
to update the robot�s position�
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Fig� ��� Pan�tilt dispersion and predicted covariance for images
�a���b�
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Fig� �	� Pan�tilt dispersion and predicted covariance for images
�d���e�

pan and tilt angles� Fig� �� describes the area of the ellipse
containing the true pan and tilt angles which describe the
direction of translation� with some �xed probability� This
area is in degrees squared� We now see two properties�

�� The dispersion is bounded even for large translations�
	� The dispersion is low for small translations�

The reason for the �rst property is quite clear� As the X�Y
components of the translation grow� the Focus of Expan

sion moves further away from the origin� Then even large
errors in its determination do not a�ect the �D direction�
For example� the points 
���� ��� and 
���� ��� represent
two rather di�erent points when considered as points in
the 
u� v� plane� However� the �D directions 
���� ��� ��
and 
���� ��� �� are almost similar�
The reason for the low dispersion when the translations

are small is that the dispersion in terms of 
u� v� coordi

nates is very low 
see Fig� ��� Therefore the dispersion in
terms of angles is also low�
Finally� we will compare the angular dispersion predicted

in Fig� �� with the following empirical measure of disper

sion� For each translation we have randomly chosen ����
points 
�ui� �vi� around the estimate 
�u� �v�� by using the pre

dicted covariance matrix� Thus we have obtained ���� rep

resentative results of estimated FOE�s for each translation�
We then computed the angle between the vectors 
�ui� �vi� f�

t

and the vector 
�u� �v� f�t� These ���� angles are a sample
of the true �D angular error distribution associated with
each speci�c con�guration� For each con�guration we now
computed the ��� quantile of the distribution� This is an
empirical measure of the dispersion of �D angular error as
a function of the con�guration� Fig �� shows these empiri
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Fig� ��� Dispersion of pan and tilt angle as function of translation�
We plotted

p
���� for the matrix ���� corresponding to each

translation� Compare with Fig� 
�
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Fig� ��� Empirical measure of dispersion� The graph shows the
���th percent quantile of the �D angular error distribution at
each con
guration� Compare with theoretical prediction in Fig�
���

cal results� These results are in very good agreement with
the angular dispersion prediction shown in Fig� ���

VI� Conclusions

In recent years it has been recognized that in order to
achieve robust motion planning and navigation algorithms�
the varying capability of the sensors the robot is using
should be taken into account� Having a mapping of sen

sor performance across the con�guration space has been
argued to be bene�cial and important� However� despite
the importance of vision as a localization sensor� there has
been limited work on creating such a mapping for a vision
sensor� In this work we have addressed this need�
We have presented a new method to compute the di


rection of translation of the robot� and have shown that
together with the estimated direction one may obtain an
indication of the accuracy of this estimate 
 the covariance
matrix� The covariance matrix is computed by a closed
form formula and hence its computation is fast� We have
shown that the predicted covariance describes accurately
the dispersion of estimates in di�erent con�gurations�
Having a reliable performance map� which describes the

quality of the localization result given to us by our sensor�
we may now address higher level problems� Future work
will integrate the performance map into the motion plan

ning stage� the motion planner should use the data in the
map to plan paths along which the sensor is able to give ac

curate localization results� In addition� sensing strategies
can be devised which use the performance map to decide at
which points along the path the sensor should be invoked
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Fig� 
� Predicted measure of dispersion
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Fig� �� Empirical measure of dispersion obtained

A� Angular Errors

Recall that our goal is localization of a robot based on
egomotion estimation� Assume that the Focus of Expan

sion is 
u� v�� Then in the �D world� the direction of trans


lation was �d � 
u� v� f�t 
where f is the focal length�� We
will describe this �D direction using the pan and tilt an

gles� By tilt we mean the angle that is created by the v
component and by pan we mean the angle that is created
by the u component� Explicitly written� the direction of
the vector 
u� v� f�t is speci�ed by�

