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Abstract

Mining for associations between items in large transactional databases is a central problem in the
field of knowledge discovery. When the database is partitioned among several share-nothing machines,
the problem can be addressed using distributed data mining algorithms. One such algorithm, called
CD, was proposed by Agrawal and Shafer and was later enhanced by the FDM algorithm of Cheung,
Han et al. The main problem with these algorithms is that they do not scale well with the number of
partitions. They are thus impractical for use in modern distributed environments such as peer-to-peer
systems, in which hundreds or thousands of computers may interact.

In this paper we present a set of new algorithms that solve the Distributed Association Rule
Mining problem using far less communication. In addition to being very efficient, the new algorithms
are also extremely robust. Unlike existing algorithms, they continue to be efficient even when the
data is skewed or the partition sizes are imbalanced. We present both experimental and theoretical
results concerning the behavior of these algorithms and explain how they can be implemented in
different settings.

1 Introduction

1.1 Problem Description

Association Rules Mining (ARM) in large transactional databases is a central problem in the field of
knowledge discovery. The input to ARM is a database in which objects are grouped by context. An
example of such a grouping would be a list of items grouped by the customer who bought them. ARM
then requires us to find sets of objects which tend to associate with one another. Given two distinct sets
of objects, X and Y, we say Y is associated with X if the appearance of X in a certain context usually
implies that Y will appear in that context as well. If X usually implies Y, we then say that the rule
X =Y is confident in the database. We would usually not be interested in an association rule unless
it appears in more than a certain fraction of the contexts: if it does, we say that the rule is frequent.
The thresholds of frequency (MinFreq) and confidence (MinConf) are parameters of the problem and are
usually supplied by the user according to his needs and resources. The solution to the ARM problem is
a list of all association rules which are both frequent and confident in that database. Such lists of rules
have many applications in the context of understanding, describing and acting upon the database.

The ARM problem has been investigated intensively during the past few years ([2, 11, 8, 15, 4, 9, 14, 3]
being a small sample). It was shown that the major computational task is the identification of all the
frequent itemsets, those sets of items which appear in a fraction greater than MinFreq of the transactions.
Association rules can then be produced from these frequent itemsets in a fairly straightforward manner.
Once it is known that both {Pasta Sauce} and {Pasta Sauce, Parmesan} are frequent itemsets for



instance, the association rule { Pasta Sauce} = {Parmesan} is obviously frequent, and all that remains
is to check if the association is confident.

ARM algorithms are mainly concerned with reducing the number of database scans. This reduction
is necessary because the database is usually very large and is stored in secondary memory (disk). The
problem was restated in a distributed setting as the Distributed Association Rules Mining (D-ARM)
problem. The main reason for restating the problem this way was to parallelize the disk I/O required to
solve it. In D-ARM, the database is partitioned between several parties which can perform independent
parallel computations as well as communicate with one another. Several algorithms were proposed to
solve D-ARM, most of them for share-nothing machines [1, 7, 6], and some for shared-memory [16] or
distributed shared-memory machines [10]. Since the parallelization of disk I/0 is itself an easy task, the
main show stopper for D-ARM algorithms is communication complexity. The most important factors in
the communication complexity of D-ARM algorithms turn out to be the number of partitions, n, and
|C|, the number of itemsets considered throughout the algorithm.

In this paper we present a set of new D-ARM algorithms for share-nothing machines. These algorithms
improve the communication complexity of the best of the known D-ARM algorithms. We prove that
our algorithms are the first to solve the problem with a communication complexity that is linear in n
and |C|, and with a very small database-dependent multiplicative factor. When compared with current
algorithms, our algorithms require a fraction of the communication bandwidth even for mid-range values
of n. For higher n values, we prove that the advantage of our algorithms keeps growing at the same rate.

We see possible applications for our communication-efficient algorithms in three main areas. First,
they may be used to mine peer-to-peer systems. For example, we may wish to find associations between
the mp3 files of different Napster users (more than 1.5 million files in about 10,000 libraries at the time this
paper was written). No previous algorithm can cope with n = 10,000 with the Internet communication
speed available today. Second, we may use these algorithms for broad-scale parallelization of data mining,
splitting the problem until each partition fits into the memory of a conventional PC. Third, we can use
them in environments where communication bandwidth is an expensive resource, such as billing centers
for large communication providers. Although these billing centers usually have fast and wide networks,
data mining is performed there as an auxiliary task and the resources it consumes come at the expense
of the main system activity.

1.2 Previous Work

The two major approaches to D-ARM as presented in [1] are data distribution (DD) and count distri-
bution (CD). DD focuses on the optimal partitioning of the database in order to maximize parallelism.
CD, on the other hand, considers a setting where the data is arbitrarily partitioned horizontally! among
the parties to begin with, and focuses on parallelizing the computation.

The DD approach is not always applicable. At the time the data is generated, it is often already
partitioned. In many cases it cannot be gathered and repartitioned for reasons of security and secrecy,
cost of transmission, or sheer efficiency. DD is thus more applicable for systems which are dedicated to
performing D-ARM. CD, on the other hand, may be a more appealing solution for systems which are
naturally distributed over large expanses, such as stock exchange and credit card systems. This article
focuses on the CD approach to D-ARM, although the main ideas can probably be adapted to DD as
well.

All the algorithms discussed in this paper are based on the Apriori algorithm [2]. Apriori begins
by assuming that any item is a candidate to be a frequent itemset of size 1. Apriori then performs
several rounds of a two-phased computation. In the first phase of the k£ round, the database is scanned
and the frequency of all k-sized candidate itemsets (itemsets containing k items) is calculated. Those
candidate itemsets which have frequency above the user supplied MinFreq threshold are considered
frequent itemsets. In the second phase, candidate k + 1-sized itemsets are generated from the set of
frequent k-sized itemsets if and only if all their k-sized subsets are frequent. The rounds terminate when

1 Horizontal partitioning means that each partition includes whole transactions, in contrast with vertical partitioning
where the same transaction would be split among several parties.



the set of frequent k-sized itemsets is empty.

