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Abstract—The estimation of the epipolar geometry is especially difficult when the putative correspondences include a low percentage

of inlier correspondences and/or a large subset of the inliers is consistent with a degenerate configuration of the epipolar geometry that

is totally incorrect. This work presents the Balanced Exploration and Exploitation Model (BEEM) search algorithm, which works very

well especially for these difficult scenes. The algorithm handles these two problems in a unified manner. It includes the following main

features: 1) balanced use of three search techniques: global random exploration, local exploration near the current best solution, and

local exploitation to improve the quality of the model, 2) exploitation of available prior information to accelerate the search process,

3) use of the best found model to guide the search process, escape from degenerate models, and define an efficient stopping criterion,

4) presentation of a simple and efficient method to estimate the epipolar geometry from two scale-invariant feature transform (SIFT)

correspondences, and 5) use of the locality-sensitive hashing (LSH) approximate nearest neighbor algorithm for fast putative

correspondence generation. The resulting algorithm when tested on real images with or without degenerate configurations gives

quality estimations and achieves significant speedups compared to the state-of-the-art algorithms.

Index Terms—Fundamental matrix, robust estimation.

Ç

1 INTRODUCTION

THE estimation of the epipolar geometry is an important
task in computer vision. The RANdom SAmple Con-

sensus algorithm (RANSAC) [1] has been widely used in
computer vision, in particular for recovering the epipolar
geometry. The estimation of the epipolar geometry is
especially difficult in two cases. The first difficult situation
is when the putative correspondences include a low
percentage of inliers. The other problem occurs when a
large subset of inliers is consistent with a degenerate
epipolar geometry.

In the first case, the number of required iterations is

usually high. A popular stopping criterion in a RANSAC-

like algorithm is

I ¼ logð1� pÞ
logð1� �sÞ �

� logð1� pÞ
�s

; ð1Þ

where s is the size of the random sample, I is the number of

iterations, � is the inlier rate, and p is the required probability

[1], [2]. For example, for � ¼ 0:15, the number of needed

iterations for s ¼ 7, s ¼ 3, and s ¼ 2 are I ¼ 2; 695; 296,

I ¼ 1; 362, and I ¼ 202, respectively, for p ¼ 0:99.

Several approaches have been suggested to speed up
the RANSAC algorithm. The locally optimized RANSAC
(LO-RANSAC) [3] exploits the fact that the model hypoth-
esis from an uncontaminated minimal sample is often
sufficiently near to the optimal solution and a local
optimization step is carried out only if a new maximum
in the size of the support set of the current sample model
has occurred. The number of samples that the LO-RANSAC
performs achieves good agreement with the theoretical
predictions of (1).

In [4], random sampling was replaced by guided
sampling. The guidance of the sampling is based on the
correlation score of the correspondences. The idea of guided
sampling is very promising. However, the correlation score
provides only weak evidence to the correctness of the
matches. Using this method with a more powerful score can
yield more significant speedups. This was achieved in the
Progressive Sample Consensus (PROSAC) [5] algorithm,
which exploits the similarity between scale-invariant
feature transform (SIFT) [6] features. Generally speaking,
PROSAC exploits the linear ordering defined on the set of
correspondences by the similarity function used in estab-
lishing putative correspondences. PROSAC samples are
drawn from progressively larger sets of top-ranked corre-
spondences. In our previous work [7], the algorithm
generates a set of weak motion models (WMMs). These
models approximate the motion of points between the two
images using a smaller number of matches and, thus, are
computationally cheaper to detect. These WMMs are used
to establish probabilities that matches are correct. The
RANSAC process uses these probabilities to guide the
sampling. WMMs are especially useful when no good prior
knowledge is available for this task.
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Assigning probabilities to putative correspondences was
also used to evaluate the score of possible solutions. Domke
and Aloimonos [8] used probabilities based on Gabor filters
for this purpose.

In [9], [10], it the use of three affine region-to-region
matches to estimate the epipolar geometry in each RANSAC
sample was suggested. To hypothesize a model of the
epipolar geometry, a random sample of three region
correspondences is drawn. Three region correspondences
give nine point correspondences. These are then used to
estimate the fundamental matrix F using the linear eight-
point algorithm [11]. Under this framework, s in (1) is
changed from seven to three, considerably reducing the
number of iterations. In [12], which was performed concur-
rently with our work [13], two pairs of affine matches were
used. In that case, it was assumed that some information is
available about the internal calibration matrices.

Another approach for dealing with a large number of
outliers is to substitute the combinatorial complexity of
finding a correct set of matches with a search in the motion
parameter space, looking for a set of parameters that is
supported by a large set of matches [14]. This approach is
most effective when dealing with constrained motion.

The second difficult situation occurs when a large subset
of inliers is consistent with a degenerate epipolar geometry.
This situation often occurs when the scene includes a
degeneracy or close to degenerate configurations. In this
case, standard epipolar geometry estimation algorithms
often return an epipolar geometry with a high number of
inliers that is, however, totally incorrect. The estimation of
the fundamental matrix in such situations has been

addressed before. In [15], a RANSAC-based algorithm for
robust estimation of epipolar geometry in the possible
presence of a dominant scene plane was presented. This
algorithm exploits the theorem that if five or more out of the
seven correspondences are related by a homography, then
there is an epipolar geometry consistent with the seven-
tuple, as well as with all correspondences related by the
homography. In each iteration, the algorithm selects a
sample of seven correspondences. It then detects samples in
which at least five correspondences are consistent with a
homography. This homography is then used to estimate the
epipolar geometry by the plane and parallax algorithm [16].