�
�

�
� g
u� v� �

�
arctan u

f

arctan v
f

�
Let �u�v denote the covariance matrix of the FOE es


timate 
�u� �v�� Let 
��� ���t � g
�u� �v� be the corresponding
angles representing the estimated �D direction� Let ����
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Fig� ��� Predicted vs� empirical dispersion � images �a� and �b�
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Fig� ��� Predicted vs� empirical covariance for images �d���e�
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Fig� ��� Predicted vs� empirical covariance for images �d���f�

be the covariance matrix of the estimated angles 
��� ���t�
Since we may approximate�

��
��

�
� g
�u� �v� � g
u� v� �

�g

�
u� v�

�
�u� u
�v � v

�
we may use the following formula for �����

���� � J�u�vJ
t

where

J �
�g

�
u� v�
�

�
f

u��f� �

� f
v��f�

�
The matrix ���� describes the dispersion of the pan and

tilt angles which denote the �D direction of translation�
We have computed the pan and tilt estimates of the di


rection of translation for the image pairs 
a�

b� and 
d�


e�� We have also computed the predicted covariance ma

trices ����� In Figs� ����� we plot the actual pan�tilt
estimates and the dispersion described by the predicted
covariance matrices ����� It is may be seen that the co

variance matrices describe the dispersion faithfully�
Describing the dispersion in angular terms may change

our view of the uncertainty associated with di�erent con

�gurations� Let us analyze the �D error in the synthetic
scene for which Fig� � was computed� Recall that in Fig�
� we drew the area of the ellipse containing the Focus of
Expansion with some �xed probability� as a function of the
translation parameters� This area is in pixels squared� It
was seen that as the X�Y components of the translation
grow� the area of the ellipse grows� In other words the un

certainty in the location of the FOE is larger the further it
is from the origin� Let us now consider the uncertainty in




a� 
d�


b� 
e�


c� 
f�

Fig� ��� Real images used� �a� Base image of 
rst set� �b� Image after forward translation� �c� Image after translation parallel to screen�
�d� Base image of second set� �e� Image after forward and downward translation� �f� Image after forward� sideways and downward
translation�

empirical covariance matrices� for the �rst pair of images

images 
a� and 
b��� The angle between the principal axes
of the two ellipses is ���� degrees� The ratios of the lengths

of axes 


q
������e�

q
������e� are ���� and ����� As is ev


ident by these numbers and by looking at the �gure� the
prediction is quite accurate� The likelihood ratio test also
con�rms the hypothesis with ratio � � �	�� and with esti

mated scale factor 
� � �	�	�

Localization using image 
c� and image 
a� is the case
of localization after sideways translation� In this case the
FOE is practically at in�nity� The angular di�erence be

tween the predicted and empirical eigenvectors was ����
degrees� The actual empirical dispersion is very high in
the direction of the principal axis� The predicted covari

ance matrix does indeed predict this with singular values
ratio of ������ Thus� in this case� the qualitative behaviour

of the dispersion is predicted correctly by our method� and
the quantitative behaviour is meaningless�

Figs� �	��� present comparisons of the empirical and
predicted covariance matrices for the image pairs 
d�

e�
and 
d�

f� respectively� We drew the ellipses de�ned by
the empirical and predicted covariance matrices� and the
actual FOE estimates that were obtained 
based on which
the empirical covariance matrix was computed�� For the
pair 
d�

e� the angle between the principal axes of the
ellipses is ��	 degrees� The ratios of lengths of the axes are
���� and ���� We can see that the direction of dispersion is
predicted very well although the length of the principal axis
was under
predicted� For the pair 
d�

f� the angle between
the principal axes is � degree� The ratio of lengths of the
axes are ���� and ��	��
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Fig� �� Con
gurations in which the hypothesis is rejected
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Fig� �� Histogram of scale factor in con
gurations where the hypoth�
esis is not rejected

di�erence between the predicted and empirical principal
axes of the dispersion ellipses 
 i�e� the angle between the
eigenvectors� It may be seen that in the con�gurations
that seemed in �gure � to be �problematic�� the di�erence
is actually very low� In the con�gurations with small x
translation 
i�e� those with FOE near the center of the
screen� we now obtain large angular errors between pre