The CD algorithm [1] is an obvious parallelization of Apriori. In the first phase, each of the parties
performs the database scan independently on its own partition. Then a global sum reduction is performed
on the support counts of each candidate itemset. Those itemsets whose global frequency is larger than
MinFreq are considered frequent. The second phase of calculating the candidate k + 1-sized itemsets can
be carried out without any communication because the calculation depends only on the identity of the
frequent k-sized itemsets, which is known to all parties by this time. CD fully parallelizes the disk I/0
complexity of Apriori and performs roughly the same computations. CD also requires one synchronization
point on each round and carries an O (|C|n) communication complexity penalty, where C' is the group
of all candidate itemsets considered by Apriori and n is the number of parties. Since typical values for
|C| are hundreds of thousands, CD is obviously not scalable to large numbers of partitions.

FDM |[6] offers a way by which the communication load of CD may be reduced. It takes advantage
of the fact that ARM algorithms only look for rules which are globally frequent. FDM is based on the
inference that in order for an itemset to appear in a certain portion of the transactions in the database, it
must appear in at least that portion of at least one partition of the database. In FDM, the first stage of
CD was divided into two rounds of communication. In the first round, every party names those candidate
itemsets which are locally frequent in its partition (e.g., appear in the partition with a frequency greater
than or equal to MinFreq). In the second round, counts are globally summed for those candidate itemsets
which were named by at least one party. If the probability that an itemset will have the potential to
be frequent is Prpotential, then FDM only communicates Prpotentiat |C] 0f the itemsets and improves the
communication complexity to O (Prpotential |C|1).

The main problem of FDM is that Prpotentiai is not scalable in n. In the discussion in section 2.2,
we show that Prpotentiar quickly increases to 1 as n increases. The convergence to 1 is especially fast
in nonhomogeneous databases. Cheung and Xiao presented this problem in [5] and showed that as
the nonhomogeneity of the database (as measured by the skewness measure they presented) increases,
FDM pruning techniques become ineffective. We extend their results by proving that even for moderate
nonhomogeneity FDM becomes ineffective for a large enough n.

1.3 Our Solution

We first look at the distributive problem of deciding whether an itemset’s global frequency is above or
below a threshold. If we first solve this problem for the set of candidate k-sized itemsets, then support
counts of those identified as frequent can be collected optimally, while support counts for the infrequent
itemsets can remain uncollected. We show that solving this distributed agreement problem causes very
little overhead.

We use this approach to propose a new family of Apriori-based D-ARM algorithms that improve the
communication complexity of current solutions. These algorithms improve data skew robustness and
scalability over large numbers of partitions. We show three examples for such algorithms, all of which
retain the good time, space and disk I/O complexities of Apriori. Our algorithm for the decision problem
has O (Prapove |C|n) communication complexity, where Prgpope is the probability that the frequency
with which a candidate itemset will appear in a specific partition is above MinFreq. Prapope 1S, by
definition, smaller than or equal to Prpotentiar- Unlike Prpotential; Prapove has no dependency on n and
is only dependent on the nonhomogeneity of the database. As a result, our algorithms are the first to
demonstrate low linear dependency of communication complexity on n and thus, scalability.

After the decision problem was solved, the obvious next step would have been to collect the support
counts of the frequent itemsets from all parties with linear output complexity of O (|L|n), where L is
the group of frequent itemsets. However, we show that further improvement is possible: the confident
rules can be identified with sublinear communication complexity if another decision problem is solved.
This time the decision problem is concerned with the confidence of the rules generated from the frequent
itemsets. By applying our algorithm to this problem too, we demonstrate that it is general and can be
implemented for many functions of the database.

We complete this introduction with some notations and a description of our basic assumptions.
The following section describes an algorithm called Distributed Decision Miner (DDM). This algorithm



demonstrates our basic approach. We then propose two additional derivatives of DDM, to be described
in sections 3 and 4: Preemptive Distributed Decision Miner (PDDM) and Distributed Dual Decision
Miner (DDDM). These two algorithms further improve the communication complexity of Distributed
Decision Miner. Moreover, the improvements are complementary and we can combine them to get even
better results. The combination will not be presented in this context. Section 5 describes in detail the
experiments we carried out to verify the algorithm’s superiority. We conclude the article in section 6.

1.4 Notations

Let I = {i1,42,...,9m} be the items in a certain domain. An itemset is some X C I. A transaction
t is also a subset of I associated with a unique transaction identifier TID. A database DB is list of
such transactions. Let DB = {DB',DB?,...,DB"} be a partition of DB into n partitions with sizes
D = {D"',D?,...,D"} respectively. For any itemset X and any group of transactions G let Support (X, G)

be the number of transactions in G which contain all the items of X and let Freq(X,G) = S“”%ﬂ(x’c).

We call Freq (X ,DBJ ) the local frequency of X in partition j and Freq (X, DB) its global frequency.

For some frequency threshold 0 < MinFreq < 1, we say that an itemset X is frequent in a database G
if Freq(X,G) > MinFreq and infrequent otherwise; if G is a partition we say that X is locally frequent
and if G is the whole database then X is globally-frequent. The group of all itemsets with frequency above
of equal to MinFreq is called L [G], where G may be the full database or a partition thereof. Finally, Let
X, Y be two globally-frequent itemsets such that X C Y, and let 0 < MinConf < 1 be some confidence
threshold, we say the rule X = Y \ X is confident iff Freq (Y, DB) > MinConf - Freq (X, DB).

Given a partitioned database DB, MinFreq and MinConf the D-ARM problem is to find all the
rules of the form X = Y in DB. '

The messages the parties send to one another contain pairs <i,m§>, where ¢ is an itemset number

and xf = Support (Xi,DBj). We will assume that j, the origin of the message, can be inferred with
negligible communication costs. For each party p and itemset X;, let GP (X;) be the group of all xf such
that <z,xf > was received by p. We will assume GP (X;) is equal for all p and refer to it as G (X;). D is
either known to all parties in advance or can be exchanged in the first n messages.

