-low-fr (MinFreq)low"fT]

1—low_fr low_fr

For any specific itemset in N B, the probability that this
itemset will cause failure is the probability that its esti-
mated frequency is below low_fr while its actual frequency
is above MinFreq. Substituting MinFreq for fr and
low_fr for s_fr, the bound gives us:

Pr(|Freq(X,DB) — Freq(X,S)| > €) <

N
1— MinFreq 1-low-fr MinFreq low-fr
1—low_fr low_fr

As for the entire N B:

Pr(3X € NB: X fails) < Y Pr(X fails) <
XeNB

D-Sampling Speedup

18——— ‘ :
A- T20.16.D200M, MinFreq = 1% ¥
16/{ & T10.14.D375M, MinFreq = 0.5% A
-0~ T5.12.D600M, MinFreq = 0.25%
14l Linear Speedup
12r
S1or
[0}
2
& 8
6,
4,
2,
0 1 2 4 8 15
Number of Computers
Figure 1. D-Sampling speedup.
N
. 1— _ . _
1 — MinFreq tow-fr MinFreq tow-fr
INBl |\ =———F— o
1—low_fr low_fr

Since calculating the negative border is in itself a costly
process, we choose to relax this bound by substituting
|T| | Fiow_gr [S]| for [NB|. Obviously, any itemset in
Fiow_gr [S] can only be extended by at most |I| items, and
thus this relaxed bound holds.

Corollary 1 (Toivonen 1996) If none of the itemsets in the
negative border caused failure, then no other itemset can
cause failure.

Any other itemset X outside Fqy_gr [S] and N B must in-
clude a subset from IV B. Hence its frequency must be less
than or equal to the frequency of this subset. It follows that
if the frequency of each itemset in N B is below MinF'regq,
so is the frequency of X.

S Experiments

We carried out three sets of experiments. The first set
tested D-Sampling to see how much faster it is to run the
algorithm with the database split among n machines than
to run it on a single node. The second set compared D-
Sampling, DDM and FDM on a range of MinF'req values.
The last one checked scale-up: the change in runtime when
the number of machines is increased together with the size
of the database.

We ran our experiments on two clusters: the first clus-
ter, which was used for the first, second and fourth sets of
experiments, consisted of 15 Pentium computers with dual
1.7GHz processors. Each of the computers had at least 1

T5.12.D600M, N=15

FDM time

40r —— DDM time 6
—=— D-Sampling time
35- B
15
p——y

A30* @
$ \ 14 8
S525¢ \ 13
c —
£ \ 5
o 201 1838
£ \ E
st z

10F

0.25 0.5 0.75 1 1.25 1.5 1.75 2
MinFreq

Figure 2. Runtime of D-Sampling, DDM, and
FDM for varying MinFreq.

gigabyte of main memory. The computers were connected
via an Ethernet-100 network. The second cluster, which
we used for the scale-up experiments, was composed of 32
Pentium computers with a dual 500MHz processor. Each
computer had 256 megabytes of memory. The second clus-
ter was also connected via an Ethernet-100 network.

All of the experiments were performed
with synthetic =~ databases produced by the
standard gen tool available fromhttp

/ /www.almaden.ibm.com/cs/quest. ~— The databases
were built with the same parameters which were used
by Toivonen in [17]. The only change we made was to
enlarge the databases to about 18 gigabytes each; had
we used the original sizes, the whole database would
fit, when partitioned, into the memory of the computers.
The database T5.12.D600M has 600M transactions, each
containing an average of five items, and patterns of length
two. T10.14.D375M and T20.16.D200M follow the same
encoding. When the database was to be partitioned, we
divided it arbitrarily by writing transaction number 7'ID
into the T'I D %n partition.

5.1 Speedup Results

The speedup experiments were designed to demonstrate
that parallelization works well for Sampling. We thus ran
D-Sampling with n = 1 (with n = 1, D-Sampling reverts to
Sampling) on a large database. Then we tested how splitting
the database between n computers affects the algorithm’s
performance.

As figure 1 shows, the basic speedup of D-Sampling is
slightly sublinear. However, when the number of candidates

D-Sampling Scale-up

] R e S e

A~ T5.12.D1200M, MinFreq = 0.5%
—8- T10.14.D750M, MinFreq = 0.75%
—— T20.16.D400M, MinFreq = 1.5%

1 4 8 12 16 20 24 28 32
Number of Computers

Figure 3. D-Sampling scale-up.

is large, the speed-up becomes superlinear. This is because
the global sample size increases with the number of comput-
ers. This larger sample size translates into a higher low_fr
value and thus to a smaller number of candidates than with
n=1.

5.2 Dependency on MinFreq

The second set of experiments (figure 2) demonstrates
the dependency of D-Sampling performance on MinFregq,
which determines the number and size of the candidates.
We compared the D-Sampling runtime to that of both DDM
and FDM. D-Sampling turned out to be insensitive to the re-
duction in MinF'req; its runtime increased by no more than
50% across the whole range. On the other hand, the run-
time of DDM and FDM increased rapidly as MinF'req is
decreased. This is because of the additional scans required
as increasingly larger itemsets become frequent. Because
it performs just one database scan, D-Sampling is expected
to be superior to any levelwise D-ARM algorithm, just as
Sampling is superior to all levelwise ARM algorithms.

