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Abstract—We present a novel algorithm for detection of certain types of unusual
events. The algorithm is based on multiple local monitors which collect low-level
statistics. Each local monitor produces an alert if its current measurement is
unusual and these alerts are integrated to a final decision regarding the existence of
an unusual event. Our algorithm satisfies a set of requirements that are critical for
successful deployment of any large-scale surveillance system. In particular, it
requires a minimal setup (taking only a few minutes) and is fully automatic
afterwards. Since it is not based on objects’ tracks, it is robust and works well in
crowded scenes where tracking-based algorithms are likely to fail. The algorithm is
effective as soon as sufficient low-level observations representing the routine
activity have been collected, which usually happens after a few minutes. Our
algorithm runs in real-time. It was tested on a variety of real-life crowded scenes. A
ground-truth was extracted for these scenes, with respect to which detection and
false-alarm rates are reported.

Index Terms—Video analysis, video surveillance, unusual events.
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1 INTRODUCTION

IN many public places (e.g., malls and airports), a large number of
surveillance cameras have been installed. Due to the large number
of cameras, it is impossible to have constant human monitoring of
all the video streams arriving at the control center. Therefore, the
video generated in current systems is being used mainly for
investigative purposes after an event has happened, in contrast to
using it as a mechanism for real-time alerts during an event.

Recently, there is an increasing interest in automatic analysis of a
video stream in order to generate alerts in real time when an
“unusual” event happens. Such algorithms may be used as an
attention mechanism, which with proper detection and false-alarm
rates, will enable a single operator to effectively “watch” a large
number of cameras.

1.1 Operational Requirements

Before reviewing related work, it is worthwhile to consider
algorithm-independent requirements which are necessary for
successful deployment of such an unusual events detection
mechanism in large scale surveillance projects. As we will see, all
previous works fail to satisfy these requirements and are therefore
unlikely to be suitable for deployment in large-scale surveillance
projects.

The following is a list of requirements which are very important
for successful deployment of a video analysis module in real-life
projects:
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e  Tuning the algorithm for a given video stream should be
simple and fast—this process is done by technicians and
for many dozens of cameras at every installation site.

e  The algorithm should be adaptive—the environment may
change (different times of day for example).

e  Robustness—many real-life scenes are crowded and
cluttered.

e  Fully automatic learning and operation, with a (desirably)
short learning period.

e Low computational requirements—either the algorithm
will run on a DSP card installed with the camera (“smart
camera”) or on a small number of PCs handling multiple
cameras. It is unreasonable to require a PC for every camera.

e  Predictable performance—which should be adequate in
many operationally interesting scenes.

In contrast with most previous works reported, our algorithm

satisfies all of these requirements (having of course its own
limitations which will be discussed).

1.2 Related Work

Many of the works that have been published on event/gesture/
action recognition are concerned with the recognition of a finite set
of human actions in a specific, usually controlled domain (e.g.,
American Sign Language and ballet moves). The earlier works [29],
[2], [4], [5] used a parametric representation of various observables
in order to represent and recognize this set of actions.

Nonparametric representations of actions were used in [34],
using the histograms of spatio-temporal gradients. More recent
works that use the spatio-temporal volume to recognize specific
actions are [16], [1]. In [28], a boosting-based classifier is learned
for activity recognition.

Using spatio-temporal patches, Boiman and Irani [3] detect
unusual behaviors with minimal learning requirements. However,
the approach is demonstrated on (challenging) toy-examples and
not on long-term real-life scenarios.

View-invariant recognition of specific actions is described in
[23], [21] and also in [16]. The works in [23], [21] are based on
tracking a hand’s trajectory or human joints.

Alot of information is contained in the tracks that people or other
objects follow in the scene [15], [11], [30], [17]. Videos from an
airborne platform were considered in [18]. The works in [6], [31] use
subspace constraints and shape theory to recognize deviation of
people from a well-controlled path they should follow. In [19], [10],
the authors also consider the interactions between objects in the
scene. People usually move with a purpose, and this factis used in [7]
to determine if a person is moving normally (toward some goal) or
inexplicably. The same authors addressed the question of evaluating
algorithms for “abnormality” detection based on human judgment
of abnormality [8]. Recently, in [24] additional information (among
which is an extension to the classification of the type of movement as
in [9]) was added to the tracking-based information, and applied to
analysis of tennis videos. Porkili and Haga [22] added other object
and frame-based information to the trajectories and showed
abnormality detection in synthetic and simple real-life scenes.

The main drawback of tracking-based approaches is their
limitation to scenes where tracking is possible and the many
opportunities for false alerts due to tracking failure or creation of
false targets (shadows, clouds, fragmentation of targets, etc).