1.5 Basic Assumptions

Distributed algorithms may vary significantly according to the nature of the distributed system under
consideration. It cannot be expected that an algorithm which is optimal for a system containing just two
computing nodes would also be optimal for a system containing 64 computing nodes. Thus, although it
is possible to present such an algorithm with no reference to a specific architecture (as we did in [12]),
it is also interesting to put forth some assumptions about that architecture and see how they affect the
algorithm. We make three major assumptions in this paper: that communication bandwidth is limited,
that the communication layer supports broadcast, and that the communication layer implicitly buffers
messages to a fixed size. The latter assumption distinguishes this work from the one described in [12]
because, as we show, it has significant performance implications.

The first assumption can be easily justified. It is very tempting to distribute an ARM algorithm
because such distribution leads to a linear reduction in disk I/O and disk I/O is traditionally the bot-
tleneck of ARM algorithms. Disk I/O could be reduced by increasing the number of computing nodes
and dividing the database among the nodes. However, this will lead to a linear increase in communi-
cation costs which will result in diminishing, eventually negative, speedups. We will hence assume that
communication bandwidth is the bottleneck of the algorithm.

The second assumption, that the network supports broadcast, can be justified by the fact that LAN
and SAN networks usually do. The three most popular networks, Ethernet (IEEE-802.3), Fast Ethernet
(such as Myrinet and ServerNet), and to a lesser degree Token Ring, support cost-effective broadcast.

The final assumption — implicit buffering — is introduced for clarity. Messages usually have a fixed
size, which is typically 96 bytes for Fast Ethernet and 1500 bytes for Ethernet . If the application ‘sends’



larger messages then they are broken down and recomposed; if the application ‘sends‘ smaller messages
they may be padded to reach the fixed size. Since the application level messages in our algorithms usually
contain only several bytes, we assume that the communication layer stacks them until full message size
is reached and then sends a full message. This feature can be written as part of the implementation of
the algorithm if it is not supported by the communication layer.

2 The Distributed Decision Miner Algorithm

Algorithm 1 Distributed Decision Miner
For node j out of n

1. Initialize C; = {{i}:i € I}, k = 1, Passed = {)
2. While Cy # 0

(a) Do
e Choose an itemset X; € C} which was not yet chosen and for which either H (X;) <
MinFreq-D < P (X;,DB?) or P (X;,DB’) < MinFreq-D < H (X;), and broadcast
(i, Support (X;, DB?)).
e If no such itemset exists, broadcast (pass).
(b) Until |Passed| = n.
(c) Ly ={X; € Cy : H(X;) > MinFreq - D}.
(d) Broadcast the support counts for every X; € Ly that was never chosen.
(€) Ci+1 = Apriori_Gen (Ly,).
) k=k+1.

3. Gen_Rules(Ly, Lo, ..., Lg)

When node j receives a message M from node p:
1. If M = (pass), insert p into Passed

2. Else if |Passed| = n then M is the support counts of itemsets p has not yet sent. Update accord-
ingly.

3. Else M = (i, Support (X;, DBP))

e If p € Passed then remove p from Passed
e Recalculate H (X;) and P (X;, DB)

The basic idea of the Distributed Decision Miner (DDM, Alg. 1) algorithm is to verify that an itemset
is frequent before collecting its support counts from all parties. The algorithm differs from FDM in that,
in our algorithm, the fact that an itemset is locally frequent in one partition is not considered sufficient
evidence to trigger the collection of all the support counts for that itemset. Instead, the parties perform
some kind of negotiation by the end of which they are able to decide which candidate itemsets are globally
frequent and which are not. The rest is straightforward: the support counts of the frequent itemsets are
collected optimally, with no communication wasted on globally infrequent, but locally frequent itemsets.

The parties negotiate by exchanging messages containing local support counts for various itemsets.
At any given stage, a common hypothesis H is shared by all parties. This hypothesis concerns the global
support of every candidate itemset. Given all the local support counts for an itemset, this hypothesis



must correctly predict whether it is frequent or infrequent. In addition, every party computes another
private hypothesis P, based on both the support counts already expressed and the party’s local support
count for the candidate itemset. For at least one party which has not yet expressed its local support
count, and given any subset of the support counts for an itemset, the local hypothesis must correctly
predict whether the itemset is frequent or infrequent.

2.1 The Algorithm

The parties calculate the set of candidate itemsets for which they did not express their local support
counts. For each such candidate, every party calculates the global hypothesis H and the local hypothesis
P. If H and P disagree on whether a candidate itemset is frequent or infrequent, then the support count
for that candidate should be expressed. The parties express support counts at a certain rate, limited by
the bandwidth of the system. Instead of sending one message concerning all the candidates, the parties
send smaller messages concerning one or several candidates. No synchronization is required for single
messages. Every time a party receives a message, it updates H and P for the candidate itemsets referred
to in that message.

If, for some party, H and P agree for every candidate itemset, that party has nothing to express
and it passes on its turn. A party may resume sending messages if arriving messages cause disagreement
between H and P for some yet unexpressed candidate itemset. If a full round of passes was received from
all parties, then H and P of all parties agree on every candidate itemset. By the definition of P, there
are two possibilities for each candidate itemset: either there is one party whose P correctly predicts the
itemset size or all the local support counts have been collected. In the first case, the H and P of the
party whose P correctly predicts the itemset size must agree; since all parties compute the same H, that
H must be correct for all parties. In the second case, H must be correct by definition.

Formally, we define H and P as follows:

0 if G(Xi)=0
) — P . zf
H(X;) ges% D otherwise
z; € i
J
. Z;
P(X;,DB')= Y af+ 5. > D

waG(X,') a)f¢G(X1)

With H, the parties assume that the unexpressed support counts for each itemset are, on the average,
the same as those already expressed. With P, on the other hand, a party assumes that those parties
which have not yet expressed their local support counts for that itemset have the same relative support
as it does.