dicted and empirical eigenvectors� This is a result of the
circularity of the dispersion in those con�gurations� as is
shown in �gure �� The �gure clearly shows that the large
angular di�erences are obtained in cases where the axes
of the ellipse are nearly equal � and hence the direction
of the principal axis is arbitrary� On the other hand� �g

ure � shows the distribution of angular di�erence between
predicted and empirical eigenvectors� for con�gurations in
which the dispersion was not circular� the square root of
the ratio of empirical eigenvalues was more than ���� It is
may be seen that the predicted directions of dispersion are
very close to the actual dispersion obtained�

In another synthetic scene the second image was ob

tained by translations with varying x� y components and
�xed z component� In other words the camera was moved
forward a �xed amount� and then sideways and up and
down by varying amounts� We measured the dispersion of
the FOE estimate obtained by the product

p
���� which

is proportional to the area of the ellipse determining the
dispersion� Figures � and � show the predicted and ac

tual measures of dispersion obtained� It is seen that the
prediction is quite accurate�

In addition to various synthetic scenes� we have tested
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Fig� 	� Angle between predicted and empirical eigenvectors �degrees�
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Fig� �� Scatter plot of angular di�erence and circularityof dispersion�
Large angular di�erences occur when the dispersion is circular �
i�e� the ratio of axes lengths is close to �� We have plotted
only the cases in which the angular di�erence was more than ��
degrees�

our method on real images� Two sets of images were taken
in our lab� In each set we have a base image� and two
other images which were obtained after di�erent transla

tions with respect to the base image� The two sets of im

ages are shown in Fig� ���
For each pair of images consisting of a base image and

one of the translated images� around �� pairs of correspond

ing points were found� Based on these points� the FOE
was computed and its dispersion predicted by our method�
These predictions were then compared to the dispersion of
FOE values obtained by minimizing the objective function
on noised versions of the point correspondences�
Figure �� shows the actual dispersion of �� FOE esti


mates� and the dispersions described by the predicted and
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Distribution of angular prediction error − non spherical dispersion

Fig� �� Distribution of angular di�erence between predicted and
empirical eigenvectors� where dispersion is not circular



where d is the dimension of the samples 
d � 	 in our case��
� is the maximal likelihood of the observed samples under
the assumption H
� divided by the maximal likelihood of
the observed samples under no restrictions� 
By the maxi

mal likelihood we mean the likelihood under the choice of
��� that maximizes this likelihood�� If this ratio is lower
than some threshold �
 then we reject the hypothesis H
�
The threshold �
 may be selected to yield signi�cance

level � as follows� Under the assumption H
� the random
variable

W � �N�� 
�	�

is distributed with cumulative distribution function

Pr
W 
 w� � w
N��
� 
���

Therefore� if we require the hypothesis H
 to be mistak

enly rejected when it is true with probability �� we should
choose �
 to satisfy


�
��N

 �

N��
� � � 
���

or
�
 � �

N
N�� 
���

When the hypothesis is true� an estimate of the scale factor

� is given by


� �
tr
B ����

��
�

dN

���

B� Geometric Evaluation

The covariance matrix describes through its eigenvec

tors and eigenvalues the dispersion of a random variable in
terms of directions of dispersion and magnitudes of disper

sion� In some cases we are able to accurately estimate the
direction of dispersion of the FOE estimates� but we can

not expect to get an accurate estimate of the the magnitude
of dispersion� This happens when the FOE estimates are
scattered on a line� The covariance matrix then is close
to singular� For these cases and in addition to the previ

ous test described� we will now describe how to test the
quality of our covariance prediction by a direct geometric
comparison�

Let ���� be the predicted covariance matrix� and let �e

be the best unbiased estimate of the covariance matrix�
obtained from the samples�

