to update the robot’s position.

(10]

(11]

(12]

(13]

(14]
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Fig. 15. Pan/tilt dispersion and predicted covariance for images
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pan and tilt angles. Fig. 16 describes the area of the ellipse
containing the true pan and tilt angles which describe the
direction of translation, with some fixed probability. This
area is in degrees squared. We now see two properties:

1. The dispersion is bounded even for large translations.
2. The dispersion is low for small translations.

The reason for the first property is quite clear. Asthe X,Y
components of the translation grow, the Focus of Expan-
sion moves further away from the origin. Then even large
errors in its determination do not affect the 3D direction.
For example, the points (500,30) and (600,40) represent
two rather different points when considered as points in
the (u,v) plane. However, the 3D directions (500,30, 1)
and (600,40, 1) are almost similar.

The reason for the low dispersion when the translations
are small is that the dispersion in terms of (u,v) coordi-
nates is very low (see Fig. 8). Therefore the dispersion in
terms of angles is also low.

Finally, we will compare the angular dispersion predicted
in Fig. 16 with the following empirical measure of disper-
sion. For each translation we have randomly chosen 5000
points (4, v;) around the estimate (4, ¢), by using the pre-
dicted covariance matrix. Thus we have obtained 5000 rep-
resentative results of estimated FOE’s for each translation.
We then computed the angle between the vectors (t;, ¥;, f)*
and the vector (, o, f)*. These 5000 angles are a sample
of the true 3D angular error distribution associated with
each specific configuration. For each configuration we now
computed the 90% quantile of the distribution. This is an
empirical measure of the dispersion of 3D angular error as
a function of the configuration. Fig 17 shows these empiri-

Fig. 16. Dispersion of pan and tilt angle as function of translation.
We plotted \/A1 Az for the matrix ¥y , corresponding to each
translation. Compare with Fig. 8.
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Fig. 17. Empirical measure of dispersion. The graph shows the
90’th percent quantile of the 3D angular error distribution at
each configuration. Compare with theoretical prediction in Fig.
16.

cal results. These results are in very good agreement with
the angular dispersion prediction shown in Fig. 16.

VI. CONCLUSIONS

In recent years it has been recognized that in order to
achieve robust motion planning and navigation algorithms,
the varying capability of the sensors the robot is using
should be taken into account. Having a mapping of sen-
sor performance across the configuration space has been
argued to be beneficial and important. However, despite
the importance of vision as a localization sensor, there has
been limited work on creating such a mapping for a vision
sensor. In this work we have addressed this need.

We have presented a new method to compute the di-
rection of translation of the robot, and have shown that
together with the estimated direction one may obtain an
indication of the accuracy of this estimate - the covariance
matrix. The covariance matrix 1s computed by a closed
form formula and hence its computation is fast. We have
shown that the predicted covariance describes accurately
the dispersion of estimates in different configurations.

Having a reliable performance map, which describes the
quality of the localization result given to us by our sensor,
we may now address higher level problems. Future work
will integrate the performance map into the motion plan-
ning stage: the motion planner should use the data in the
map to plan paths along which the sensor is able to give ac-
curate localization results. In addition, sensing strategies
can be devised which use the performance map to decide at
which points along the path the sensor should be invoked
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A. Angular Errors

Recall that our goal is localization of a robot based on
egomotion estimation. Assume that the Focus of Expan-
sion is (u,v). Then in the 3D world, the direction of trans-
lation was d = (u,v, f) (where f is the focal length). We
will describe this 3D direction using the pan and tilt an-
gles. By tilt we mean the angle that is created by the v
component and by pan we mean the angle that is created
by the u component. Explicitly written, the direction of
the vector (u, v, f)! is specified by

0\ _ _ [ arctan %
w g(u,v) = arctan %
Let X, , denote the covariance matrix of the FOE es-

timate (w,v). Let (é,gb)t = ¢(4,v) be the corresponding
angles representing the estimated 3D direction. Let Xj ,

Fig. 11. Predicted vs. empirical dispersion - images (a) and (b)
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Fig. 13. Predicted vs. empirical covariance for images (d)-(f)

be the covariance matrix of the estimated angles (é,gb)t
Since we may approximate

(5 ) st matun+ 585 (]

we may use the following formula for X -

o0 _wE 0
8(U,U) 0 v2-{—f2

The matrix Xy , describes the dispersion of the pan and
tilt angles which denote the 3D direction of translation.