As defined, the above assumptions are not required to hold for every party. It is enough that the
assumption on H will hold eventually and that the assumption on P holds for one party which has not
yet expressed its support count. This is easily proved: Out of all the parties which have not yet expressed
support (zf ¢ G (X;)), the one with the largest relative support ;: computes a value for P which is an
upper bound on the global support count of X;, and the one with the lowest relative support computes
a value for P which is a lower bound on the global support count of X;. It follows that at least one of
those two must always estimate the global support count correctly, thus satisfying the requirement for
P. As for H, when all the support counts have been collected, H is equal to the global support count.
Thus, the requirement from H is also satisfied.

Usually each party can choose which of several candidate itemsets will have its support count sent
next. Many heuristics can be used to break ties, but we found one to be most effective. Our tie breaking
heuristic is based on the following rationale: whenever two parties are able to express the local support
counts of the same candidate itemset, it is best if the one which makes a greater change in P expresses
its local support first. If there are opposing parties for a candidate itemset (some of whose P is larger
and others whose P is smaller than MinSup - D), then the one that makes the greater change has the
better chance to “convince” opposing parties that they are wrong. If the opposing parties’ P is changed




to the extent that it now agrees with that of the sending party, the opposing parties will refrain from
expressing their own support and thus save the cost of messages. It is therefore a good strategy for a
party to send those support counts which will cause the greatest change in the Ps of opposing parties,
for those same itemsets.

When party k expresses support for itemset X;, the influence on P of party [ is equal to

1
k_ = pk
zi —pr- D ‘

However, since #! has not yet been expressed , we estimate the change as R (X;, DB¥) = ‘xf - % - Dk ‘

We will thus break a tie by choosing those itemsets which have the maximal R (X,-, DB/ ) value.

Figure 1 describes a running example of one itemset and four computing nodes. At first the itemset
is considered infrequent because the global hypothesis is zero. Nodes A and B disagree because their
local hypothesis is that the itemset is frequent. After some time this disagreement causes node B to send
its local count. This changes both the global hypothesis and the local hypothesis of the other nodes.
Now node A is satisfied but nodes C and D disagree. Additional messages follow, and by now node C
has sent its local count too. Now, for both nodes A and D, the global and local hypothesis agree. Since
nodes B and C have already expressed their local counts, they accept the global hypothesis; so no more
information will be sent with regards to this itemset even though the exact count is still unknown. An
external viewer can indeed see that this itemset is infrequent.

2.2 Complexity Analysis
2.2.1 Communication Complexity

The messages sent by Distributed Decision Miner can be separated into two classes: messages relating
to itemsets which eventually turn out to be frequent and messages relating to itemsets which eventually
turn out to be infrequent. While the messages related to frequent itemsets are needed anyway for the
calculation of confidence, those relating to infrequent itemsets are wasted. The wasted messages can
also be separated into two classes: those which imply that the itemset being considered is frequent
(strengthening evidence) and those which imply that the itemset is infrequent (weakening evidence).

By definition, every message containing strengthening evidence must be presented by a party with lo-
cal frequency Freq (Xz-, DBiJ ) > MinFreq. Thus, the expected number of such messages is O (Prapove - |C| - 1),
where n is the number of parties, C' is the group of all itemsets considered by Distributed Decision Miner
(which is equal to that considered by Apriori and FDM), and Prgp0ve is the probability that a specific
itemset is locally frequent in a specific partition.

For a certain infrequent itemset, let the number of wasted messages containing strengthening evidence
be s and the number of wasted messages containing weakening evidence be w. Let their average distances
from MinFreq be €® and €* accordingly. In the worst case, all the possible strengthening evidence for
that infrequent itemset is collected. If we remove the last message containing weakening evidence, we can
be sure that H (X;) > MinFreq - D; otherwise, the message containing it would never have been sent.
We assume, for simplicity, that the partitions have the same size and that the final weakening message
was of average distance from MinFreq. We then have (s + w — 1) - MinFreq < s- (MinFreq+ €®) +
(w—1)-(MinFreq— €¥). It follows that w < s- ;—w €° is only dependent on the distribution and not on
C or n (the variance of €® decreases with n). €* can only increase with n because the algorithm has more
possible messages with weakening evidence to choose from and it tends to choose those with more extreme
values. Thus, the number of such messages has linear or lower dependency on the number of messages
containing strengthening evidence, and the total communication complexity is O (Prapove - |C| - n).

By comparison, the communication complexity of FDM is O (Prpotential - |C| - 1), where Prpoientiai
is the probability that any of the partitions has relative support larger than MinSup. If we assume that
the support counts of an infrequent itemset in different partitions are independent, then Pryotentia =
1— (1 = Prapove)”- This converges to 1 very quickly, even for a small Prgp,pe- It follows that for a large
number of partitions, FDM performs as poorly as CD in terms of communication.

From the analysis of FDM and DDM communication complexity, it is clear that DDM can be as

much as % times more efficient than FDM. This ratio is a property of the database, but it clearly
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Figure 1: The figures above show how the algorithm may treat a single itemset. In this example DDM
discovers that the itemset is infrequent using just two messages (comparing to 6 in FDM).




grows with n. Hence, DDM is more scalable than FDM.

2.2.2 Computation Complexity

The computations FDM and DDM perform are actually quite similar. There are three important dif-
ferences: In FDM a single machine (the polling station) performs most of the computation, whereas
in DDM all the machines perform the same computation. In FDM the selection of the itemsets which
should be reported is simpler than in DDM. Finally and most importantly, the selection criteria have
to be computed just once for each itemset in FDM, while in DDM reevaluation of these criteria may be
required each time new information arrives on that itemset.

We found that a simple data structure — a priority queue — can be used to address these problems
most efficiently. We insert the itemsets to the queue according to their R (X;, DB?) value; this causes a
penalty of O (log (|C|)). Each time new data about an itemset arrives ( n times at most, but typically
only a few times) the priority is changed (causing the O (log (|C|)) penalty again). The total computation
complexity is O (nlog (|C|)) times that of FDM in the worst case. In practice, because only few itemsets
require more than a few updates, the run time of the two algorithms is almost the same.