�e �
�

N � �

NX
i
�


 ��i � ���
 ��i � ���t 
���

The equi

probability density� contours for the FOE are
ellipses with axes in the direction of the eigenvectors of the
covariance matrix� The lengths of these axes depend on the
square root of the eigenvalues 
the lower the probability
density 
 the longer the axes�� Let �u� �ue be the unit eigen


vectors corresponding to the larger eigenvalues of ������e

respectively� Let ���� ���� ��e� ��e be the eigenvalues of these
matrices� A geometric check of validity of the prediction

���� is thus to look at the angle between the vectors �u and
�ue� and at the ratios s

���
��e

�

s
���
��e

However� one has to note the following exception� Sup

pose the dispersion described by the covariance matrix is

close to circular� In other words� the value of

q
������� is

not much larger than �� Then the direction of the princi

pal axis of the ellipse is rather arbitrary� In that case� we
should not expect the angle between �u and �ue to be close
to zero�

V� Results

Our SUF computation method was tested on synthetic
and real images� We created a synthetic �D scene with 	�
points� These points were projected perspectively to yield
the base image� The second image was then obtained by
projecting these points on a translated screen� The direc

tion and magnitude of the translation vector was varied to
show the di�erent behaviour of the sensory uncertainty at
di�erent con�gurations of the robot� The projected points
were corrupted with Gaussian noise with standard devia

tions �x � �y � 	 pixels 
the focal length was taken as
������
For each translation of the second screen w�r�t the �rst

screen� we made made �� di�erent noise corrupted ver

sions of the projected features� For each version we com

puted the FOE by minimizing the objective function given
by equation 
��� This gave us the actual dispersed values
���� 	 	 	 � ��N
�
� Then we computed the predicted covari

ance matrix ���� by using equation 
��� 
The matrixM was

evaluated at an arbitrary sample ���
 and at the measured
features �X�� We tested the validity of ���� with respect to
the dispersed actual values obtained as described in the
previous section�
The coordinate system in which we worked is the stan


dard normalized camera coordinates of the base image 

i�e� the z axis is the viewing direction and the x� y axes are
on the image plane� In the �rst case we will present� the
second screen was translated along the x 
i�e� left�right�
axis and the z 
i�e� forward�backward� axis� with respect
to the base image position� Figure � shows those con�gura

tions in which the hypothesis H
 had to be rejected 
with
signi�cance level � � ���� It may be seen that apart
from the cases where the translation was nearly parallel to
the screen� the hypothesis was almost always not rejected�
Indeed� apart from middle two lines� the hypothesis is re

jected in 	� out of ��� con�gurations which is very close to
��� Figure � shows the distribution of the estimate given
in equation 
��� for the scale factor 
�� for those con�gu

rations where the hypothesis was not rejected� It may be
seen that the scale factor is close to �� as expected�
In the con�gurations where the z component of the trans


lations was low� the hypothesis H
 was rejected� However�
the predicted covariance matrix still gives a very good qual

itative measure of dispersion� Figure � shows the angular
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Fig� �� De
nition of the function q

where the arctangent is chosen in the range ��� 	�� accord

ing to the signs of the numerator and denominator 
as in
the atan	 function��

Since the segments of the scene are independent� we
may �nd for each measured segment the most likely 
u� v�

supporting segment� The collection of these most
likely
segments is the required scene  S� The value of q
u� v� is
the sum of squared distances from the measured pixels to
the line segments in  S 
actually this is the logarithm of q
up to a scale factor��

Once we have computed � � �
u� v� �x� �y� �x�� �y�� the dis

tances d�� d� to the line are

d�� � 
� sin �
�x � u� � cos �
�y � v���

d�� � 
� sin �
�x� � u� � cos �
�y� � v��� 
��

Since all segments are independent of each other� in order
to �nd the AML FOE estimate we have to minimize w�r�t�

u� v� the function

F 
u� v� �x�� 	 	 	 � �y
�
p� �

pX
i
�

f
� sin �
�xi � u� � cos �
�yi � v��� �


� sin �
�x�i � u� � cos �
�y�i � v���g 
��

III� Covariance Estimation

We now want to estimate the dispersion of the estimatedd
u� v� at a certain con�guration� Our estimate is based on
a �rst order approximation derived in ��!� The input from
the point matching algorithm is the set of correspondences
�si � 
�xi� �yi� �x