We have computed the pan and tilt estimates of the di-
rection of translation for the image pairs (a)-(b) and (d)-
(€). We have also computed the predicted covariance ma-
trices Xy ,. In Figs. 14,15 we plot the actual pan/tilt
estimates and the dispersion described by the predicted
covariance matrices Xg . It is may be seen that the co-
variance matrices describe the dispersion faithfully.

Describing the dispersion in angular terms may change
our view of the uncertainty associated with different con-
figurations. Let us analyze the 3D error in the synthetic
scene for which Fig. 8 was computed. Recall that in Fig.
8 we drew the area of the ellipse containing the Focus of
Expansion with some fixed probability, as a function of the
translation parameters. This area is in pixels squared. It
was seen that as the X,Y components of the translation
grow, the area of the ellipse grows. In other words the un-
certainty in the location of the FOE is larger the further it
is from the origin. Let us now consider the uncertainty in

S = I8yt

where




Fig. 10.

(f)

Real images used. (a) Base image of first set. (b) Image after forward translation. (c) Image after translation parallel to screen.

(d) Base image of second set. (e) Image after forward and downward translation. (f) Image after forward, sideways and downward

translation.

empirical covariance matrices, for the first pair of images
(images (a) and (b)). The angle between the principal axes
of the two ellipses is 11.9 degrees. The ratios of the lengths

of axes (\/;\1//\16, \/;\2//\28) are 1.01 and 1.08. As is ev-
ident by these numbers and by looking at the figure, the
prediction 1s quite accurate. The likelihood ratio test also
confirms the hypothesis with ratio A = 0.38 and with esti-
mated scale factor 32 = 0.92.

Localization using image (¢) and image (a) is the case
of localization after sideways translation. In this case the
FOE 1s practically at infinity. The angular difference be-
tween the predicted and empirical eigenvectors was 0.08
degrees. The actual empirical dispersion is very high in
the direction of the principal axis. The predicted covari-
ance matrix does indeed predict this with singular values
ratio of 30000. Thus, in this case, the qualitative behaviour

of the dispersion is predicted correctly by our method, and
the quantitative behaviour is meaningless.

Figs. 12,13 present comparisons of the empirical and
predicted covariance matrices for the image pairs (d)-(e)
and (d)-(f) respectively. We drew the ellipses defined by
the empirical and predicted covariance matrices, and the
actual FOE estimates that were obtained (based on which
the empirical covariance matrix was computed). For the
pair (d)-(e) the angle between the principal axes of the
ellipses is 1.2 degrees. The ratios of lengths of the axes are
0.77 and 1.1. We can see that the direction of dispersion is
predicted very well although the length of the principal axis
was under-predicted. For the pair (d)-(f) the angle between
the principal axes is 1 degree. The ratio of lengths of the
axes are 1.17 and 1.23.
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Fig. 3. Configurations in which the hypothesis is rejected
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Fig. 4. Histogram of scale factor in configurations where the hypoth-
esis is not rejected

difference between the predicted and empirical principal
axes of the dispersion ellipses - i.e. the angle between the
eigenvectors. It may be seen that in the configurations
that seemed in figure 3 to be “problematic”, the difference
is actually very low. In the configurations with small z
translation (i.e. those with FOE near the center of the
screen) we now obtain large angular errors between pre-
dicted and empirical eigenvectors. This is a result of the
circularity of the dispersion in those configurations, as is
shown in figure 6. The figure clearly shows that the large
angular differences are obtained in cases where the axes
of the ellipse are nearly equal , and hence the direction
of the principal axis is arbitrary. On the other hand, fig-
ure 7 shows the distribution of angular difference between
predicted and empirical eigenvectors, for configurations in
which the dispersion was not circular: the square root of
the ratio of empirical eigenvalues was more than 1.5. It is
may be seen that the predicted directions of dispersion are
very close to the actual dispersion obtained.

In another synthetic scene the second image was ob-
tained by translations with varying z,y components and
fixed z component. In other words the camera was moved
forward a fixed amount, and then sideways and up and
down by varying amounts. We measured the dispersion of
the FOE estimate obtained by the product +/A; Ay which
is proportional to the area of the ellipse determining the
dispersion. Figures 8 and 9 show the predicted and ac-
tual measures of dispersion obtained. It is seen that the
prediction is quite accurate.