2.2.3 Space Complexity

The cause for most of the difference between the space requirements of FDM and those of DDM is that
DDM stores the indexes of nodes which already sent their local count. This can be done with n bits for
each itemset — inflicting an xn increase in space complexity over that of FDM. However, since for most
candidate itemsets only a few nodes ever send their local count, a less trivial implementation may reduce
space requirements considerably.

3 Preemptive Distributed Decision Miner

Often it is the case that partitions are not equally important. One partition may be exceptionally
large or it may contain data which is more significant (e.g., a frequent itemset will be even more frequent
in that partition). For example, if each partition contains the data from a different store, then partitions
which belong to superstores are obviously more significant than those belonging to grocery stores.

We would like to allow parties which have more convincing evidence (extreme support counts) to
send their support counts at an earlier stage of the negotiation in the hope that their evidence will
shorten negotiation time and reduce communication. Similarly, we would like parties which do not have
convincing evidence to refrain from sending messages so as not to use bandwidth which can be better
xic _H ([))Q) . Dk
gives the k" party an estimation for the effectiveness of each of its possible messages. We would like
the series of messages to have a constantly decreasing value of R. In this section we show that parties
can coordinate their messages and come nearer to this goal if each of them weighs the importance of its
information against that of information contributed by other parties.

employed. As we showed in the previous section, the rating function R (X;, DB*) =

3.1 The Algorithm

In an R-optimal negotiation, the received messages have decreasing R values. Generating such a series re-
quires, however, global knowledge, which is not available to the parties. We achieve a near monotonously
decreasing series of R values by selecting as a leader the party which sent the message with the maximal
R. Each node tracks the leader’s identity and the R value of the last message sent by the leader. We
do not allow any other party to send messages unless the R of its message is greater than that of the
last message sent by the leader. If some other party sends a message with an R greater than that of the
leader, this party then replaces the leader.

Preventing other parties from sending messages does not affect the correctness of the algorithm
because the algorithm still terminates in the same state. We must make sure, however, that a leader



Algorithm 2 Preemptive Distributed Decision Miner
For node j out of n

1. Initialize Cy = {{i} : i € I'}, k = 1, Passed = 0, leader = j, last_R =0
2. While Cy # 0

(a) Do
e Choose an itemset X; € Cj which was not yet chosen and for which either H (X;) <
MinFreq - D < P(X,-,DBj) or P(X,-,DBj) < MinFreq-D < H(X;) and which
maximizes R (Xi, DBj).
e If such an itemset exists and either R (Xi,DBj ) > last _R or leader = j, broadcast
(i, Support (X;, DB7))
e Else broadcast (pass).
(b) Until |Passed| =n
(¢) L ={X; € C, : H(X;) > MinFreq- D}
(d) Broadcast the support counts for every X; € Lj, that was never chosen.
(e) Cyy1 = Apriori_Gen (Lg)
f) k=k+1

3. Gen_Rules(Ly, Lo, ..., Lg)

When node j receives a message M from node p:
1. If M = (pass) insert p into Passed
2. Else if |Passed| = n then M is the support counts of itemsets p has not yet sent. Update accord-
ingly.
3. Else M = (i, Support (X;, DB?))

e If p € Passed then remove p from Passed
Recalculate H (X;) and P (X;, DBY)
If leader = p then update last R = R (X;, DBP)
Else if last R < R(X;, DBP)

— Update last_ R = R(X;, DBP)

— Update leader = p

10



passes the leadership to another party when it decides to pass on its turn; otherwise, the algorithm might
not terminate. Hence, each time the leader passes on its turn, all parties set the value of the leader’s last
R to zero. When the leader’s last R is zero, any party that has any message to send will send it and a
party that has no message to send will pass on its turn. It is easy to calculate the leader’s R for the R
proposed in the prior section.

It is interesting to note that R can be extended to include other properties of the sent message. For
example, R can be used to encode information about the cost of sending the message, whether that
be in time (e.g., smaller bandwidth for that party) or in money (if this message is sent, for example,
over a WAP channel). Preemptive Distributed Decision Miner (Alg. 2) will try to reach an R-optimal
negotiation regardless of what R encodes.

3.2 Complexity Analysis

The complexity of Preemptive Distributed Decision Miner is dependent on the skewness of the database.
In extreme cases where only one partition is significant, the communication can decrease to O (Prapove - |C|)
because only the party with that partition ever sends messages. On the other hand, when the partitions
are very homogeneous, the parties may constantly compete over leadership. In this case, Preemptive
Distributed Decision Miner reverts to Distributed Decision Miner, with communication complexity of
O (Prapove * |C] - ).

If the time required for a party which receives a message to compute R of that message is O (1),
Preemptive Distributed Decision Miner will have the same time and space complexities as Distributed
Decision Miner.

4 Distributed Dual Decision Miner

In their groundbreaking article [2], Agrawal and Srikant gave the following definition of ARM:

“Given a set of transactions D, the problem of mining association rules is to generate all
association rules that have support and confidence greater than the user-specified minimum
support (called minsup) and minimum confidence (called minconf) respectively.”

Until now all the known algorithms actually gave, in addition to the list of rules, their respective sup-
port counts and confidence. As we will show here, in the distributed setting, we can detect whether
rule support count and confidence are larger or smaller than the required minimum without ever fully
calculating them.

The basic idea is that we can use a DDM-type algorithm to detect all frequent itemsets very efficiently.
We need to collect the global support counts of the frequent itemsets if we wish to calculate the confidence
of the rule. However, we must remember that our goal is only to decide if the confidence of a rule is
above or below a given threshold, and not to find the exact confidence of the rule. This is exactly the
same distinction we made when we presented Distributed Decision Miner. As we will show here, this
second distributed decision problem can be solved in a similar manner.

To illustrate this idea, we present the following two examples:

1. Assume that Parmesan, Pasta Sauce and Parmesan A Pasta Sauce are all globally frequent.
The rule Pasta Sauce = Parmesan should thus be considered. Assume also that this rule is

. " . Support(ParmesanAPasta Sauce, DBP)
locally frequent in every partition, but confident in none (e.g., Support(Pasta Sauce, DB?)