To illustrate the above difficult situations, consider the
following two examples. Fig. 1a shows the flowerpot image
scene in which the inlier rate is low, and it includes a
dominant degenerate configuration. In this scene, 17 percent
of the 252 putative correspondences are inliers and
70 percent of the inliers lie in a small part of the scene
that yields a degenerate configuration. A computation of
the fundamental matrix based on only inliers from this
small space results in a very unstable fundamental matrix.
On this scene, RANSAC often fails to find the correct
fundamental matrix. Fig. 1a shows a typical result of
RANSAC. Dots represent inliers from the degenerate
configuration, circles represent inliers that do not belong
to the degenerate configuration, and � represents an outlier
that RANSAC detected as an inlier. In this example,
RANSAC succeeded in finding all of the inliers that belong
to the degenerate configuration, but failed to find any
inliers outside it. This is demonstrated in Fig. 1b, which
shows the square root of the symmetric epipolar distance of
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Fig. 1. Image scenes and quality evaluation. The graph shows the distance from the epipolar surface for the inliers (degeneracy inliers are denoted

by dots, whereas the nondegeneracy inliers are denoted by circles). The nondegeneracy inliers lie very far from the surface. (a) Flowerpot scene.

(b) Result evaluation of the flowerpot scene. (c) Book scene. (d) Result evaluation of the book scene.



the inlier pair from the fundamental matrix. The distances
of the inliers outside the degenerate configuration are large.
Although a large number of inliers were found, the
precision of the resulting fundamental matrix is very low.
The number of iterations for this scene, according to (1) for
p ¼ 0:99, is over one million. Fig. 1c shows another example
in which the inlier rate is 16.5 percent out of 310 putative
correspondences and it includes a dominant-plane degen-
erate configuration. In this scene, 78 percent of the inliers lie
near the plane. Fig. 1d shows a typical result of RANSAC
that succeeded in finding part of the inliers that lie near the
plane and failed to find any inliers not close to the plane. As
a result, the fundamental matrix is totally incorrect, as can
be seen in Fig. 1d. The number of iterations required for this
scene, according to (1), is again over one million.

In this paper, we propose a novel algorithm for robust
estimation of epipolar geometry. The algorithm handles the
above two difficult cases in a unified manner. The algorithm
can handle not only the planar degeneracy but also scenes
that include a variety of degeneracies or close to degenerate
configurations.

The balanced exploration and exploitation model
(BEEM) search algorithm includes a balanced use of three
search techniques borrowed from classical general optimi-
zation methods and adapted for use within the RANSAC
framework. The first technique is global random explora-
tion, which tests random possible solutions. The second
technique is local exploration, which searches for better
solutions in the neighborhood of the current best solution,
and the last one is local exploitation, which tries to improve
the quality of the model by local search methods. Moreover,
it exploits available prior information, the distance ratio of
the closest to the second-closest neighbors of a SIFT
keypoint, to accelerate the search process [6]. The novelty
here is to convert each distance ratio assigned to a
correspondence into a prior probability that the correspon-
dence is an inlier using empirical nonparametric distribu-
tions. We use this probability to guide the sampling process.
The algorithm uses the best found model to guide the
search process, escape from degenerate models, and define
an efficient stopping criterion. This is done by a smart
sampling strategy. In addition, we developed a simple and
efficient method for global exploration that is able to
estimate the epipolar geometry from two SIFT correspon-
dences. The combination of the prior probabilities and the
two SIFT estimation methods enables us to find estimations
after a very small number of iterations has been tried. This
method is only able to provide an initial estimate for the
fundamental matrix and needs all of the other components
of the system to yield an accurate result.

Considering the system as a whole, the only slow steps
left are the generation of the features and their matching.
The matching is sped up using the locality-sensitive
hashing (LSH) [17] approximate nearest neighbor algo-
rithm. The generation of the SIFT features can be acceler-
ated using the approximation described in [18] or a GPU-
based implementation described in [19].

The resulting algorithm, when tested on real images with
or without degenerate configurations, gives quality estima-
tions and achieves significant speedups, especially in scenes
that include the aforementioned difficult situations.

The paper is organized as follows: In Section 2, the
exploration and exploitation search techniques are dis-
cussed. Section 3 describes the generation of the prior
probability for putative correspondences. Our fast method
for global exploration which is able to calculate the
fundamental matrix from two SIFT correspondences is
presented in Section 4. Section 5 describes a method to
estimate the quality of the best found epipolar geometry
model. The details of the algorithm are presented in
Section 6. Experimental results are shown and discussed
in Section 7. The paper concludes in Section 8.

A shorter version of this paper, including some of the
results presented here, was presented at the Ninth
European Conference on Computer Vision (ECCV ’06) [13].

2 EXPLORATION AND EXPLOITATION

Any efficient search algorithm must use two general
techniques to find the global maximum: exploration to
investigate points in new and unknown regions of the
search space and exploitation to make use of knowledge
found at points previously visited to help find better points.
These two requirements are contradictory and a good
search algorithm must strike a balance between them. A
purely random search is good at exploration but does no
exploitation, whereas a purely hill-climbing method is good
at exploitation but does little exploration. Combinations of
these two strategies can be quite effective, but it is difficult
to know where the best balance lies.

The robust estimation of the fundamental matrix can be
thought of as a search process. The search is for the
parameters of the fundamental matrix and the set of inliers.
Therefore, algorithms that estimate the epipolar geometry
can be analyzed according to the way in which they
combine the above techniques. The RANSAC algorithm [1]
samples, in each iteration, a minimal subset of matches and
computes from it a model. This random process is actually
an indirect global exploration of the parameter space. In the
projection-based M-estimator (pbM) algorithm [20], [21],
each exploration iteration is followed by a standard
exploitation step. A hill-climbing procedure over the
parameter space is performed using a local search algo-
rithm. The LO-RANSAC algorithm [3] makes an exploita-
tion step only when a new good model is found in an
exploration iteration. The exploitation step is performed by
choosing random samples only from the set of suspected
inliers, the model’s support set, and computing a funda-
mental matrix from it. In cases where there exists a
degenerate configuration, the exploitation step tends to
enlarge the support set, but it includes only inliers
belonging to the degeneracy. In our algorithm, we use the
LO-RANSAC local optimization step to perform the
exploitation stage.

