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Epipolar Geometry Estimation for Urban Scenes
with Repetitive Structures
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Abstract—Algorithms for the estimation of epipolar geometry
from a pair of images have been very successful in dealing with
challenging wide baseline images. In this paper the problem of
scenes with repeated structures is addressed, dealing with the
common case where the overlap between the images consists
mainly of facades of a building. These facades may contain many
repeated structures that can not be matched locally, causing
state-of-the-art algorithms to fail. Assuming that the repeated
structures lie on a planar surface in an ordered fashion the goal
is to match them. Our algorithm �rst recti�es the images such
that the facade is fronto-parallel. It then clusters similar features
in each of the two images and matches the clusters. From them
a set of hypothesized homographies of the facade is generated,
using local groups of features. For each homography the epipole is
recovered, yielding a fundamental matrix. For the best solution, it
then decides whether the fundamental matrix has been recovered
reliably and, if not, returns only the homography. The algorithm
has been tested on a large number of challenging image pairs of
buildings from the benchmark ZuBuD database, outperforming
several state-of-the-art algorithms.

Index Terms—Fundamental matrix, repeated structures, SIFT

I. INTRODUCTION

REPEATED structures are common in many types of
scenes. They are especially prevalent in objects such as

buildings, as can be seen, for example, in Fig. 1. For reasons
which will be explained shortly, algorithms for epipolar geom-
etry estimation from two images tend to fail on such scenes.
The goal of this paper is to present an algorithm to deal with
these cases. We focus on building facades, which are one of
the most common repeated structures.

In recent years much progress has been made in developing
algorithms for epipolar geometry estimation for wide baseline
image pairs. Such algorithms are usually given as input two
images and a feature detection algorithm (e.g. SIFT [1]) is
run on both, yielding a set of features and their associated
descriptors. The two feature sets are then matched, yielding a
set of pairs of similar features from the two images. On this set
of putative matches a robust algorithm from the RANSAC [2]
family is run. This results in a model which in some cases
is the fundamental matrix or a homography in others. The
matches are also classi�ed as inliers or outliers.

In this general framework many advances have been made,
resulting in wide baseline stereo image registration systems
which are successful in many hard cases with very low inlier
match percentages. However, for scenes with repeated struc-
tures they often fail because repeated structures yield sets of
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similar local features that humans and automated systems fail
to match correctly. Thus, each feature from such a set in the
�rst image is matched to many features from its correspondin g
set in the second image with similar local matching scores.
As the scores are local there is no way to detect the correct
match. When general algorithms encounter this situation they
choose at random one of the matches, or all of the matches, or
discard these possible matches completely. When the images
consist mainly of repeating structures, in the �rst two case s the
algorithm will fail due to very low inlier match percentages.
In the last case, the algorithm will fail due to a very low
number of correct matches. It is therefore needed to develop
an algorithm which is able to deal with this case.

In this paper we present an approach that exploits the struc-
tural regularities in the image and uses them as supplementary
information during the matching procedure. We �rst extract
all the SIFT keypoints and their descriptors in both views. We
then distinguish and handle separately repeated structures and
other features. This is done by �nding all the clusters of sim ilar
points in each image and incorporating them independently
in the registration process. Moreover, in contrast to most
image registration algorithms, in which repeated features are
neglected, in our algorithm they play a major role in both the
estimation and the veri�cation steps.

We propose an algorithm that correctly matches repeated
structures placed on planar or close-to-planar surfaces. The
main application of such an algorithm is for image pairs where
the overlap between them is comprised mostly of building
facades. Without such an algorithm, systems with an image
registration component will unexpectedly fail from time to
time when most of the image overlap involves these facades.
This is since these algorithms will fail to match in the initial
stage repeated features on these facades.

Our algorithm exploits �ve important characteristics of
urban scenes with repeated structures.

1) A large number of the repeated structures lie on a planar
surface in an ordered fashion and if they can be matched
correctly the geometric relationship between the image
pair can be recovered.

2) Similar local features detected in the image can be
clustered.

3) Clusters from one image can be matched to clusters from
another image, without determining initially how the
individual members of a matched cluster are matched.

4) The fact that repeated elements are partially organized
horizontally and vertically is suf�cient for building a lis t
of hypothesized keypoint correspondences.

5) A small number of non-repeating matches can also be
found on the planar surface.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JANUARY 2013 2

(a) (b) (c)

(d) (e) (f)

Fig. 1. Images with repeating structures. (a) The non-periodic case: a building with repeating elements appearing on the same vertical and horizontal lines.
(b) Grid of repeated structures: a building with repeating elements appearing periodically on the same vertical and horizontal lines. (c) Building with different
window sizes and locations. (d) Partial facade. (e) Multiple facades. (f) Building photographed with a roll angle of approximately 90

◦.