�
i� �y

�
i� which are the noise corrupted versions of

si � 
xi� yi� x
�
i� y

�
i�� Denote by X � 
x�� y�� x

�
�� y

�
�� 	 	 	 � y

�
p�
t

and �X � 
�x�� �y�� �x��� �y
�
�� 	 	 	 � �y

�
p�
t the pure and noisy sets of

matches� Let � � 
u� v� be the correct FOE and �� � d
u� v�
be the estimated FOE� Then we have�

� � argmin
�

F 
�� X�

�� � argmin�F 
�� �X� 
��

Let

g
�� X� � r�F �
�F

��

Since �� minimizes F 
�� �X� and � minimizes F 
�� X�� we

have that both g
 ��� �X� and g
�� X� are equal to �� By

using �rst order Taylor expansion� in ��! it is shown that
this leads to

�g

��

��� �X�
 ��� �� � � �g

�X

 ��� �X�
 �X �X�

which leads to the following approximation of the covari

ance matrix of �� �

��� � M� �XM
t 
��

where

� �X � E�
 �X �X�
 �X �X�t!

M � 

�g

��
���


�g

�X
�

In our case we have

g �

�
Fu
Fv

�
�g

��
�

�
Fuu Fuv
Fvu Fvv

�
�g

�X
�

�
Fu�x� Fu�y� � � � Fu�y�p
Fv�x� Fv�y� � � � Fv�y�p

�
The matrix M is evaluated at the estimated �� and the

measured �X � Since equations 
���� are closed form equa

tions for F � we may obtain a closed form expression for M
and hence for ����

IV� Testing the Accuracy of the Predicted

Covariance Matrix

The matrix ���� � M� �XM
t obtained in the previous

section predicts the dispersion of results �� we would obtain
from dispersed values �X of the pure matches X� In order
to check the accuracy of this prediction� we obtained actual
values ���� 	 	 	 � ��N � and compared their dispersion with the
predicted covariance ����� We now describe two methods of
comparison�

A� Statistical Hypothesis Testing

The �rst method is to perform an hypothesis test� The
hypothesis we are testing is the following�
H
� the observations ���� 	 	 	 � ��N come from a normal

random variable N 
����� and � � 
� ���� for some unspec�
i�ed 

This hypothesis may be tested by using a likelihood ratio

test 
see �	! page 	�	 for details�� We �rst compute the
statistic matrix

B �
NX
i
�


 ��i � ���
 ��i � ���t 
���

where �� �
P ��i�N is the sample mean� Then we compute

the ratio

� �

det
B ����

��
��

N
�



tr�B����

��
�

d �
dN
�


���



obtain a third image� Since the camera is mounted on the
robot� and since the base image con�guration of the robot
and camera are known� the current con�guration of the
robot may now be deduced� Details of this localization
algorithm may be found in ��!�

Our goal is now to predict the covariance matrix of the
motion estimate we obtain� We will focus on the estimate
of direction of translation� or focus of expansion 
FOE��
There are several reasons for this� First� it is known that
this parameter of motion is in a sense the �weak link� in
the chain� the accuracy of recovering this parameter varies
with it�s value � For example� when translation is parallel
to the screen the FOE is less accurately recovered� On the
other hand� rotation recovery was found to be less sensitive
to its actual value 
see for example ���! for details�� Sec

ondly� the covariance of the FOE estimate may serve as a
bound on the accuracy of the �nal result as follows� Our
egomotion estimation algorithm ��! works by �rst recover

ing the rotation� After the rotation is known� the second
image is derotated and then we recover the FOE from the
two recti�ed images� The bound is likely to be tight since
the rotation recovery part is highly and uniformly accurate

 i�e� it�s accuracy does not depend on the actual con�gu

ration of the robot�

We will now describe how we estimate the FOE using
point matches between two images related by pure transla