Specific complex events involving a number of objects are
identified in [14], [20]. These works are limited to recognition of
well structured scenarios. In [12], sequences of events were used to
model the activities—the extraction of objects and actions from the
video was semiautomatic.

Approaches which use low-level information without the need
for tracking were described in [32], [33], [35]. Low-level features
may be extracted reliably over time and, therefore, these
approaches are more robust than tracking approaches. In addition,
in [32], [33] model selection techniques are employed toward
achieving fully automatic operation. However, these works which
are based on clustering video segments have a more offline nature.
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Fig. 1. (a) A typical scene and the positions of the multiple low-level monitors
chosen for this scene. (b) The long-term average flow magnitude at each monitor
of the scene. Note that monitors closer to the camera indeed observe larger flows.

Moreover, the complexity of these algorithms precludes predicting
their suitability for a given scene.

1.3 Our Contribution

This paper presents several contributions to the discussion on
unusual events detection in video surveillance:

e  First, we evaluate previous work and our own with respect
to applicability to real-life scenarios. This is achieved by
critically reviewing previous work and our own in light of
the operational requirements we have listed in Section 1.1.

e  Moreover, we use long, real-life videos for experimental
evaluation. Compared with previous works, e.g., [13], [22],
[3], our videos are much more cluttered and dense and of
much longer durations. These videos are much more
representative of the types of videos a real-life surveillance
system has to cope with.

e Third, we demonstrate that simple low-level cues are
useful for reliable detection of operationally interesting
events, in cluttered and complex scenes.

Zooming into the details, our algorithm is based on statistical
monitoring of low-level observations at multiple spatial locations.
It differs from previous works on abnormality detection in a
number of important aspects. It is these differences that make it
applicable, in contrast with previous works.

First, we extract low-level measurements at fixed spatial
locations instead of extracting object-based measurements—in other
words, we do not track objects. As a figure of speech, this is like the
Lagrangian versus Eulerian approaches in tracking curve evolution.
This “Eulerian” approach we use allows our algorithm to operate
robustly for long periods, in a variety of scenes including crowded ones.

Second, our algorithm is computationally nondemanding,
allowing it to perform real-time, online analysis of the video
stream while running on a DSP card.

Next, the algorithm is highly adaptive to a changing environ-
ment. Moreover, since we model relatively simple entities, the
learning period is usually very short (in fact, there is no learning
period but until a sufficient number of observations have been
collected, the algorithm may be less effective).

Finally, our algorithm is simple and intuitive. This simplicity has
anumber of important practical consequences. First, we can directly
mark on the screen where the abnormality exists. This is in contrast
with [35], for example, which finds a video segment which is
abnormal and requires further analysis in order to pinpoint the
abnormality. Second, due to its intuitiveness, the algorithm’s
performance is usually predictable which is important for a
commercial application.

Our limitations. Having said that, the main limitation of our
approach is that it cannot detect events that are characterized by an
unusual sequence of short-term normal actions. For example, our
approach cannot currently detect a loitering person [19] or a
person not passing his card in a card reader before entering a
secure place [32].

Organization. The rest of this paper is organized as follows: In
the next section, we present an overview of our local-monitors-based

TABLE 1
Effectiveness of Temporal Integration for Filtering False Alerts
K alerting frames out of last Y frames | Detections | False Alerts
1outof 1 8/8 dozens
2 out of 2 8/8 5
3 out of 3 18 0
4 out of 6 8/8 0

algorithm. In Section 3, we describe in detail the approximated
optical flow measurements our local monitors extract. Next, we
present our experimental results. Finally, Section 5 concludes the

paper.

2 ALGORITHM

2.1 Overview

We detect unusual events by monitoring the scene with multiple,
local, low-level feature monitors. An example is shown in Fig. 1a,
where the red circles mark the positions of the local monitors
which were setup for this particular scene.

Each monitor is an object which extracts local low-level
observations from the video stream. For example, the observation
could be the current direction of optical flow at the monitor’s
location, or the local flow’s magnitude (see details in the next
section).

The monitor has a cyclic (fixed length) buffer where the
extracted observations are stored. Given a new observation, the
monitor computes the likelihood of this observation with respect to
the probability distribution of the observations currently stored in
the buffer. This is done by building a histogram of the samples and
checking the new observation’s likelihood. We have also imple-
mented an option using kernel density estimation based on the
buffered observations with automatic choice of bandwidth, but we
found the improvement not significant. Once the likelihood falls
below a preset threshold, the monitor outputs an alert.