In classical search algorithms such as simulated anneal-
ing, a local exploration step exists. There, with a certain
probability, a local step in the parameter space is taken
which does not improve the quality of the current solution.
This step is used to escape from local minima in the
parameter space. No similar step exists within the RANSAC
family of algorithms. Even if a relatively good model that
includes a large number of inliers is found, it is not used
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after the exploitation (LO-RANSAC) step has been per-
formed. The algorithm simply returns to random sampling,
hoping to find by chance a better model. This problem
occurs mainly when the RANSAC process reaches a
degenerate set of inliers. We suggest adding an intermedi-
ate technique that uses the previous best solution and
explores its neighborhood, looking for a better solution
whose support set is larger and includes most of the
support set of the previous best solution. We use the term
neighborhood loosely. When the current solution is
supported by a degenerate set, the solution is merely a
point on a surface consistent with the support set. The goal
of the local exploration step is to find another point on this
surface, which can be quite far in the parameter space from
the current solution, which is consistent with all of the
correct matches. Thus, when we use the term local, we
mean it in the support set sense. To achieve this, we need to
generate a sample of inliers that includes, in addition to
members of the current support set, other correspondences.
Once we have a “good” previous solution, it can be
assumed that the vast majority of its support set are inliers.
Therefore, when choosing a subset for the RANSAC step,
we choose most of the subset from the support set and the
rest from points that are outside the support set. When such
a subset consists only of inliers, the support set of the
resulting model tends to break out of the confines of the set
of inliers belonging to the degeneracy (the local maximum),
yielding a more correct solution. Unlike simulated anneal-
ing, in our algorithm, the result of the local exploration step
is only used if the size of the support set increases.

When incorporating a local exploration step into the
algorithm, several questions have to be addressed. First,
local exploration is only effective when the best previous
support set nearly includes only inliers. Therefore, it is
essential to be able to recognize such sets. Second,
depending on the quality of the set, a balance between the
application of global exploration, local exploration, and
exploitation has to be struck. Finally, how to incorporate
available prior information about the quality of each
putative correspondence into the general scheme has to be
addressed.

The BEEM algorithm includes all of the components
described above. Its state diagram is presented in Fig. 2. The
algorithm includes the following states and the transitions
between them:

. Prior estimation. Use prior available information to
estimate the probability that a correspondence is an
inlier. This probability is used to guide the sampling
in the other states.

. Global exploration. Sample a minimal subset of
correspondences and instantiate the model from the
subset. If the size of the support set of the formed
model is larger than all of the models that were
formed in this state, go to the exploitation state;
otherwise, go to the model quality estimation state.

. Model quality estimation. Estimate the quality of
the best model found until now based on the size of
its support set and the number of iterations that the
algorithm has performed until now. Use this quality

estimate to probabilistically choose the next state,
global exploration or local exploration.

. Local exploration. Sample a subset of correspon-
dences from the support set of the best model and
sample a subset of correspondences from the rest of
the correspondences. Instantiate the model from the
union of the two subsets. If the size of its support set
is larger than all of the models that were previously
formed in this state, go to the exploitation state;
otherwise, go to the model quality estimation state.

. Exploitation. Iteratively try to improve the last
formed model by choosing subsets of matches from
the support set and testing their quality. At the end
of this process, go to the model quality estimation state.

In the following sections, we will describe the main
components of the algorithm, which include our methods
for prior probability estimation, our fast method for global
exploration, the 2-SIFT method, which is used to produce
initial solutions to the fundamental matrix estimation, and
our method for model quality estimation. The detailed
algorithm is given in Section 6.

3 USING PRIOR INFORMATION OF THE MATCH

Each SIFT feature is represented by a descriptor vector whose
length is 128. The best candidate match for each SIFT keypoint
from the first image is found by identifying the keypoint in the
second image whose descriptor is closest to it in a euclidean
distance sense. Some features from the first image will have
no correct match in the second image. Therefore, it is useful to
have the ability to discard them. A global threshold on the
distance to the closest feature does not perform well as some
descriptors are much more discriminative than others. A
more effective measure was suggested in [6] and is obtained
by comparing the distance of the closest neighbor to that of the
second-closest neighbor. This measure performs well be-
cause, for correct matches, the closest neighbor is significantly
closer than the closest incorrect match. For false matches,
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Fig. 2. State diagram of the BEEM search algorithm. The algorithm first
assigns probabilities to the putative correspondences and then performs
a global exploration step. Depending on the quality of the recovered
model, the algorithm performs global or local exploration steps followed
by an exploitation step.



there will likely be a number of other false matches within
similar distances due to the high dimensionality of the feature
space. We can think of the second-closest match as providing
an estimate of the density of the false matches within this
region of the feature space. The consequence of this criterion
is that repetitive features appearing in the image will also be
discarded.

Let ri be the distance ratio of the closest to the second-
closest neighbors of the ith keypoint of the first image.
Fig. 3a shows the value of this measure for real image data
for inliers and outliers. In [6], it was suggested to reject all
matches in which the distance ratio is greater than
rthresh ¼ 0:8. In our experiments, we also follow this rule.
The probabilistic meaning of this is that each correspon-
dence whose score is below this threshold is sampled
uniformly. PROSAC exploits this ratio even more and its
samples are drawn from progressively larger sets from the
set of correspondences ordered by this ratio. This improves
the performance of the algorithm. In this work, we make an
additional step by giving an empirical probabilistic mean-
ing to this ratio.