tion� Let 
pi� p

�
i� � 
xi� yi� x

�
i� y

�
i� be the noise free 
or pure�

matches between the two views� Let 
�pi� �p
�
i� � 
�xi� �yi� �x

�
i� �y

�
i�

be the measured correspondences� Let us assume the error
in each coordinate is a Gaussian random variable with zero
mean and �� variance� Let S � f
pi� p�i�g be called the

pure scene and let �S � f
�pi� �p�i�g be called the measured
scene�

Denote by L
Sj �S� the likelihood of the scene S being

the true correspondences� given the measured scene �S� By
the Gaussian assumption on the measurement noise� and
by assuming independence between pixels and views� we
obtain

L
Sj �S� �
�p
	��

e�
�x���x��

�

��� � � � �p
	��

e�
�yp��y�p�

�

���

�
�


	���p�	p
e�

�
���

��x���x��
�������yp��y�p�

�� 
��

Thus we think of the measures scene �S as being a noise
corrupted version of some true scene S� and the likelihood
for each S is given by equation 
���
Assume that a certain point 
u� v� is the FOE� Then it

is well known that the segments si � 
pi� p
�
i� in the pure

scene all lie on lines meeting at the point 
u� v�� Thus we
are led to the following de�nition�
De�nition� The scene S � f
pi� p�i�g supports the point


u� v� if the lines through the pairs 
pi� p�i� all meet at the
point 
u� v��

It is now natural to de�ne the likelihood of the point

u� v� being the FOE� given the measured scene �S as

L
u� v� �
Z
fSjS supports �u�v�g

L
Sj �S� 
	�

S 
^

S 
^

S 
^

E

S1

S2

S2

S1

measured

scene

scene S2

S1

Fig� �� Possible supporting scenes for the point E

This de�nition is illustrated in �gure �� S� and S� are two
possible scenes which support the fact that the point E is
the FOE� Clearly given the measured scene �S� scene S� is
much more likely�

It is clear that an in�nite number of scenes may support
the fact that a point 
u� v� is the FOE� However� given
a speci�c measured scene� the majority of these possible
supporting scenes are very unlikely� In other words� the
integrand in 
	� nearly vanishes for the majority of the
supporting scenes� Still� obtaining a good approximation
of 
	� may not be trivial� 
See ���! for related work in which
actual computation of simpler� one dimensional integrals
resembling the integral in equation 
	�� was carried out in
the context of curve �tting��
We chose to approximate 
	� by taking only the largest

integrand into account� For a point 
u� v� we �nd the scene
 S that supports 
u� v� and that is also the most likely scene

given �S 
with respect to all other scene supporting 
u� v���

 S � argmaxfSjS supports �u�v�gL
Sj �S� 
��

and then we approximate 
	� by

q
u� v� � L
  Sj�S� 
��

Finding the point 
u� v� which maximizes the function q is
our method for estimating the FOE� and we call this the
approximate maximum likelihood �AML� estimate�
It remains to show how we can compute the scene  S that

is the most likely scene which supports 
u� v�� given �S� Let

us look at a speci�c segment 
�pi� �p
�
i� from

�S� We would like
to move the points �pi and �p�i as little as possible to points
pi and p�i� such that 
u� v�� pi and p�i will all be colinear�
The less we move �pi and �p�i� the higher the likelihood of the
new segment 
pi� p�i�� This is illustrated in �gure 	� Thus�
given the points �p � 
�x� �y� and �p� � 
�x�� �y��� the geometric
solution is as follows� pass a line through the point 
u� v�
such that the sum d���d�� of the distances from �p and �p� to
the line� will be minimal� By simple calculus and geometry
it may be veri�ed that the line we are seeking creates an
angle � with the x axis such that

� �
�

	
arctan

	

�x� u�
�y � v� � 
�x� � u�
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Computing the Sensory Uncertainty Field of a Vision�based Localization