The monitor inserts each new observation into the buffer and
removes the oldest observation. This allows our monitor to adapt
to a changing environment. Note that alerting observations are rare
and there is no risk in inserting these observations into the buffer.

2.2 Integrating Multiple Monitors

Each monitor uses only local information and decides whether to
alert or not. The algorithm uses a simple integration rule as follows
in order to decide whether to produce an “unusual event” alert to
the user or not: First, if the number of alerting monitors in the
current frame is at least Z (we always used Z = 1), then this frame
is considered an “alarming frame.” Next, if in the last Y frames at
least K frames were “alarming frames,” then the algorithm
produces an alert to the user.

Table 1 gives an example of the effectiveness of this integration
procedure. We ran the algorithm on the bus terminal scene (see
Section 4) and varied the values of K and Y. One may see thatindeed
false alerts are filtered without compromising the detection rate.

Intuitively, the number Y is related to the expected duration of
an unusual activity. The longer the expected duration, the higher Y
can be. K may and should be chosen lower than Y to give some
robustness to occlusions or missing observations (the values we
use are usually K =7 and Y = 10). Note that Y is also related to
the delay in producing the alert to the user, although this is usually
insignificant (typical values of less than 1 second of delay).

Although other reasonable tests like proximity of alerting
monitors may also filter out local false alerts, we found that the
abovementioned temporal integration rule works well in all scenes
that we tested.

2.3 Density of Monitors

The choice of Z (required number of alerting monitors) above and
the density of the monitors placed in the image are related and
application-dependent. The basic issue is how many monitors will
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observe an “unusual” observation as a result of an object in the
scene acting in an unusual manner. This depends on the spatial
extent of the object and on the density of the monitors—basically,
through the number of monitors covered by the object. For
redundancy (occlusions, aperture problem), we usually choose the
monitor density to be such that objects will typically be covered by
at least five monitors. We then require Z =1 alerting monitors
giving us a lot of slack to handle occlusions or nonobservation (see
the next section). As described previously, the inevitable sporadic
false alerts are filtered by temporal integration.

3 APPROXIMATED OPTICAL FLOW MONITORS

We now describe the specific low-level monitors which we
implemented. We chose to monitor the velocities in the scene.
Recall that we do not track objects and, therefore, we need to
extract measurements that are actually optical flow. However, we
extract the measurements in fixed spatial positions. Therefore, it is
very likely that we will encounter the aperture problem (since we
do not compute the flow at “good features to track” [27]).

Flow probability matrix. In order to overcome this problem, we
first compute an explicit representation of the ambiguity in flow due
to the aperture problem. Taking a template window around the
monitor’s pixel, we compute the SSD error matrix corresponding to
discrete shifts in a certain window surrounding the monitor pixel.
We then transform this SSD matrix into a probability distribution
function by

P(’U,,U) — K. efo-SSD(u,m) (1)

(a similar model was used in, e.g., [25], [26]). We now have a flow
distribution matrix P(-,-) in which the entry (u,v) represents the
“probability” that (u,v) is the current optical flow at the monitor.
In Figs. 2c and 2d, we show the computed flow distribution at the
point in the center of the template region shown in Figs. 2a and 2b.

We note that a flow matrix with respect to the previous frame is
computed in every frame for every monitor. Computationally, this
is the most demanding part of the algorithm.

Binning. Basically, we can now aggregate the flow probability in
P either by angular bins (when we want to compute flow direction)
or by radial bins (when we want to compute flow magnitude). By
aggregating the flow into angular or radial bins, we will a get a new
probability distribution {(0;, P(0;))}. Here, O; are the various
possible observations—either a direction or a flow magnitude. An
example of the distribution obtained by aggregating the flow matrix
into angular bins is shown in parts Fig. 2e and 2f.

Replacing with most-likely and ambiguity test. Although the
distribution {(O;, P(0;))} is the “correct” measurement which we
can extract, we simplify the measurement process by extracting the
direction or magnitude of the most likely flow we found. Before we
take this observation as the current measurement, we verify that the
actual ambiguity in this observation is not too large: Let Oy 1. be the
observation at the most likely flow pixel (O is either magnitude or
direction) and let d(O;, O;) be a measure of the amount of difference
between the two possible observations O; and O; (for example,
angular difference or radial distance). We accept O,; ;. as our
observation only if

> d(Ou 1, 00)P(0) < T, (2)

i

where T is the allowed angular or radial ambiguity.