We developed the following algorithm which takes these
characteristics into account. Exploiting the �rst charact eristic
we recover from each image the main building facade and
rectify it so the facade is fronto-parallel. This is done for
two reasons. It reduces the number of unknowns that have
to be recovered to estimate the fundamental matrix. As this
procedure eliminates the perspective effects on the image of
the facade, the repeated features on the facade in each image
and between the two images become much similar. As a result,
repeated features on both images are clustered and clusters in
the two images are matched (characteristics 2 and 3). Using
the geometric relationships between the repeated features on
a facade, small groups of features are created in each image
and matched yielding hypothesized transformations between
the recti�ed facades (characteristic 4). The transformati ons are
ranked according to the number of matches that support them,
giving a higher weight for non-repeating matches (characteris-
tic 5). Once the transformation has been recovered a RANSAC
process is performed to recover the epipole, completing the
recovery of the fundamental matrix. In the �nal step the
algorithm decides whether the fundamental matrix has been
recovered reliably and if not returns only the homography.

The algorithm was tested on all the image pairs from the
ZuBuD database of images of buildings from Zurich [3], for
which general purpose state-of-the-art algorithms usually fail,
succeeding in most cases.

The paper continues as follows. Section II brie�y summa-
rizes the related work. In section III we present our general
approach and assumptions. Detailed explanations of our algo-
rithm are introduced in sections IV-VII. In Section VIII we
present experimental results on challenging image pairs from
the ZuBuD database. We compare our method to three state-
of-the-art wide baseline registration algorithms, BEEM [4],
BLOGS [5] and USAC [6]. We also show that our method
outperforms the Generalized RANSAC [7] algorithm, designed
to solve problems caused by ambiguities due to repetitive
scene structures. Conclusions and plans for future work are

discussed in Section IX.

II. RELATED WORK

Since our method incorporates repeated elements into the
epipolar geometry estimation process, we �rst survey gener al
methods for epipolar geometry estimation. Then, we discuss
repeated elements studied in different contexts. Finally, we
focus on works involving repeated patterns in the process of
image registration.

A. Epipolar geometry estimation

Standard techniques for epipolar geometry estimation usu-
ally start with keypoint detection on both input images, fol-
lowed by descriptor representation of every extracted keypoint.
The next step is keypoint matching, which is based on descrip-
tor similarity. It is generally accepted that keypoint matching
cannot avoid producing incorrect correspondences (outliers).
The RANSAC algorithm has become the method of choice
for outlier removal in epipolar geometry estimation.

Different approaches have been suggested to speed up the
RANSAC algorithm. Several algorithms guide the selection of
subsets selected by the RANSAC process [8], [9], [6], [5]. For
example, in [8] random sampling is replaced by guided sam-
pling. The guidance of the sampling is based on the correlation
score of the correspondences. PROSAC [9] exploits the linear
ordering de�ned on the set of correspondences by the simi-
larity function used in establishing putative correspondences.
PROSAC samples are drawn from progressively larger sets
of top-ranked correspondences. LO-RANSAC [10] exploits
the fact that the model hypothesis from an uncontaminated
minimal sample is often suf�ciently near the optimal soluti on
and a local optimization step is applied to selected models. In
USAC [6] progressive sampling and sequential probabilistic
hypothesis testing, are combined with local optimization to
yield a comprehensive solution.
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Finally, in BLOGS [5] a probability distribution is randomly
sampled. However, unlike most algorithms that characterize
inlier and outlier error distribution separately, this algorithm
uses a conditional characterization of the probability space of
correspondence based on joint feature distributions.

Other methods were suggested to reduce the number of
putative matches selected at each iteration, resulting in a much
faster algorithm that can deal with a much higher percentage
of outliers [11], [12], [4]. In [11], [12] three af�ne region -
to-region matches are used to estimate the epipolar geometry
in each RANSAC sample. In BEEM [4] only two similarity
transformations are required.

When a large subset of inliers is consistent with a degenerate
epipolar geometry, standard epipolar geometry estimation al-
gorithms often return a completely incorrect epipolar geometry
with many inliers. In [13], [14] RANSAC-based algorithms for
robust estimation of epipolar geometry in the possible presence
of a dominant scene plane are presented.

The �rst step (or given as input) of all these methods
generates putative matches and assigns to each one them a
score. When the scene contains mainly repeated structures
these algorithms are not able to match the features correctly.
This is since as the scores are local there is no way to detect the
correct match. When these algorithms encounter this situation
they choose at random one of the matches, or discard these
possible matches completely. In all these cases the algorithm
may fail due to very low inlier match percentages or a very
low number of correct matches.