The distance ratio can be thought of as a random variable
and is modeled as a mixture model:

frðriÞ ¼ finðriÞ�þ foutðriÞð1� �Þ;

where

finðriÞ ¼ fðrijpi $ p0i inlierÞ; foutðriÞ ¼ fðrijpi $ p0i outlierÞ;

and � is the mixing parameter, which is the probability that
any selected correspondence is an inlier. The probability
PinðiÞ that correspondence pi $ p0i is an inlier can be
calculated using Bayes’ rule:

PinðiÞ ¼
finðriÞ�

finðriÞ�þ foutðriÞð1� �Þ
: ð2Þ

We estimate this probability in a nonparametric manner.
We generate two samples from real images:

. Sin, a sample of ~Nin inlier ratio distances and

. Sout, a sample of ~Nout outlier ratio distances.

We estimate finðÞ and foutðÞ using a kernel density estimator
over Sin and Sout, respectively.

We estimate � for a given image pair using the curve
fitting of the empirical cumulative distribution function

(cdf) of Sin, Sout, and the set of ratios of the putative

correspondences. An empirical cdf over a set of measure-

ments S can be estimated by

F ðsÞ ¼
PkSk

i¼1 gðsi; sÞ
kSk ;

where

gðsi; sÞ ¼
1; si � s
0; otherwise;

�

and si is the ith element in S.
Let

R ¼ �jj�j ¼ j
rthresh
NR þ 1

� �NR

j¼1

be a set of NR uniformly spaced ratio distances. We obtain a

set of the following NR linear equations:

Frð�jÞ ¼ Finð�jÞ�þ Foutð�jÞð1� �Þ; j ¼ 1; . . . ; NR:

These equations are used to estimate � by a least squares
technique. Once � has been estimated, PinðÞ can be

estimated for all putative correspondences using (2).

Fig. 3b shows the probability PinðÞ for several values of �.

Fig. 3c shows the distributions of the estimated PinðÞ of the

inliers and the outliers for the book scene image pair. As can

be seen in the graph, a large portion of the correspondences
that received high probabilities are indeed inliers. In this

example, the inlier rate of matches with rthresh less than 0.8

is 16.5 percent and the estimated � is 15.7 percent, which is

quite accurate.
The estimation of the inlier rate using the prior

distributions gives a very good clue about the relation

between the two images. If the estimated inlier rate, �̂, is

close to zero, the two images are probably not related.
Tordoff and Murray [4] use normalized correlation

between the regions around putative correspondences as a

basis for their probability measure. Comparing their method

to ours, several differences are apparent. The evidence we use

is more informative, as pointed out by Lowe [6]. The
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Fig. 3. (a) The empirical distributions of the distance ratio, r, for inlier and outliers were generated based on 20 image pairs. (b) The probability that a

correspondence is an inlier as a function of r for several values of the inlier rate, �. (c) The distributions of the estimated probability PinðÞ of the inliers

and the outliers for the book scene image pair.



difference between the two types of evidence is that the
correlation score yields an absolute score, whereas the
euclidean distance between SIFT features does not in itself
indicate the quality of the match. Therefore, the ratio of the
distances is used as the basis for the probability estimate.
Ratios close to one are considered to be outliers with high
probability. Thus, when dealing with repeated structures in
the image, the SIFT score is unable to differentiate between
this case and outlier matches and discards them. The
correlation score, on the other hand, can detect this case but
is unable to choose among the different instances of the
structure. Therefore, all possible alternatives are assigned
similar probabilities, which are all quite low. The result in
both cases is similar because, due to the low probabilities, the
matches of the repeated structures are rarely chosen. In
addition, Tordoff and Murray have to compute the correla-
tion score between all possible matches in order to compute
the best match’s probability, whereas the SIFT ratio score
requires the computation of only two scores.

When comparing our method to PROSAC, we claim that
there is a slight disadvantage of not assigning probabilities
to the correspondences. When given a set of matches with
close probability values, pairs with a slightly higher
probability of being correct might be placed much higher
in the list and chosen much more often, whereas we will
choose all of these pairs with approximately equal prob-
ability. When some of these high probability pairs are
outliers, the number of iterations needed to find an outlier-
free set could increase considerably.

4 GLOBAL EXPLORATION: EPIPOLAR GEOMETRY

FROM TWO SIFT CORRESPONDENCES

In [9], [10], using three affine region-to-region matches to
estimate the epipolar geometry in each RANSAC sample
was suggested. Actually, two regions suffice. Assuming
that, for each region-to-region match, there exists a
homography that approximates the transformation between
the regions, the two homographies can be used to recover
the fundamental matrix [22, chapter 13, pp. 337-338]. The
fact that the transformation is approximated by a special
type of homography such as an affine or even a similarity
transformation does not change this fact. Moreover, each
transformation can be represented by a set of four pairs of
points satisfying the transformation and used as input for
the normalized eight-point algorithm, yielding comparable
results to the two-homography algorithm. This general
principle can be applied to any local region matching
method [9], [23], [24], [25], [26], [27].