Note that this criterion is a “goal-oriented” criterion. If we used,
for example, the standard check on eigenvalues of the Lucas-
Kanade matrix, then an edge-type ambiguity (e.g., like the one
shown in the first example in Fig. 2) would not result in a valid
observation, although it may happen to be nonambiguous at all if
for example we are interested in direction monitoring.

If the aperture problem is such that the ambiguity exceeds T,
then the monitor simply does not produce an observation at the
current frame.
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Fig. 2. Example of explicit representation of flow ambiguity. (a) and (b) Two example
scenes with a marked template. (c) and (d) The corresponding flow distribution
matrix P(-,-) obtained by SSD template matching. (e) and (f) Binning the flow
distribution matrix into angular bins, yielding a distribution on flow directions.

As an example of the collected features, Fig. 1b shows the
average flow magnitude (observed over a certain period) at each of
the monitors shown in Fig. 1a. Note that the monitors located at the
bottom of the image (which are closer to the camera) indeed observe
higher speeds than the monitors which are further away from the
camera.

3.1 Choice of Parameters and Additional Remarks

A number of choices have to be made in the algorithm described
above. We now elaborate on these choices.

Template and search region size. The SSD in (1) is computed
over a certain window size. This size is application and scene
dependent. For example, in monitoring pedestrians, the window
should be large enough to capture the full body’s motion as
opposed to capturing waving hands motion. Likewise, the search
region size (possible (u, v) values in (1)) should be large enough to
cover the expected possible displacements between two frames. In
order to handle large flows at a reasonable computational burden,
we work on downsampled images.

Ambiguity threshold. When monitoring directions, we set the
threshold 7" in (2) to 20 degrees. When monitoring speeds over a
range of 0 to 10 pixels (possibly downsampled) the value of 7" was
set to 1.5 pixels. These values were chosen empirically and were
fixed across all our tests, demonstrating relative insensitivity to
their exact value.

Monitoring speeds or directions. Computationally, the most
demanding part of the algorithm is the extraction of the flow
distribution matrices. Once these matrices are computed, it is
possible to monitor both speeds and directions with little additional
computational cost. However, in many operational scenarios and, in
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Fig. 3. Please view electronically—in color and enlarged. Column (a) shows the typical activity in each scene and the placement of the monitors. Columns (b), (c), and
(d) show examples of detected unusual events. We mark the median position of alerting monitors. In these scenes, the detected events gave rise to flows in an unlikely

direction. See Table 2 for actual statistics.

particular, in the ones we have considered, it makes sense to monitor
either speed or direction but not both. In the experiments we ran, the
user selected which observable is to be monitored.

No observation. A monitor returns no observation at a given
frame if either the most likely flow is (0, 0), or if the ambiguity
threshold 7' in (2) is crossed. We remark that while it is not rare for a
monitor not to produce an observation due to ambiguity, in practice,
we still obtain enough observations for the algorithm to achieve
good performance.

4 RESULTS

We present results on videos from eight cameras in five different
sites. Except for the dining hall and bus terminal sites, where we
recorded with our own camera, all videos were obtained by direct
recording from site-installed surveillance cameras.

We watched all the videos and prepared a “ground truth” list of
all the unusual events which would interest a security guard
watching these videos [8] (e.g., people running in the mall). We
then counted the detections and false alarms of our algorithm with
respect to this “ground truth.”

Please refer to Figs. 3 and 4 when reading the following
description of each site. The leftmost column describes the typical
activity in each scene and the positions of the local monitors placed
in each scene. Columns (b), (c), and (d) show examples of detected
events, where the median position of the alerting monitors is
marked (e.g., third image in second row in Fig. 4, where two
children were detected running, and the median position is
between them).

In the dining hall site (first row in Fig. 3), we recorded video
during the beginning of lunch time. Most people go into the dining
hall with their back facing the camera. Observing the flow
directions, our algorithm, in this case, detected people coming
out of the dining hall or turning right to the restrooms (this is of
course of no interest to a security guard, but it simulates a one-
directional passage).

Two cameras were recorded in an underground train station.
The first was pointed toward the entrance platform (second row in
Fig. 3) where the normal routine is to go down through the turnstiles
and enter the platform (with the back toward the camera). The
second camera observed the exit platform where people go up
facing the camera (third row in Fig. 3). Sample detections are shown
in Fig. 3—please view the images in enlarged mode in the PDF
viewer.

We shot a few minutes of video in a bus terminal where
hundreds of people generally walk toward the right. Our algorithm
detected a car and a few people going in unusual directions in the
fourth row of Fig. 3.