In addition to various synthetic scenes, we have tested

2 (n focal lengths) -100
150 "_y50

X (infocallengths)

Fig. 5. Angle between predicted and empirical eigenvectors (degrees)

Anguiar difference between predicted and empirical axes

1 12 14 16 18 2 22 24 26 28
Ratio of square root of singular values

Fig. 6. Scatter plot of angular difference and circularity of dispersion.
Large angular differences occur when the dispersion is circular -
i.e. the ratio of axes lengths is close to 1. We have plotted
only the cases in which the angular difference was more than 10
degrees.

our method on real images. Two sets of images were taken
in our lab. In each set we have a base image, and two
other images which were obtained after different transla-
tions with respect to the base image. The two sets of im-
ages are shown in Fig. 10.

For each pair of images consisting of a base image and
one of the translated images, around 30 pairs of correspond-
ing points were found. Based on these points, the FOE
was computed and its dispersion predicted by our method.
These predictions were then compared to the dispersion of
FOE values obtained by minimizing the objective function
on noised versions of the point correspondences.

Figure 11 shows the actual dispersion of 50 FOE esti-
mates, and the dispersions described by the predicted and

Distribution of angular prediction error - non spherical dispersion

150

100

10 15 20
Angular difference (degrees)

Fig. 7. Distribution of angular difference between predicted and
empirical eigenvectors, where dispersion is not circular



where d is the dimension of the samples (d = 2 in our case).
A is the maximal likelihood of the observed samples under
the assumption Hy, divided by the maximal likelihood of
the observed samples under no restrictions. (By the maxi-
mal likelihood we mean the likelihood under the choice of
i, ¥ that maximizes this likelihood). If this ratio is lower
than some threshold Ag then we reject the hypothesis Hp.

The threshold Ay may be selected to yield significance
level « as follows. Under the assumption Hy, the random
variable

W= \N/2 (12)
1s distributed with cumulative distribution function
Pr(W <uw)=w? (13)

Therefore, if we require the hypothesis Hy to be mistak-
enly rejected when it 1s true with probability a, we should
choose Ag to satisfy

N—2

2/N
(AN

=«

(14)

or
N

AO — ¢ N-2

(15)

When the hypothesis is true, an estimate of the scale factor
A% is given by

S—1
tr(BEé )

CA (16)

B. Geometric Evaluation

The covariance matrix describes through its eigenvec-
tors and eigenvalues the dispersion of a random variable in
terms of directions of dispersion and magnitudes of disper-
sion. In some cases we are able to accurately estimate the
direction of dispersion of the FOE estimates, but we can-
not expect to get an accurate estimate of the the magnitude
of dispersion. This happens when the FOE estimates are
scattered on a line. The covariance matrix then is close
to singular. For these cases and in addition to the previ-
ous test described, we will now describe how to test the
quality of our covariance prediction by a direct geometric
comparison.

Let i]@ be the predicted covariance matrix, and let X,
be the best unbiased estimate of the covariance matrix,
obtained from the samples:

(17)

The equi-(probability density) contours for the FOE are
ellipses with axes in the direction of the eigenvectors of the
covariance matrix. The lengths of these axes depend on the
square root of the eigenvalues (the lower the probability
density - the longer the axes). Let @, @, be the unit eigen-
vectors corresponding to the larger eigenvalues of i]@, e
respectively. Let ;\1, ;\2, Ale, Aze be the eigenvalues of these
matrices. A geometric check of validity of the prediction

i]@ is thus to look at the angle between the vectors @ and
e

, and at the ratios

A1 Ag
A16 ’ A26

However, one has to note the following exception. Sup-
pose the dispersion described by the covariance matrix is
Xl/XQ 1s
not much larger than 1. Then the direction of the princi-

pal axis of the ellipse is rather arbitrary. In that case, we
should not expect the angle between @ and , to be close

close to circular. In other words, the value of

to zero.

V. RESULTS

Our SUF computation method was tested on synthetic
and real images. We created a synthetic 3D scene with 20
points. These points were projected perspectively to yield
the base image. The second image was then obtained by
projecting these points on a translated screen. The direc-
tion and magnitude of the translation vector was varied to
show the different behaviour of the sensory uncertainty at
different configurations of the robot. The projected points
were corrupted with Gaussian noise with standard devia-
tions o, = o, = 2 pixels (the focal length was taken as
1000).

For each translation of the second screen w.r.t the first
screen, we made made 50 different noise corrupted ver-
sions of the projected features. For each version we com-
puted the FOE by minimizing the objective function given
by equation (7). This gave us the actual dispersed values
(:)1, cey On=50. Then we computed the predicted covari-
ance matrix i]@ by using equation (9). (The matrix M was

evaluated at an arbitrary sample Osg and at the measured
features X) We tested the validity of f]@ with respect to
the dispersed actual values obtained as described in the
previous section.