MinConf for all p). Using Distributed Decision Miner, three messages are required to identify that
both Parmesan A Pasta Sauce and Pasta Sauce are significant (compared to 6n in FDM). With
DDM and PDDM, we would need an additional 3 (n — 1) messages to collect the local support
counts of the remaining parties for Pasta A Pasta Sauce and Pasta Sauce before we could judge
if Pasta Sauce = Parmesan is significant. However, note that if for no party the local confidence
is above MinConf, then the global confidence cannot be above MinConf. By implementing an
algorithm similar to FDM we could have pruned this rule without sending a single message.

11



2. Assume that this same rule is both supported and confident in every partition. If one party suggests
that the rule is globally confident and no other party objects, this is enough to determine that the
rule is indeed globally significant.

Algorithm 3 Distributed Dual Decision Miner
For node j out of n

1. Initialize C; = {{i} :i € I}, k = 1, Passed = {)
2. While Cy, # 0

(a) Do
e Choose an itemset X; € C} which was not yet chosen and for which either H (X;) <
MinFreq-D < P(X;,DB’) or P(X;,DB’) < MinFreq-D < H (X;) and broadcast
<i, Support (X,-, DBj) >
o If no such itemset exists, broadcast (pass).
(b) Until |Passed| =n
(¢c) Ly ={X; € Cy : H(X;) > MinFreq- D}
(d)
(e) k=k+1

Cry1 = Apriori_Gen (Ly)

3. Mine_Rules (L1, Lo, ..., L)

When node j receives a message M from node p:
1. If M = (pass) insert p into Passed

2. Else if |Passed| = n then M is the support counts of itemsets p has not yet sent. Update accord-
ingly.

3. Else M = (i, Support (X;, DBP))

e If p € Passed then remove p from Passed
e Recalculate H (X;) and P (X;, DBY)

In Distributed Dual Decision Miner (Alg. 3) we will generalize these two examples: first, by defining
H and P for rules as well as for itemsets, and then by performing a negotiation similar to the one we
performed for the support count to decide whether or not potential rules are confident.

4.1 The Algorithm

Distributed Dual Decision Miner runs any Distributed Decision Miner variant? to identify frequent
itemsets without performing stage 2(d), the collection of yet uncollected support counts. Then, instead
of calling the original Gen Rules procedure, it uses another variant of DDM called Distributed Decision
Confidence Miner to mine the set of rules with confidence above a user-defined threshold .

We first describe a simple algorithm (Alg. 4) which mines rules with large confidence and then, in
subsection 4.3, introduce a rule pruning method which does away with the need to consider many of
the rules. Distributed Decision Confidence Miner makes one round of negotiations to decide which of

2We use here, for reasons of clarity, Distributed Decision Miner. But Preemptive Distributed Decision Miner can be
used as well.
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the candidate rules X, = X, \ X, have Freq(X,,DB) > MinConf - Freq(Xp, DB). The algorithm
sends messages of three types, (rule_id, },z%), (rule_id,z}) or (rule_id, =), depending on which of
the two support counts was expressed, where rule id is the number of the rule in some deterministic
enumeration and z% = Support (X;, DB?). Again we define H and P with the same limitations as they
had in the previous algorithms.

Algorithm 4 Distributed Decision Confidence Miner
For node ¢ of n nodes

1. Initialize

e R; to be the set of all rules X, = X, \ X, such that X,, X, € L and X, C X,.
e Passed = ().

2. Do

e Choose 7y, to be some X, = X, \ X, € R; such that i # G (ry) and either H (r;) <
MinConf < P (r, DB?) or P (ry, DB%) < MinConf < H ().

— If both Support (Xp, DBi) and Support (Xa, DBi) were not sent, broadcast
(k, Support (Xp, DBi) , Support (Xa, DBi)>.

— If Support (X,, DB*) was already sent broadcast (k, Support (X,, DB")).

— If Support (X,, DB?) was already sent broadcast {k, Support (X,, DB?)).

e If there is no such ry, broadcast (pass).
3. Until |Passed| =n
4. R={rr € R : H (ry) > MinConf}

When node i receives a message M from node j:
1. If M = (pass) insert p to Passed.
2. Else M = (k, Support (X,, DB?) , Support (X,, DB’))

o If i € Passed remove i from Passed.

e Recalculate G (r;) for every r; which includes X, and/or X,. If G (r;) changes, update H (r;)
and P (r;) as well.

The functions we define in Distributed Decision Confidence Miner are®:
G(Xp = Xa\ Xp)={j 3xf; € G (Xp) Az € G(Xa)}

2 e (Xp= Xa\X,) zh + (n— |G (Xp = Xo \ Xp)) - 24
Yiec(X,=Xa\X,) Tp + (0 — |G (Xp = X\ Xp)|) - 7

P (X, = X, \ X,,DB") =

z:teG()nrp=>xa\)«:1[,) T,
H(X, = Xo\ X)) = { Seotronnrns 0 16X = X\ X,)[>0
0

otherwise

z H(ga) . Dl

i) —
R(XpiXa\XpaDB)— x;.)_ H(gp) . Di

3Note that we use here both G of a rule and G of an itemset.
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To prove that Distributed Decision Confidence Miner works, it is enough to show that H and P have
the properties defined in 2.1. For one party which has not yet expressed both parts of a rule, P is required
to be an upper bound on the global confidence, and for another it is required to be a lower bound. The
requirement for H is that H is correct if all the data was gathered. Clearly, when considering the parties

not in G (r;), the one with the maximal ;”—“ computes a value for P which is an upper bound on the
]
confidence, and the one with the minimal z—“ computes a value for P which is a lower bound. Thus, the

requirement from P is satisfied. In addition, when all the support counts of a rule are collected, H must
be correct because it is equal to the confidence. Thus, the requirement for H is met.

4.2 Complexity Analysis

Distributed Decision Miner and Preemptive Distributed Decision Miner reduce communication complex-
ity by reducing the communication required for the identification of infrequent itemsets. Distributed
Dual Decision Miner, in contrast, reduces the communication by refraining from collecting local counts
of frequent itemsets.