B. Repeated elements

In this work we deal with image registration of repeated
elements, but repeated elements have been studied extensively
in other contexts, such as detection and grouping of similar
elements [15], [16], [17], classi�cation and identi�catio n [18],
matching [19], [20], geo-tagging and location recognition [21],
[22], [23], urban reconstruction and scene modeling [24], as
well as structure from motion methods [25].

We would like to elaborate on several of these papers.
In [25] the problem of recovering the structure from a large
number of images (SfM) when the scene contains multiple
instances of the same object was addressed. The challenge was
to eliminate the incorrect fundamental matrices from the set
of fundamental matrices recovered from matching all image
pairs. This was done using geometric and image-based cues.

Perhaps the papers most closely related to our work on
image registration and repeated patterns are [20], [21], [23],
[26], [27], [28], [7], as they present different approaches for
matching images of building facades, without analyzing or
modeling the entire structure, as was done in [15], [16], [17],
[29], [30].

In [7] a guided RANSAC algorithm is presented. A large
number of putative matches is generated by matching all
possible similar points but giving repeated features low prob-
abilities. Thus, they are not used in the model generation
step but only in the veri�cation step. When the number of
correct unique correspondences is small, the running time of
the algorithm can be long. Our method while limited to urban
scenes exploits this fact to yield a much faster algorithm.

In [20] it is assumed that the objects investigated are
comprised of planar quadrilaterals bounded by straight lines.
For each hypothesized match between a pair of quadrilaterals,
the homography between images is calculated. The score of
the homography is given by counting the number of corre-
sponding Harris corners within the region. It should be noted
that unlike our method there is no descriptor extraction for
the detected Harris points, and that this method results in
a projective homography that matches two building facades
without estimating the full epipolar geometry.

In [23] the position of a mobile robot is recovered by
matching building facades. The algorithm exploits the fact that
the views were obtained from similar heights, thus restricting
the matches to a narrow margin surrounding a 1D scan line.
Similarly, in [26], invalid correspondences are eliminated on
the basis of geometric constraints generated from approximate
knowledge of internal and external camera calibration param-
eters. Our algorithm is more general and does not use such
information.

Scenes with multiple objects are dealt with in [27] and [28],
using an a-contrario approach. The authors focus on the post-
processing step, in which the algorithm has to decide which
of the matches belong to the current solution.

There are several works based on the general idea of
ASIFT [31]. In [32], [33] ASIFT has been adapted to deal
with repeated structures by deriving a score which takes
into account repeated features. The algorithms are run on a
large number of simulated image pairs. The main difference
between ASIFT based approaches and our approach is that
we generate only a small number of (simulated) recti�ed
images and exploit the fact that for the correct image pair
the transformation between the recti�ed images is simple.

Finally, there are several works which present geo-tagging
algorithms. [21] extracts calibrated images from an existing
database and matches them to an input image. The trans-
formation supported by the maximal number of matches is
returned. A shifted solution might therefore be returned by
the algorithm. In [34], an indexing scheme for scenes with
repeated structures. While the goal in these cases is to �nd
the matching image in a database, the goal of our algorithm
is to recover the epipolar geometry between the images.

III. OVERVIEW

Scenes with repeated structures are very common. In this
paper we will focus on the special case where many of the
repeated elements lie on planar or close-to-planar surfaces
such as building facades. In this section we will present
our general approach as well as a list of observations and
assumptions that guided the design of the algorithm.

Urban scenes often contain many repetitive structures, with
dominant repetitions lying mostly along the vanishing point
directions, as can be seen for example in Fig. 1. In our
algorithm we consider two typical cases describing most of
the urban architecture nowadays.

• The non-periodic case. In the �rst case the repeated ele-
ments are partially organized horizontally and vertically
in 3D (Fig. 1(a), (c)-(f)).
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• Grids of repeated structures. In the second case there
exists a 2D grid of repeated elements with constant
repetition intervals between them, in both directions.
Consider for example Fig. 1(b). The repeated 2D element
consists of a window and part of structure between the
�oors.

Therefore, our algorithm has two variants, one dealing with
the general repeating structure case and another one which
exploits the grid structure when it exists. In that case a simpler
model has to be recovered. As the general algorithm can be
applied for both cases, the algorithm for grids of repeated
structures is only applied when it is able to detect the grid
structure reliably. Consider for example Fig. 1(f). Even though
it can be considered an example of the second case, our
automatic method did not detect it as such (due to the small
number of repeated grid elements) and the general algorithm
was successfully applied to it.