In our implementation, we chose the SIFT descriptor,
which is a very powerful descriptor for image matching.
This descriptor is invariant to the similarity transformation,
which is not as accurate as the affine transformation or the
homography, but, as we will show, worked well in practice.
The ability to generate epipolar geometry from two SIFT
correspondences instead of seven point correspondences is
expected to significantly reduce the runtime according to
(1). This ability actually reduces the complexity of the
robust estimation of the fundamental matrix to that of a
robust estimation of a line from a set of points in space. We

suggest a simple method to estimate the epipolar geometry
from two SIFT correspondences. Each SIFT keypoint is
characterized by its location p ¼ ðx; yÞ, the orientation � of
the dominant gradients, and its scale s. We generate for
each SIFT keypoint a set of four points:

�
ðx; yÞ; ðxþ ls cosð�Þ; yþ ls sinð�Þ;
�
xþ ls cos

�
�þ 2�

3

�
; yþ ls sin

�
�þ 2�

3

�
;

�
xþ ls cos

�
�þ 4�

3

�
; yþ ls sin

�
�þ 4�

3

��
:

We set l ¼ 7
8
w
2 , wherew is the width of the descriptor window.

The configuration of the four points is illustrated in Fig. 4.
Thus, the three additional points lie within the descriptor
window. A set of two SIFT correspondences gives a set of
eight point correspondences. These can be used to estimate
the fundamental matrix using the normalized eight-point
algorithm [11]. This method is equivalent to finding the
fundamental matrix that is consistent with two homogra-
phies. The additional points are simply used to represent
those homographies. When scoring a hypothesized funda-
mental matrix, a SIFT correspondence is considered
consistent with the hypothesized epipolar geometry
only when all coincident four point correspondences,
ðps1; ps2; ps3; ps4Þ $ ðp0s1; p0s2; p0s3; p0s4Þ, are within their respec-
tive error thresholds. The location of the first point in the set
is quite accurate, whereas the locations of the last three
points are less accurate because they are approximated
from the SIFT characteristics. We use the error threshold d

for the first point in the set and d
ffiffiffiffiffiffi
s0s
p

for the other three,
where s and s0 are the SIFT scale parameters of the
keypoints of the first and the second SIFT descriptors,
respectively, and d is a threshold parameter.

One may wonder how accurate the estimation of the
fundamental matrix using the 2-SIFT method is. The 2-SIFT
method generates four point correspondences from each SIFT
keypoint. These four points are usually quite close to each
other and the last three points are estimated less accurately.
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Fig. 4. Illustration of the four-point generation for the SIFT descriptor.



Therefore, a fundamental matrix that is based on such point
correspondences is expected to be less accurate than when the
points are accurately estimated and uniformly distributed
over the whole image. However, all that is required of this
step of the algorithm is to produce a very rough approxima-
tion of the fundamental matrix, which will be supported by
several additional correct correspondences.

To check the severity of this problem, the estimation
quality of the 2-SIFT method was compared to the quality of
the seven-point algorithm, normalized eight-point algo-
rithm with eight and nine point correspondences. Two
types of real scenes without any dominant degenerate
configurations were checked: a scene moving sideways and
a scene moving forward. For each scene, the inlier SIFT
correspondences were found. For each algorithm, in each
scene, 10,000 samples were taken from the inlier corre-
spondences. For each sample, a fundamental matrix was
calculated, and the number of correspondences consistent
with the model was recorded. The size of the support set of
the model quantifies the quality of the model. Fig. 5 shows
the results. The horizontal axis gives the size of the support
set and the vertical axis represents the distribution of the
models that were supported by sets of this size. The results
of the 2-SIFT method are less accurate than the 7, 8, and
9-point algorithms, as expected. This can be seen from the
graphs as, in many cases, only a small number of inliers
support the proposed solution. However, it usually re-
covers enough supporting inliers to initialize the funda-
mental matrix estimation process. Clearly, the use of the
LO-RANSAC step after the 2-SIFT method is very im-
portant to produce a more accurate solution.

To improve the estimation quality, we checked one more
method, the 2-SIFT without the singularity constraint
(2-SIFT-NSC) method. In this method, the singularity
constraint of the fundamental matrix is not enforced. The
result is usually an illegal model, but, in the sample step of
the algorithm, it is not necessary to work with legal models
because the main purpose of the sample step is to detect
large amounts of supporting inliers. The results of the
2-SIFT-NSC method, which are also shown in Fig. 5,
outperform that of the 2-SIFT method. The reason for this
is that the singularity constraint enforcement when applied

in the 8-point algorithm changes the solution in a non-
optimal way by projecting the matrix to the closest point on
the singularity surface. This is not the optimal solution since
the entries of the fundamental matrix do not have equal
importance. In addition, the computation of the optimal
singular matrix adds to the computational cost. For both
reasons, it is better not to apply this step at all. We therefore
use the 2-SIFT-NSC method in our algorithm.

The examples shown above deal with motions that do
not involve out-of-plane rotation. In these cases, a similarity
transformation approximates the local motion well and,
therefore, both the SIFT and the 2-SIFT algorithms work
well. It is also interesting to check whether the 2-SIFT
algorithm will be able to perform in cases where severe
foreshortening occurs. This happens when there is a large
out-of-plane rotation between the two images. It is well
documented that the SIFT feature matching algorithm itself
does not work in very high rotation angles. Therefore, the
question remains whether the 2-SIFT algorithm will be able
to perform at the extreme cases where the SIFT algorithm
still works. This might be problematic because the local
transformations between the corresponding SIFT features
could be far from the similarity transformations assumed by
the SIFT algorithm.