5.3 Scale-up

The third set of tests was aimed at testing the scalability
of D-Sampling. Here the partition size was fixed. We used
a database of about 1.5 gigabytes on each computer. A scal-
able algorithm should have the same runtime regardless of
the number of computers.

D-Sampling creates the same communication load per
candidate as DDM. However, because it generates more

candidates, it uses more communication. As can be seen
from the graphs in figure 3, D-Sampling is scalable in two
of the tests. In fact, for mid-range numbers of computers, D-
Sampling runs even faster than with n = 1; this is due to the
superlinear speed-up discussed earlier. The mild slowdown
seen in figure 3c is due to the smaller average pattern size
and the smaller number of candidates in T5.12.D1200M.
The larger the number of candidates, the greater the saving
in candidates when the number of computers increases. If
there are enough large patterns, this saving will compensate
for the increasing communication overhead. Such is not the
case, however, with T5.12.D1200M.

6 Conclusions and Future Research

We presented a new D-ARM algorithm that uses the
communication efficiency of the DDM algorithm to par-
allelize the single-scan Sampling algorithm. Experiments
prove that the new algorithm has superlinear speedup and
outperforms both FDM and DDM with any MinFreq
value. The exact improvement in relation to previous al-
gorithms depends on the number of database scans they re-
quire. Experiments demonstrate good scalability, provided
the database scan is the major bottleneck of the algorithm.

Some open questions still remain. First, it would be in-
teresting to continue partitioning the database until every
partition becomes memory resident. This approach may
lead to a D-ARM algorithm that mines a database by load-
ing it into the memory of large number of computers and
then runs with no disk-1/O at all. Second, it would be inter-
esting to have a parallelized version of the other single-scan
ARM algorithm — DIC — on a share-nothing cluster, or of
the two-scans partition algorithm. Finally, we feel that the
full potential of the M-Max algorithm has not yet been re-
alized; we intend to research additional applications for this
algorithm.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining as-
sociation rules between sets of items in large databases. In
Proc. of the 1993 ACM SIGMOD Int’l. Conference on Man-
agement of Data, pages 207-216, Washington, D.C., June
1993.

[2] R. Agrawal and J. Shafer. Parallel mining of association
rules. [EEE Transactions on Knowledge and Data Engi-
neering, 8(6):962 — 969, 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proc. of the 20th Int’l. Conference on Very
Large Databases (VLDB’94), pages 487 — 499, Santiago,
Chile, September 1994.

[4] V. S. Ananthanarayana, D. K. Subramanian, and M. N.
Murty. Scalable, distributed and dynamic mining of asso-

(5]

(6]

(7]
(8]

(9]

[10]

(11]

(12]

[13]

[14]

(15]

(16]

[17]

(18]

ciation rules. In Proceedings of HiPC’00, pages 559-566,
Bangalore, India, 2000.

S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic item-
set counting and implication rules for market basket data.
SIGMOD Record, 6(2):255-264, June 1997.

D. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu. A fast dis-
tributed algorithm for mining association rules. In Proc. of
1996 Int’l. Conf. on Parallel and Distributed Information
Systems, pages 31 — 44, Miami Beach, Florida, December
1996.

T. Hagerup and C. Rub. A guided tour of Chernoff bounds.
Information Processing Letters, 33:305 — 308, 1989/90.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. Technical Report 99-12, Simon Fraser
University, October 1999.

Z. Jarai, A. Virmani, and L. Iftode. Towards a cost-effective
parallel data mining approach. Workshop on High Perfor-
mance Data Mining (held in conjunction with IPPS’98),
March 1998.

D.-I. Lin and Z. M. Kedem. Pincer search: A new algo-
rithm for discovering the maximum frequent set. In Extend-
ing Database Technology, pages 105-119, 1998.

J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-
based algorithm for mining association rules. In Proc. of
ACM SIGMOD Int’l. Conference on Management of Data,
pages 175 — 186, San Jose, California, May 1995.

J. S. Park, M.-S. Chen, and P. S. Yu. Efficient parallel data
mining for association rules. In Proc. of ACM Int’l. Confer-
ence on Information and Knowledge Management, pages 31
— 36, Baltimore, MD, November 1995.

J. Pei and J. Han. Can we push more constraints into fre-
quent pattern mining? In Proc. of the ACM SIGKDD Conf.
on Knowledge Discovery and Data Mining, pages 350-354,
Boston, MA, 2000.

A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient
algorithm for mining association rules in large databases.
The VLDB Journal, pages 432—444, 1995.

A. Schuster and R. Wolff. Communication-efficient dis-
tributed mining of association rules. In Proc. of the 2001
ACM SIGMOD Int’l. Conference on Management of Data,
pages 473 — 484, Santa Barbara, California, May 2001.

R. Srikant and R. Agrawal. Mining generalized association
rules. In Proc. of the 20th Int’l. Conference on Very Large
Databases (VLDB’94), pages 407 — 419, Santiago, Chile,
September 1994.

H. Toivonen. Sampling large databases for association rules.
In The VLDB Journal, pages 134-145, 1996.

0. R. Zaiane, M. El-Hajj, and P. Lu. Fast parallel association
rules mining without candidacy generation. In /EEE 2001
International Conference on Data Mining (ICDM’2001),
pages 665-668, 2001.