When discussing the theoretical bounds of Distributed Dual Decision Miner, one must note that
the distribution of frequent itemsets over partitions in a real database may have a very special form.
Simplistic assumptions about that distribution, which were acceptable for infrequent itemsets, may
mislead us with regard to the actual savings in communication. Hence, we will say only that in the
algorithm’s worst case, all the support counts of all itemsets are collected in the itemset identification
stage. In this case, Distributed Decision Confidence Miner is trivial and requires no communication
at all. Thus, the algorithm’s performance is exactly the same as that of Distributed Decision Miner.
Further analysis will be done at the experimental level, in the next section.

4.3 Rule Pruning

The number of rules which can be generated from a given set of frequent itemsets is enormous. If we check
all the potential rules induced by a single k-sized frequent itemset X, we would have to check every rule
i

Y = Z\Y:Y CZCX. This is a total of ¢, ( k ) it ( i)= O (3%) potential rules. We use

i i=1
the following observation to prune rules: If X,Y are two itemsets, such that X C Y and the confidence
of X = Y \ X is below the MinConf threshold, then for any X' C X, the confidence of X' = Y \ X’
is also below MinConf. Similarly, for any Y’ D Y, the confidence of X = Y’ \ X is below MinConf.
This observation is correct because Freq (X, DB) < Freq(X',DB) and Freq (Y',DB) < Freq (Y, DB).
If, on the other hand, the rule X = Y \ X is confident, then for every X C X' C Y' C Y, the rule
X' =YY"\ X' is confident as well.

This observation allows us to alter Distributed Decision Confidence Miner by splitting it into several
rounds. At each round of the improved algorithm (Alg. 5), many of the possible rules can either be
pruned or inferred with no communication. We initialize the candidate rule set Ry with a single rule
Ry = {0 = 0}, which must be both supported and confident. In each round we run an algorithm similar
to Distributed Decision Confidence Miner to decide which of the rules in Ry are confident. We develop
some new candidate rules according to the following two candidate generation methods: If a rule ry is
found to be confident, then every rule which specifies the antecedent or generalizes the consequent of ry,
must also be confident and every rule which further specifies the consequent is considered a candidate.
If, on the other hand, a rule was found not to be confident, then any rule which specifies its antecedent
is still a candidate.

5 Experimental Results

We used synthetic databases generated with the gen tool [13], which is based on ideas published in [2].
We generated several large databases and then sampled them to generate the partitioned database. The
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Algorithm 5 Pruning Distributed Decision Confidence Miner
Definitions: For some X € Ly, specifiers (X) ={X' € Ly : X C X'}
For node i of n nodes:

1. Initialize: Ro = {0 =0}, k=0, R=10
2. While Ry, # 0

(a) Initialize Passed = ()
(b) Do
e Choose 7, to be some X = Y \ X € Ry such that ¢ # G (r;) and either H (r;) <
MinFreq < P (r;, DB?) or P (r;, DB') < MinFreq < H (r;)
— If both Support (X,DB*) and Support(Y,DB?) were mnot sent, broadcast
(k, Support (X, DB*) , Support (Y, DB?)).
— Else if Support (X, DB?) was already sent, broadcast (k, Support (X, DB?)).
— Else if Support (Y, DB?) was already sent, broadcast (k, Support (Y, DB?)).
o If there is no such r;, broadcast (pass).
(c) Until |Passed| =n

(d) For each , = X = Y \ X € Ry such that H(r;)) < MinConf, Rry1 = Rpy1 U
{X'=>Y\X':X'E€ large_extensions (X,)}

(e) For each r; = X = Y \ X € Ry, such that H (r;) > MinConf
® Rppv1 =R i U{X =>Y'\ X :Y' €large_estensions (Y)}
e R=RU{X'=Y'\X':XCX'CY'CY}

) k=k+1

When node i receives a message M from node j:
1. If M = (pass) insert p to Passed.
2. Else M = (k, Support (X,DB7) , Support (Y, DB?)), (k, Support (X, DB?)), or (k,Support (Y,DB?))

e If i € Passed remove i from Passed.

e Recalculate G (1) for every r; which includes X and/or Y. If G (r;) changes, update H (1)
and P (r;) as well.
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Figure 2: Figures 2(a), 2(b), 2(c) and 2(d) show the typical performance of CD, FDM, DDM, PDDM
and DDDM over several unskewed databases, measured by the number of transmitted bytes vs. n and
MinSup. The MinSup parameter is related to both the number of candidates and Prapope- It can be seen
that CD and FDM are not scalable with either n or MinSup. Note that when the partition is unskewed,
DDM and PDDM are effectively the same algorithm because there are no obvious leaders.
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Figure 3: Figure 3(a) shows the performance of CD, FDM, DDM, PDDM and DDDM on an unskewed
database like those of 2(a) through 2(d). Here we added views of the performance for fixed n (3(b)) and
fixed MinSup (3(c)) and a sample of values for all algorithms for n = 16, 52 and Minsup = 0.12-D, 0.3-D.
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Figure 4: Figure 4(a) shows the performance of CD, FDM, DDM, PDDM and DDDM on yet another
unskewed database. The performance of DDM is far better than FDM, and DDDM outperforms DDM.
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sample sizes were kept to less than 10% of the original database in order to reduce the dependency
between different experiments. We systematically scanned MinSup values of 3% to 30% of the size of the
database in order to sidestep the risks of parameter tuning. We used the reasonable MinConf = 0.5.
Communication load was measured assuming 4 bytes for support count encoding and 2 bytes for itemset
number encoding.

Figures 2, 3 and 4 show the typical communication loads of CD, FDM, Distributed Decision Miner,
Preemptive Distributed Decision Miner and Distributed Dual Decision Miner on various databases. It
can be seen that the latter three algorithms use far less communication than the former two. It can
also be seen that both CD and FDM are nonscalable with respect to either n or MinSup. For unskewed
databases, PDDM and DDM behavior is effectively the same, and DDDM is the best of the three.