To demonstrate the performance of the algorithm in this
situation, the algorithm was applied to the two pairs of

images shown in Fig. 6. As expected, the fraction of correct

matches from the total number of feature pairs is much
lower (0.17 and 0.1, respectively) due to the difficulty in

matching SIFT features in this case. As in the previous
experiment, we plotted the success of the various RANSAC

variants in Fig. 7. In these cases also, enough supporting

matches were found to enable the BEEM algorithm to start
its journey toward the correct solution. In these experi-

ments, the recovered fundamental matrix was quite poor

due to the inaccurate SIFT transformations used in its
construction. Therefore, enforcing the singularity constraint

on it causes a larger deterioration in the solution. This can

be clearly seen by comparing the graphs of 2-SIFT to those
of 2-SIFT-NSC. The 2-SIFT-NSC method is clearly superior

due to the small number of fundamental matrix hypotheses
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Fig. 5. Algorithm evaluation. For each of the algorithms, 10,000 experiments were run over the inlier correspondences. The number of

correspondences supporting the obtained fundamental matrix was recorded and their distribution is shown. (a) Sideways scene. (b) Forward scene.



that were supported by a very small number of correspon-

dences. These experiments demonstrate that, as long as the

SIFT process detects correct matches, the 2-SIFT algorithm

will be able to exploit them to find an approximate

fundamental matrix.
The results presented in this section have demonstrated

that the 2-SIFT method generates good results within the

general framework of the BEEM algorithm. It cannot be

used, however, as a complete method because a funda-

mental matrix supported by only, say, 10 matches out of a

hundred is a poor estimation for the correct solution.

5 BEST FOUND MODEL QUALITY ESTIMATION

In the model quality estimation state, the algorithm

estimates the quality of the best found model as an inlier

model, that is, a model in which nearly all of the members

of its support set are inliers. When an inlier model is

detected, it can help accelerate the search process using the

local exploration state, whereas using an outlier model in

that state is useless. In such situations, we want to direct the

BEEM algorithm to continue to perform global exploration.

To achieve this, we have to estimate the probability that the

model is supported by outliers that are by chance consistent

with it. Let Pomði=NÞ be the probability that at most i outlier

matches support an outlier model from the N putative

matches. Let Nbest ¼ maxfNigIi¼1 be the maximal size of the

support set after I iterations achieved by model Mbest,

where Ni is the size of the support set of the ith iteration.

Using the above definitions, the probability Pq that Mbest is

not an outlier model is estimated. This is equivalent to the
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Fig. 6. Scenes with considerable foreshortening.

Fig. 7. Scenes with considerable foreshortening.



probability that, in all of the I iterations, the support set of
size Nbest could not be achieved by an outlier model. Thus,

Pq ¼ 8Ii¼1ProbðNi < NbestÞ

¼
YI
i¼1

ProbðNi < NbestÞ ¼ ðPomððNbest � 1Þ=NÞÞI :

The BEEM algorithm uses the probability Pq as an
estimate to the quality of the best found model. We estimate
PomðÞ using several unrelated image pairs in a nonpara-
metric manner. We ran the 2-SIFT-NSC algorithm for the
above image pairs and recorded the size of the support sets
of the outlier models. Fig. 8a shows the cdf PomðÞ as a
function of the fraction of falsely detected inliers i from the
total number of putative matches N . The empirical
distribution shows that, when the fraction of detected
matches is larger than 0.035, it cannot be a result of a totally
incorrect fundamental matrix. As a result, in this case, the
algorithm will be directed to perform only local exploration
steps. Fig. 8b shows the probability Pq as a function of Nbest

for I ¼ 10, I ¼ 100, and I ¼ 1; 000, where the number of
putative correspondences is set to 400. Note that, when the
number of iterations increases, the “belief” of the algorithm
in the correctness of small subsets decreases. As a result, the
algorithm tends to do more global exploration.

6 ALGORITHM DETAILS

Up to this point, we have described the principles of the
BEEM algorithm. Now, we will put them all together,
yielding the complete epipolar geometry estimation algo-
rithm. The algorithm is summarized in Algorithm 1. The
details of the algorithm are given as follows:

Fundamental matrix generation. The generation of the
fundamental matrix from a given subset S of SIFT
correspondences chosen from the set of putative correspon-
dences, C, is done as follows: If 2 � jSj < 7, then we use the
normalized eight-point algorithm, where each SIFT corre-
spondence provides four point correspondences, as de-
scribed in Section 4. If jSj ¼ 7, then we use the seven-point
algorithm with seven points, one from each SIFT corre-
spondence. If jSj > 7, then we use the standard normalized

eight-point algorithm with jSj keypoints provided from the
SIFT correspondences.

Exploitation. This state is very similar to the local
optimization method described in [3] with a small improve-
ment. In this state, a new sampling procedure is executed.
Samples are selected only from the support set S of the
previous state. New models are verified against the whole set
of putative correspondences. The size of the sample is set to
minðS=2; NF Þ, where NF is set to 14, as was suggested in [3].
For each fundamental matrix generated from a sample, all of
the correspondences in its support set are used to compute a
new model using the linear algorithm. This process is
repeated until no improvement is achieved. The modification
we made to the original LO-RANSAC is that, whenever a
larger support set is found, the exploitation process restarts
again with it. The algorithm exits this state to the model
quality estimation state after ILO iterations without improve-
ment, where ILO is set to 10 in our experiments.

Local exploration. The parameter space close to the best
model found so far is searched in this state by choosing a
sample of size min ðjSbestj=2; NF � 1Þ SIFT correspondences
from Sbest and a single SIFT correspondence from C n Sbest.
Here again, NF was set to 14. The fundamental matrix is
instantiated from the union of the above subset and the
single SIFT correspondence, where the single SIFT corre-
spondence always contributes four point correspondences.
This way, the algorithm has a better chance to escape from
degenerate configurations.