The coordinate system in which we worked is the stan-
dard normalized camera coordinates of the base image -
i.e. the z axis is the viewing direction and the z, y axes are
on the image plane. In the first case we will present, the
second screen was translated along the = (i.e. left/right)
axis and the z (i.e. forward/backward) axis, with respect
to the base image position. Figure 3 shows those configura-
tions in which the hypothesis Hy had to be rejected (with
significance level @« = 5%). Tt may be seen that apart
from the cases where the translation was nearly parallel to
the screen, the hypothesis was almost always not rejected.
Indeed, apart from middle two lines, the hypothesis is re-
jected in 23 out of 440 configurations which is very close to
5%. Figure 4 shows the distribution of the estimate given
in equation (16) for the scale factor 3%, for those configu-
rations where the hypothesis was not rejected. It may be
seen that the scale factor is close to 1, as expected.

In the configurations where the z component of the trans-
lations was low, the hypothesis Hy was rejected. However,
the predicted covariance matrix still gives a very good qual-
itative measure of dispersion. Figure 5 shows the angular



Fig. 2. Definition of the function ¢

where the arctangent is chosen in the range [0, 27) accord-
ing to the signs of the numerator and denominator (as in
the atan2 function).

Since the segments of the scene are independent, we
may find for each measured segment the most likely (u, v)-
supporting segment. The collection of these most-likely
segments is the required scene S. The value of q(u,v) is
the sum of squared distances from the measured pixels to
the line segments in S (actually this is the logarithm of ¢
up to a scale factor).

Once we have computed 6 = 0(u,v, 2,9, &, §') the dis-
tances dy, ds to the line are

@ =

@ =

(—sin (& — u) + cos O(y — v))*
(—sin (2" — u) + cos 0(y — v))* (6)
Since all segments are independent of each other, in order

to find the AML FOE estimate we have to minimize w.r.t.
(u,v) the function

Flu,v,a,...,9,) =
Z{(— sin6(&; — u) + cos 0(y; — v))2 +
(—sin 0(&; — u) + cos 0(g; — v))*} (7)

III. CoOVARIANCE ESTIMATION

We now want to estimate the dispersion of the estimated
(ﬂ) at a certain configuration. Our estimate is based on
a first order approximation derived in [7]. The input from
the point matching algorithm is the set of correspondences
$i = (&4, 9;, @, 4}) which are the noise corrupted versions of
si = (@, yi, 25, y}). Denote by X = (&1, 1y, 27,41, .-, yz’,)t
and X = (1,91, 20, 94, - - y]g)t the pure and noisy sets of

matches. Let @ = (u, v) be the correct FOE and 6= (17,\1))
be the estimated FOE. Then we have:

0 = argr%inF(G),X)
© = argmingF (O, X) (8)
Let
oF

Since © minimizes F (0, X) and © minimizes F'(©, X), we
have that both g((:),f() and ¢(0©, X) are equal to 0. By

using first order Taylor expansion, in [7] it is shown that
this leads to
09, o~ NS
=5 (0, X)(0-0) =—-(0, X)(X - X)
00
which leads to the following approximation of the covari-
ance matrix of © :

Yo =M M’ (9)
where
Ty = ElX-X)(X -X)]
dg 1, Og
M = (-2
(36)" (5x)
IH our case we have
— Fu
g = F,
a_g _ Fuu Fuv
6@ - F’UU F’U’U
99 _ o Fusy FPug - Fuy,
ox Fogy Fogy -+ Fug

The matrix M is evaluated at the estimated © and the
measured X. Since equations (5,7) are closed form equa-
tions for F', we may obtain a closed form expression for M
and hence for Xg.

IV. TESTING THE ACCURACY OF THE PREDICTED
COVARIANCE MATRIX

The matrix i]@ = MY M" obtained in the previous
section predicts the dispersion of results O we would obtain
from dispersed values X of the pure matches X. In order
to check the accuracy of this prediction, we obtained actual
values O1, ..., 0y, and compared their dispersion with the
predicted covariance i]@. We now describe two methods of
comparison.