Next, we recorded over five hours of video from a surveillance
camera viewing an (outdoor) one-way exit lane from an industrial
facility. During this period, around 800 vehicles (including cars,
trucks, and vans) exited from the plant. In order to simulate a car
trying to break into the facility, we were authorized to drive the
wrong way several times. In addition, a number of pedestrians were
walking on the lane toward the plant. All five of the “breaking in”
car events were detected and nine out of 11 of the pedestrians were
detected. There was one false alarm during these five hours of video.

Again, note that in all of these examples the algorithm has automatically
acquired the likely flow directions at every monitor. No directions were
specified in advance as “abnormal.”
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Fig. 4. Please view electronically—in color and enlarged. Column (a) shows the typical activity in each scene and the placement of the monitors. Columns (b), (c), and
(d) show examples of detected unusual events. We mark the median position of alerting monitors. In these scenes, the detected events gave rise to flows with an unlikely
magnitude. See Table 2 for actual statistics.

TABLE 2
Performance Statistics Obtained
Site Row in Figure Video duration Amount of activity Detection rate False alarms
Dining Hall 1, Fig. 3 11 minutes dozens of people 91% (10/11) none
Underground
entrance platform 2, Fig. 3 1 hour 36 minutes dozens of people 81% (17/21) 4
Underground
exit platform 3, Fig. 3 43 minutes dozens of people 100% (9/9) 2
Bus Terminal 4, Fig. 3 2 minutes 20 seconds hundreds of people 100% (8/8) none
81% pedestrians (9/11)

Exit Lane unavailable 5 hours 20 minutes around 800 vehicles 100% vehicles (5/5) 1
Mall camera 1 1, Fig. 4 55 minutes hundreds of people 95% (19/20) 1
Mall camera 2 2, Fig. 4 40 minutes hundreds of people 100% (17/17) 6
Mall camera 3 3, Fig. 4 60 minutes hundreds of people 95% (20/21) 4

Finally, we recorded video from three cameras at a large local
mall, on a rather busy day (there was at least one observation in 55-
65 percent of the frames, depending on the camera). In these scenes
(Fig. 4), we monitored the flow magnitudes (since directions are
unconstrained). Four of our colleagues ran in the mall at various
speeds and directions in order for us to be able to obtain enough
detection statistics at a reasonable time. We again emphasize that
our algorithm automatically acquired the “usual” flow magnitudes
and alerted when “unusual” speeds (running) were present.

Table 2 summarizes the durations, amounts of activity, and
detection and false alarms rates that we obtained. Next to the
detection rate, we listed also the actual number of detected events
out of the actual number of events that occurred. It may be noted
that in most scenes we had near perfect detection at the cost of a
relatively small number of false alarms.

In all cases, the setup of the algorithm parameters was minimal
(placement of the monitors, choice between direction or magnitude
monitoring, working resolution—nearly all other parameters were
fixed across the scenes) and took no longer than a few minutes.
After this short setup, the algorithm ran fully automatically. We

believe these results show that our algorithm obtained very good
detection rates while keeping the false alarm rates to a reasonable
level. This is established on a wide variety of scenes and on
durations long enough to suggest actual long term performance.

5 SUMMARY

For a video-analysis algorithm to be a suitable for deployment in
large-scale surveillance projects, certain requirements have to be
satisfied. In this paper, we have identified these requirements for
algorithms intended for unusual events detection. In short, these
requirements call for a low computational cost algorithm, which is
fully automatic after possibly a minimal setup, and which works
well in cluttered and crowded environments. In addition, the
algorithm should be able to adapt to a changing environment and
should be such that a field technician will be able to know where
the algorithm is suitable and where not (predictable performance).

We presented a novel algorithm which satisfies all of these
requirements. Instead of trying to track objects, our algorithm
monitors low-level measurements in a set of fixed spatial positions.
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In this work, we monitored integral-pixel approximations of
optical flow, using a goal-directed criterion for ignoring unreliable
observations due to the aperture problem.

The algorithm was tested extensively and rigorously. Very
good detection rates at a reasonable false alarm rate were obtained
in all of the tested scenes.

Most if not all of the previous works we have reviewed fail to
satisfy some of the mentioned requirements. Therefore, their
application to real-life large-scale surveillance projects is limited.
For example, all approaches relying on objects” tracks will fail to
work in the types of scenes which we have considered in this paper.
These scenes are very typical of the scenes that are operationally
interesting in real-life surveillance projects and any system for
detection of unusual events should be able to perform well in these
types of scenes.

We discussed the main limitation of our algorithm—namely,
the lack of sequential monitoring.

Finally, we see this work as presenting a baseline of achievable
performance in these types of scenes. Our data sets are available
for public use upon request.
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