Once jSbestj exceeds 0:035jCj, according to our empirical
model (whose distribution is plotted in Fig. 8a), the model
must contain a large number of inliers. As a result, Pq is
equal to one. When this happens, the sampling strategy for
correspondences from C n Sbest changes slightly. Each time
a new maximum is found, that is, Sbest is updated, the
correspondences in C n Sbest are sorted in decreasing order
according to PinðÞ. In each iteration, a single SIFT
correspondence is chosen from C n Sbest according to the
sorting order and the rest as usual from Sbest.

Stopping criterion. The BEEM algorithm terminates if, in
the last jCj � jSbestj exploration samples, the subset Sbest was
not updated and if Pq is equal to one in these samples. This
criterion ensures with high confidence that nearly all of the
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Fig. 8. (a) The cdf PomðÞ as a function of the percentage of falsely detected matches i=N from the total number of putative matches. (b) The
probability Pq as function of Nbest for I ¼ 10, I ¼ 100, and I ¼ 1; 000, where the number of putative correspondences is set to 400.



inliers have been detected. This suggested stopping criter-
ion usually terminates much earlier than in the standard
approach because, once the algorithm finds a model with an
adequate number of inliers, Pq is estimated as one and the
algorithm enters the final local exploration iterations.
Because the correspondences in C n Sbest are sorted in
decreasing order according to PinðÞ, the rest of the inliers
are rapidly found. Once Sbest ceases to change, jCj � jSbestj
iterations are performed. In the experiments that we have
performed, the number of iterations until an adequate
number of inliers are found is usually very small thanks to
the various components of the BEEM algorithm. As a result,
the total number of iterations of the BEEM algorithm is, in
practice, slightly higher than the number of outliers in the
putative correspondence set. This number is much lower
than the bound given by (1).

Algorithm 1: The BEEM algorithm.
begin Prior estimation:

Estimate � and PinðÞ of the set C of putative

correspondences.

end

begin Global exploration:

Sample according to PinðÞ a subset of two SIFT

correspondences from C;

Instantiate the fundamental matrix F ;
if the support set S of F is the best found in this state then

goto Exploitation

else

goto Model quality estimation;

end

begin Exploitation:

Execute local optimization with inner RANSAC over S

until ILO repetitions without improvement;
if found model with largest support until now then

keep its support set in Sbest;

end

begin Model quality estimation:

Estimate Pq.;

if the stopping criterion is satisfied then

terminate;

Choose with probability Pq to goto Local exploration;
otherwise goto Global exploration;

end

begin Local exploration:

Sample according to PinðÞ a subset of SIFT

correspondences from Sbest;

if Pq < 1 then

sample according to PinðÞ a single SIFT from C n Sbest
else

choose the next SIFT correspondence from C n Sbest;
Instantiate the fundamental matrix F ;

if the support set S of F is the largest found in this state then

goto Exploitation;

else

goto Model quality estimation;

end

7 EXPERIMENTS

7.1 BEEM Algorithm

The proposed algorithm was tested on many image pairs of
indoor and outdoor scenes, several of which are presented
here. The cases that are presented here are difficult cases in
which the inlier rate is low and includes a dominant
degeneracy.

For each image, we applied the SIFT method to detect the
keypoints. The descriptors of the first image were then
stored in an LSH [17] data structure and the descriptors of
the second image were used for querying the data structure
to find their approximate nearest neighbors to generate
putative correspondences. We used the adapted version of
the LSH [28] with data-driven partitions. The LSH algo-
rithm is simple for implementation and efficient. For
example, the runtime for the generation of the putative
correspondences of the book scene was reduced from
25.6 sec using a simple linear search to 0.45 sec using the
LSH algorithm on a Pentium 4 CPU 1.70 GHz computer (all
of the runtime results in this paper were checked on this
computer). The LSH algorithm has been claimed to be faster
than other nearest neighbor techniques such as the
K-dimensional tree (KD-tree) [17], [29]. This claim was not
verified by us for this case.

For illustration reasons, we divided the set of putative
correspondences into three sets: outliers, inliers belonging
to the degenerate configuration, and the rest of the inliers
for which most of them have to be part of the support set in
order to generate an accurate fundamental matrix. The
images of the scenes are shown in Figs. 1, 9, and 6. Their
details are given in Table 1.

For each scene, six algorithms were tested: the BEEM
algorithm, LO-RANSAC using samples of two SIFT
correspondences to generate fundamental matrices (2SIFT
LO-RANSAC), RANSAC using samples of two SIFT
correspondences (2SIFT RANSAC), LO-RANSAC using
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Fig. 9. BEEM experiment image scenes. Degeneracy inliers are denoted by dots, whereas the nondegeneracy inliers are denoted by circles.
(a) Board scene. (b) Car scene.



samples of seven point correspondences where the
samples were sampled according to the probability PinðiÞ
(7pt P-LO-RANSAC), LO-RANSAC using samples of
seven point correspondences (7pt LO-RANSAC), and
RANSAC using samples of seven point correspondences
(7pt RANSAC). The termination criterion for RANSAC
and LO-RANSAC was based on (1) for p ¼ 0:99. In cases
where the number of iterations exceeded 10,000, the
algorithm also terminated. Each algorithm was applied to
each image pair 20 times. For each algorithm, the following
statistics are presented: the success rate, defined as the
percentage of the experiments in which at least 75 percent
of the inliers were found and at least 50 percent of the
inliers outside the degenerate configuration were found, the

number of iterations until the termination of the algorithm,
the number of inliers found, and the number of inliers
outside the degenerate configuration found. For the BEEM
algorithm, in the iteration column, the average number of
global exploration iterations is also given, denoted in
parentheses. The runtimes in seconds are given for Matlab
implementations. These runtimes are only given for
comparative reasons. A C++ implementation could easily
speed up the algorithm by an order of magnitude.