A. Statistical Hypothesis Testing

The first method 1s to perform an hypothesis test. The
hypothesis we are testing is the following:

Hgy: the observations ©1,...,0n come from a normal
random variable N (u, %), and ¥ = 622@ for some unspec-
ified

This hypothesis may be tested by using a likelihood ratio
test (see [2] page 262 for details). We first compute the
statistic matrix

(10)

where ©@ = 7 (:)Z/N is the sample mean. Then we compute
the ratio

A=—— 0 (11)




obtain a third image. Since the camera is mounted on the
robot, and since the base image configuration of the robot
and camera are known, the current configuration of the
robot may now be deduced. Details of this localization
algorithm may be found in [3].

Our goal is now to predict the covariance matrix of the
motion estimate we obtain. We will focus on the estimate
of direction of translation, or focus of expansion (FOE).
There are several reasons for this. First, it is known that
this parameter of motion is in a sense the “weak link” in
the chain: the accuracy of recovering this parameter varies
with 1t’s value . For example, when translation 1s parallel
to the screen the FOE is less accurately recovered. On the
other hand, rotation recovery was found to be less sensitive
to its actual value (see for example [13] for details). Sec-
ondly, the covariance of the FOE estimate may serve as a
bound on the accuracy of the final result as follows. Our
egomotion estimation algorithm [1] works by first recover-
ing the rotation. After the rotation is known, the second
image 1s derotated and then we recover the FOE from the
two rectified images. The bound is likely to be tight since
the rotation recovery part is highly and uniformly accurate
- 1.e. it’s accuracy does not depend on the actual configu-
ration of the robot.

We will now describe how we estimate the FOE using
point matches between two images related by pure transla-
tion. Let (pi, p}) = (24, yi, 2}, yi) be the noise free (or pure)
matches between the two views. Let (p;, p}) = (&4, 94, &}, UL)
be the measured correspondences. Let us assume the error
in each coordinate is a Gaussian random variable with zero
mean and ¢? variance. Let S = {(p;,p})} be called the
pure scene and let S = {(pi,P})} be called the measured
scene.

Denote by £(5]5) the likelihood of the scene S being
the true correspondences, given the measured scene S. By
the Gaussian assumption on the measurement noise, and
by assuming independence between pixels and views, we
obtain

_ a2
_ (up—19y)
e 202

~ 1 (z1—21)2 1
£(5|S) = e~ 202 e

2ro

2ro
1 1 - 2 Al N2
— —ozl®i=21)"++(yp—19,)"]
- (271')2170'4176 (1)

Thus we think of the measures scene S as being a noise
corrupted version of some true scene S, and the likelihood
for each S is given by equation (1).

Assume that a certain point (u,v) is the FOE. Then it
is well known that the segments s; = (p;, p}) in the pure
scene all lie on lines meeting at the point (u,v). Thus we
are led to the following definition:

Definition: The scene S = {(p;, p;)} supports the point
(u,v) if the lines through the pairs (p;, p}) all meet at the
point (u, v).

It is now natural to define the likelihood of the point
(u,v) being the FOE, given the measured scene S as

Llu,v) = / £(519) 2)
{S|5 supports (u,v)}

Fig. 1. Possible supporting scenes for the point &

This definition is illustrated in figure 1. S and S are two
possible scenes which support the fact that the point E 1s
the FOE. Clearly given the measured scene S, scene Sy is
much more likely.

It is clear that an infinite number of scenes may support
the fact that a point (u,v) is the FOE. However, given
a specific measured scene, the majority of these possible
supporting scenes are very unlikely. In other words, the
integrand in (2) nearly vanishes for the majority of the
supporting scenes. Still, obtaining a good approximation
of (2) may not be trivial. (See [14] for related work in which
actual computation of simpler, one dimensional integrals
resembling the integral in equation (2), was carried out in
the context of curve fitting).

We chose to approximate (2) by taking only the largest
integrand into account. For a point (u,v) we find the scene
S that supports (u,v) and that is also the most likely scene
given S (with respect to all other scene supporting (u, v)):

S = arg MmMaXys|s supports (u,v)}£(5|§) (3)

and then we approximate (2) by

q(u,v) = L(5]3) (4)

Finding the point (u,v) which maximizes the function ¢ is
our method for estimating the FOE, and we call this the
approximate mazimum likelihood (AML) estimate.