Next we investigate the dependency of our algorithms on message size. We assume implicit buffering
of messages, i.e., each time the algorithm ‘sends an itemset index or local support count, that information
is stored in a buffer. The buffer is sent only when it fills up, or when the algorithm explicitly flushes it
(as would happen in PDDM when the leader has no more data to send). This change has no effect on
algorithm correctness but it may affect performance in two ways: Larger buffers mean smaller message
overhead but they also increase the probability that several nodes will simultaneously (i.e., in concurrent
buffers) send information about the same candidate. This probability decreases, however, as the number
of candidates increases.

We first checked how the number of bytes sent and the number of messages sent respond to changes
in the buffer size (figure 5). We checked two buffer sizes: buffers of 96 bytes, which are typical for
fast Ethernet networks such as Myrinet and ServerNet, and buffers of 1500 bytes, which are typical for
Ethernet (IEEE-802.3). To show that these results are not much different from those obtained in an
ideal network, we included results for a network that has no buffering at all.

The results show that our algorithms are always better with respect to the number of bytes sent.
The number of messages sent is strongly related to another metric — the message utilization. Message
utilization is the average fraction of the message buffer which is actually used. For large buffers and a
small number of candidates, message utilization is low and the number of messages is high with respect
to FDM. For small buffers and a high number of candidates, the message utilization is high and our
algorithms are far better than FDM. PDDM uses consistently more messages than DDM and DDDM
because in these balanced datasets the leader passes on its turn many times. Every such pass necessitates
sending a message whether it is full or empty. Hence, these passes lead to much lower message utilization.

A further set of experiments (figure 6) checked if the behavior displayed in figure 5 remains the same
when the number of nodes increases. In other words, the question is whether our algorithms remain
scalable when messages are buffered. The results show that message utilization remains very stable
regardless of the number of nodes. This means that the superior scalability of our algorithms holds
not only with respect to the number of bytes, but with respect to the number of messages sent as well.
Hence, as the number of nodes increases, so does the message efficiency of our algorithms, as compared
to FDM. For the reasons mentioned above, PDDM uses more messages than FDM when the buffers are
large. Although PDDM shows the same trend as DDM and DDDM, it is still less message-efficient even
for 64 nodes.

The final set of experiments (figure 7) is concerned with heavily skewed datasets. For this set of
experiments we created 65 database partitions: 64 partitions had the same number of transactions and
the last one had the same number of transactions as the former 64 combined. This emulates real-life
scenarios in which there is one dominating database (a server, a central department, etc.) and many
lesser ones (clients, regional departments, etc.). As expected, PDDM gives significant improvement over
DDM in these scenarios. Furthermore, it should be noted that the improvements made by PDDM and
DDDM are completely orthogonal. This is because PDDM reduces the communication needed for the
identification of the frequent itemsets, while DDDM only deviates from DDM after the frequent itemsets
have been identified. Hence a combined algorithm (which is not presented here) will necessarily be better
than both DDDM and PDDM.
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Figure 5: The effect of buffer size on the number of bytes and messages sent. If the number of candidates
is large with respect to the buffer size (bottom row), our algorithms send far fewer bytes and messages
than FDM. If the number of candidates is small (top row), messages are sent half-empty and FDM
becomes competitive. PDDM uses many more messages because the leader sends a message each time
it passes on its turn, regardless of whether that message is full or empty.
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(c) For larger buffers, PDDM sends many more (d) Again, Message utilization is independent of
messages than all other algorithms. Yet DDM and the number of nodes. Not surprisingly, it is also
DDDM are still better than FDM. lower.

Figure 6: Message utilization (5 and 5) remains stable regardless of the number of nodes. Hence, since
our algorithms are scalable with respect to the number of bytes sent, they are also scalable with respect
to the number of messages sent. However, this scalability does not suffice in the case of PDDM and
large buffers because the initial number of messages is so much larger than that required by FDM that it
remains the largest even for 64 nodes. DDM and DDDM, on the other hand, are better in both respects
than FDM.
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Figure 7: The number of bytes sent vs. MinFreq value for two different skewed databases. Both databases
have 64 partitions which contain the same number of transactions and a 65" partition which has the
same number of transaction as the former 64 combined. Both PDDM and DDDM give significantly better
results than DDM. Since those two algorithms improve different aspects of DDM, those improvements
can be combined.

6 Conclusions

During the past few years, distributed systems have become a mainstream computing paradigm. Whether
it be a company’s Virtual Private Network, a multi-server billing center, a network of independent
stockbrokers or a peer-to-peer mp3 library like Napster, the wealth of information available on-line is
constantly expanding. This information is by and large distributed, and there is a growing need for tools
that will assist in understanding and describing it.

These new databases differ from distributed databases of the past. The partitioning of the data
is usually skewed. The connections between partitions are sparse and often unreliable, and various
throughputs and latencies may apply. Distributed knowledge discovery algorithms will, in our view,
become a major tool in the making, maintaining and analysis of distributed systems. This will require us
to change our approach to distributed knowledge discovery and accept the skewed, sparsely connected,
sometimes unreliable environment of these distributed systems. We will have to restate well-known
problems and define new ones.

This paper can be viewed as an example of a new approach to one such well-known problem. The D-
ARM problem was restated here as a decision problem, negotiated among different parties. The resulting
algorithms are both more efficient, more resilient to data skewness, and better able to overcome certain
communication difficulties such as unordered messages, variable or uneven throughputs, and the like.
We intend to further extend the concept of mining through distributed decision-making and apply it to
other areas of knowledge discovery.

Several open research questions remain. The hypothesis functions H and P play a central role in all
our algorithms. Their optimality is thus an important open question. Given a certain target function,
we would like to find those H and P which will result in the shortest discussion, i.e., those functions that
yield the lowest communication costs. Our algorithms also assume that the network supports broadcast.
It would be interesting to review the problem in networks that do not support broadcast. Finally, the
DDDM algorithm is unique in that it reduces communication by not collecting all counts for the large
itemsets. It would be interesting to see how this affects performance for real applications.
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