The results shown in Table 2 clearly show that the BEEM
algorithm outperforms the other algorithms in the way that
it deals with degeneracies, almost always detecting most of
the inliers outside of the degenerate configuration. The
quality of the results as represented by the overall number
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TABLE 1
The Characteristics of the Tested Scenes

For each scene, the table gives the type of degeneracy, the number of correspondences, the inlier rate, the BEEM estimation of the inlier rate, the
number of outliers, the number of inliers, the number of inliers belonging to the degeneracy, and the number of inliers not belonging to the
degeneracy.

TABLE 2
Results of the Experiments

For each algorithm, the following statistics are presented: the success rate, the number of iterations until the termination of the algorithm, the number
of inliers found, the number of inliers outside the degenerate configuration found, and the runtimes. For the BEEM algorithm, the number of global
exploration iterations is given in parentheses.



of detected inliers is also much higher. The number of
iterations until termination of the algorithm is much lower
than for the other algorithms. Finally, the number of global
exploration iterations of the BEEM algorithm is very low as
a result of the use of the prior information and the 2-SIFT
method. As mentioned in the previous section, the number
of iterations of the BEEM algorithm is, in practice, slightly
higher than the number of outliers in the putative
correspondence set. This number is much lower than the
number of iterations of the other algorithms.

The results of the other algorithms demonstrate the
contribution of each component of the BEEM algorithm to
the quality of the detection. Comparing the BEEM algo-
rithm to the 2-SIFT LO-RANSAC, we can see the effects of
the local exploration step. This step dramatically increases
the success of the algorithm in dealing with degeneracies.
This is achieved at no clear additional computational cost.
There are challenging cases, such as the outdoor scene
whose results are also presented in Table 2, where the local
exploration considerably reduces the runtime while im-
proving the result, even though there are no degeneracies in
the scene. This is simply an example where the stopping
criterion of the BEEM algorithm yields a faster run than the
stopping criterion of RANSAC.

When the LO-RANSAC step is removed in the next
implementation, the algorithm always fails to detect the
degeneracy and requires more iterations. When the 2-SIFT
method is replaced by the seven point RANSAC, the
complexity dramatically increases and, even when a good
solution has been found, the algorithm is not able to stop
because the number of iterations has not reached the
RANSAC stopping criterion. When the probabilistic sam-
pling is turned off, the success rate is further reduced and
the number of recovered inliers decreases. Finally, when
comparing the 2-SIFT to the seven point RANSAC, we can
see how poorly the 2-SIFT method performs by looking at
the number of recovered inliers. This demonstrates that the
2-SIFT method needs the other components of the BEEM
algorithm to insure its success. This is because its goal is not
to find an accurate fundamental matrix but merely a good
starting position that is exploited by the other components.

7.2 Plane Degeneracy

In scenes which contain a dominant plane, algorithms have
been proposed to deal with the degeneracy caused by it

[15], [16]. In such cases, the algorithm has to be given a
parameter measuring the planarity of the plane. Consider,
for example, the two examples presented above, the Board
scene and the Book scene. In the first case, an actual plane
containing many features is present. In the second scene,
the back wall with the shelves is the relatively planar region
of the scene. In the following experiment, we compared the
planarity of both scenes in the following manner: For both
scenes, 10,000 quintuple correct matches from the degen-
erate plane were sampled and the geometric distance of the
fifth point match from the homography computed from the
other four matches was calculated. The results are pre-
sented in Fig. 10. What can clearly be seen is that the
distances in the two cases are very different and, therefore,
setting a threshold on the distance determining whether a
plane exists or not is required and can vary considerably
from scene to scene. Moreover, once the algorithm finds a
homography for a nonplanar region, the remaining steps of
the algorithm are not guaranteed to succeed.

The BEEM algorithm, on the other hand, does not
explicitly model the degeneracy and therefore is not limited
to the modeled degeneracy. Therefore, it does not depend
on the level of the planarity of the region. It simply detects
correct matches that the current solution does not explain.
In conclusion, the BEEM algorithm is a nonparametric
method, whereas previous methods are model (plane)
based and they exploit the model after it has been detected.

8 DISCUSSION

In this paper, we presented the BEEM algorithm for
epipolar geometry estimation. It works very well in difficult
scenes where the inlier rate is low and/or large subsets of
the inlier correspondences are consistent with a degenerate
configuration. The BEEM algorithm can replace algorithms
from the RANSAC family whenever robust model estima-
tion is needed. The principles of the BEEM algorithm, using
prior knowledge, the balanced use of exploration and
exploitation within the RANSAC framework, and the
generation of approximate (not necessarily legal) models
in the RANSAC step, can also be applied in other cases.

The BEEM algorithm can be easily modified to address
other estimation problems. Homographies can be robustly
estimated from one or two SIFT correspondences. Nister’s
algorithm [30] for essential matrix estimation can also be

GOSHEN AND SHIMSHONI: BALANCED EXPLORATION AND EXPLOITATION MODEL SEARCH FOR EFFICIENT EPIPOLAR GEOMETRY... 1241

Fig. 10. Distance histograms from computed homographies.



improved under the BEEM framework using two SIFT

correspondences instead of five point correspondences,

resulting in a faster algorithm. In both cases, the entire

BEEM framework is needed in order to improve the results

obtained by the 1-2SIFT match algorithm.
The only limitation of the BEEM algorithm is that it relies

on correctly matched SIFT features. In cases where the

camera underwent considerable out-of-plane rotation, this

might not be possible because the local transformation

might not be close enough to a similarity transformation. As

a result, the SIFT matching process will perform poorly.

This problem might be addressed using other types of

features that are matched using more accurate transforma-

tions such as affine transformations or homographies.
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