It remains to show how we can compute the scene S that
is the most likely scene which supports (u, v), given S. Let
us look at a specific segment (p;, p) from S. We would like
to move the points p; and p} as little as possible to points
p; and p}, such that (u,v),p; and p; will all be colinear.
The less we move p; and p;, the higher the likelihood of the
new segment (p;,p;). This is illustrated in figure 2. Thus,
given the points p = (£, 9) and p’ = (2',7'), the geometric
solution is as follows: pass a line through the point (u,v)
such that the sum d? + d3 of the distances from p and p’ to
the line, will be minimal. By simple calculus and geometry
it may be verified that the line we are seeking creates an
angle # with the z axis such that

f# = — arctan —

(
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Computing the Sensory Uncertainty Field of a Vision-based Localization
Sensor

Amit Adam, Ehud Rivlin, Ilan Shimshoni

Abstract

Recently it has been recognized that robust motion plan-
ners should take into account the varying performance of lo-
calization sensors across the configuration space. Although
a number of works have shown the benefits of using such a
performance map, the work on actual computation of such a
performance map has been limited and has addressed mostly
range sensors. Since vision is an important sensor for lo-
calization, it is important to have performance maps of vi-
ston sensors. In this paper we present a method for com-
puting the performance map of a vision-based sensor. We
compute the map and show that it accurately describes the
actual performance of the sensor, both on synthetic and real
wmages. The method we present involves evaluating closed
form formulas and hence is very fast. Using the perfor-
mance map computed by our method for motion planning
and for devising sensing strategies will contribute to more
robust navigation algorithms.

Keywords— vision based localization, uncertainty, perfor-
mance evaluation, motion planning

I. INTRODUCTION

External sensors such as video cameras, laser range find-
ers and sonar are being routinely used for mobile robot
localization. Recently [11], [6], [8], [9], [12], [10] it has been
recognized that the accuracy of the localization obtained
by invoking the sensor, will in general depend on the con-
figuration the robot is in. In other words, the combination
of sensor and environment defines some kind of map which
describes the quality of localization obtained at each con-
figuration by using the sensor. We will refer to this map as
the Sensory Uncertainty Field (SUF) which was coined in
[11].

Existence of the SUF has led to some interesting higher
level problems. A natural idea is to have the motion plan-
ner use the information in the SUF to plan routes which
will pass in regions where the sensor works well, i.e. the
sensory uncertainty is low. Such works may be found in
[11], [6],[8]. In [9] a related notion is the information con-
tent of the environment at each configuration. Another
similar idea motivated by visual servoing is described in
[10]. Another use of the SUF map is demonstrated in [12],
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where the question of choosing the proper landmarks for
localization is addressed. Celinski and McCarragher [4],
[5] addressed the problem of sensing management - for ex-
ample choosing the appropriate sensor to be used at each
configuration. An SUF type of map 1s some of the input
required for addressing such issues.

Although these higher level works illustrate the utility
and importance of using and having an SUF, there has
been limited work on actual computation of the SUF. The
above mentioned works [11],[9],[8] all used a range sensor.
The basic method of computing the SUF is to actually
simulate the sensing algorithm at each configuration. The
output of the algorithm on noisy measurements results in
dispersed answers, and the SUF is some measure of this
dispersion. Such a method for computing the SUF is time
consuming because the simulation has to be run for each
configuration in the configuration space. Therefore, various
simplifications had to be employed in [11],[9].

In this work we present a fast method to compute a SUF
for a vision sensor. Our method does not involve simula-
tion of the sensing. Instead we use a closed form formula
which gives a direct estimate of the sensing output covari-
ance matrix. Thus the method is much faster. To test
our method, we compare the predicted covariance matrix
with the actual scattering of results obtained by invoking
the sensor many times (i.e. simulation), and show that the
predicted covariance matrix indeed describes well this dis-
persion. This is shown both on synthetic and real images.

In the next section we describe the localization algorithm
based on input from a vision sensor. Afterwards we de-
scribe the general method to estimate the covariance ma-
trix of the sensor output, and apply it to our specific case.
Section IV describes how we statistically tested the validity
of our predicted covariance matrix. In section V we present
comparison of the predicted vs. actual covariance matrices
obtained in different scenes and configurations. The last
section summarizes and concludes this paper.

II. LOCALIZATION ALGORITHM

The sensor we use for localization is a vision based sen-
sor which we will now describe. We assume a camera is
mounted on the robot. We localize the robot by com-
puting the motion of the camera - known as egomotion
recovery in computer vision, as follows. A base image is
taken at a known configuration of the robot and camera.
When localization is required, a second image is obtained.
Point correspondences between the two images are found.
From these correspondences the rotation and the direction
of translation of the camera (w.r.t the base image configu-
ration) may be found. In order to estimate the magnitude
of translation, the robot has to make a small move and