Sensor

Amit Adam� Ehud Rivlin� Ilan Shimshoni

Abstract

Recently it has been recognized that robust motion plan�
ners should take into account the varying performance of lo�
calization sensors across the con�guration space� Although
a number of works have shown the bene�ts of using such a
performance map� the work on actual computation of such a
performance map has been limited and has addressed mostly
range sensors� Since vision is an important sensor for lo�
calization� it is important to have performance maps of vi�
sion sensors� In this paper we present a method for com�
puting the performance map of a vision�based sensor� We
compute the map and show that it accurately describes the
actual performance of the sensor� both on synthetic and real
images� The method we present involves evaluating closed
form formulas and hence is very fast� Using the perfor�
mance map computed by our method for motion planning
and for devising sensing strategies will contribute to more
robust navigation algorithms�

Keywords� vision based localization� uncertainty� perfor�
mance evaluation� motion planning

I� Introduction

External sensors such as video cameras� laser range �nd

ers and sonar are being routinely used for mobile robot
localization� Recently ���!� ��!� ��!� ��!� ��	!� ���! it has been
recognized that the accuracy of the localization obtained
by invoking the sensor� will in general depend on the con

�guration the robot is in� In other words� the combination
of sensor and environment de�nes some kind of map which
describes the quality of localization obtained at each con

�guration by using the sensor� We will refer to this map as
the Sensory Uncertainty Field 
SUF� which was coined in
���!�

Existence of the SUF has led to some interesting higher
level problems� A natural idea is to have the motion plan

ner use the information in the SUF to plan routes which
will pass in regions where the sensor works well� i�e� the
sensory uncertainty is low� Such works may be found in
���!� ��!���!� In ��! a related notion is the information con

tent of the environment at each con�guration� Another
similar idea motivated by visual servoing is described in
���!� Another use of the SUF map is demonstrated in ��	!�
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where the question of choosing the proper landmarks for
localization is addressed� Celinski and McCarragher ��!�
��! addressed the problem of sensing management 
 for ex

ample choosing the appropriate sensor to be used at each
con�guration� An SUF type of map is some of the input
required for addressing such issues�
Although these higher level works illustrate the utility

and importance of using and having an SUF� there has
been limited work on actual computation of the SUF� The
above mentioned works ���!���!���! all used a range sensor�
The basic method of computing the SUF is to actually
simulate the sensing algorithm at each con�guration� The
output of the algorithm on noisy measurements results in
dispersed answers� and the SUF is some measure of this
dispersion� Such a method for computing the SUF is time
consuming because the simulation has to be run for each
con�guration in the con�guration space� Therefore� various
simpli�cations had to be employed in ���!���!�
In this work we present a fast method to compute a SUF

for a vision sensor� Our method does not involve simula

tion of the sensing� Instead we use a closed form formula
which gives a direct estimate of the sensing output covari

ance matrix� Thus the method is much faster� To test
our method� we compare the predicted covariance matrix
with the actual scattering of results obtained by invoking
the sensor many times 
i�e� simulation�� and show that the
predicted covariance matrix indeed describes well this dis

persion� This is shown both on synthetic and real images�
In the next section we describe the localization algorithm

based on input from a vision sensor� Afterwards we de

scribe the general method to estimate the covariance ma

trix of the sensor output� and apply it to our speci�c case�
Section IV describes how we statistically tested the validity
of our predicted covariance matrix� In section V we present
comparison of the predicted vs� actual covariance matrices
obtained in di�erent scenes and con�gurations� The last
section summarizes and concludes this paper�

II� Localization Algorithm

The sensor we use for localization is a vision based sen

sor which we will now describe� We assume a camera is
mounted on the robot� We localize the robot by com

puting the motion of the camera 
 known as egomotion
recovery in computer vision� as follows� A base image is
taken at a known con�guration of the robot and camera�
When localization is required� a second image is obtained�
Point correspondences between the two images are found�
From these correspondences the rotation and the direction
of translation of the camera 
w�r�t the base image con�gu

ration� may be found� In order to estimate the magnitude
of translation� the robot has to make a small move and