Our algorithm relies on certain assumptions about the
buildings; however, it should be noted that these assumptions
are not “global” but “local,” as we are dealing with real world
images. In particular, we designed our algorithm for the non-
periodic case to require the alignment of only a small fraction
of the repeated elements. This makes it tolerant to different
window sizes and locations, such as those shown in Fig. 1(a)
& (c). In the case of grids of repeated structures, we allow the
2D grid to cover only part of the facade. Different additional
elements on the facade, such as the white area appearing in
Fig. 1(b), are disregarded by our algorithm. This is in contrast
to algorithms that require the complete facade to be visible.
In [24], for example, the boundaries of the facade are required
to be visible in the image and the algorithm described in [20]
does not tolerate occlusions well. Occlusions and partially
visible facades, as shown in Fig. 1(b) & (d) and which are
very common in real images, are handled by our algorithm.
In addition, images of buildings with multiple facades, as
presented in Fig. 1(a), (e) & (f), can also be handled by our
algorithm. The common case where the original images are
taken with a roll angle of approximately 90◦, as shown in
Fig. 1(f), are also taken into account by our method.

(a) (b)

Fig. 2. Typical results of matched feature clusters from two views. The
clustering is only partial in both images.

The algorithm is described as follows as given in pseudo-
code in Algorithm 1.

When two images I1 and I2 containing a planar surface
with repeated objects are given, the �rst step of the algorit hm
(described in Section IV-A) is to �nd, for each image, a
homography which will transform it into a fronto-parallel
view. This step is performed for two reasons.

Algorithm 1 Algorithm for recovering epipolar geometry from
urban images with repeated structures

1: Input: images I1 and I2
2: Apply Image recti�cation : yield recti�ed images RI1 and

RI2
3: Extract SIFT features from RI1 and RI2
4: Cluster SIFT features from each image based on descriptor

similarity yielding clusters of features
5: Match clusters from the two images, yielding cluster pairs
6: if the building is of the type of a grid of repeating elements

then
7: Estimate scale s from horizontal and vertical interval

ratios
8: Generate a set of hypothesized homographies {Hi},

each one computed from s and a non-repeating match
9: else

10: Generate a set of hypothesized homographies {Hi}
from minimal subsets of matches

11: end if
12: Rank homographies according to supporting matches
13: repeat
14: Take next homography Hi from list
15: Estimate epipole e′ for I2
16: Fi = [e′]×Hi

17: Compute score for Fi as the number of supporting
matches

18: until score decreases
19: if F is supported by at least 10 non-planar matches then
20: return F
21: else
22: return H
23: end if

• Eliminating the projective distortion makes the descrip-
tors recovered from the repeated features in an image
more similar to each other and thus easier to cluster.
The corresponding feature sets recovered from the two
images also become more similar making it easier for
corresponding clusters to be found.

• When given two fronto-parallel images of a planar sur-
face, the transformation between them is much simpler.
All that has to be recovered is a 2D translation and a
scale factor.

SIFT features are extracted from each of the recti�ed
images, RI1 and RI2 and features with similar descriptors
are clustered. We then match pairs of clusters from the two
images. There are, of course, features which do not cluster;
these will be called non-repeating features.

Typical results of matched feature clusters from two views
are shown in Fig. 2. It can be seen in both images that the
clustering is only partial. There are missing points in the
clusters due to occlusion, to the clustering process itself, and
due to other reasons. This is one of the challenges that our
algorithm deals with.

In Section V we describe how to generate a set of hypothe-
sized transformations {Hi} of the recti�ed plane appearing
in both recti�ed images. In this case all that needs to be
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recovered is the relative scale s and the relative translation
(tx, ty). As stated earlier, our algorithm deals with two types
of buildings separately. In the non-periodic case, hypothesized
transformations are found by locally matching minimal subsets
of features from a cluster generated from the �rst image to
a subset of features from its corresponding cluster from the
second image. In the case of a grid of repeated structures,
periodicity is assumed. We estimate the horizontal and vertical
repetition intervals for each recti�ed image, after which t he
relative scale s between the two recti�ed images is calculated.
The unknown translation is then hypothesized from a single
non-repeating match.

The hypothesized transformations are ranked by the number
of matched features {x,x′} that approximately satisfy

x
′ ∼= Hix. (1)

I.e., ||x′ − Hix/(Hix)(3)|| < thresh, where thresh was
empirically determined to be 5 pixels.

In Section VII we exploit the fact that the fundamental
matrix F can be factored into

F = [e′]×H. (2)

Therefore for each homography in the list F can be computed
by estimating the epipole e

′. Once F has been found, the
algorithm decides whether there is enough evidence to support
it. This is done by counting the number of supporting matches
not lying on the plane. If this number is greater or equal an
empirically determined value of 10, F is returned, and if not
it returns only H .

IV. PREPROCESSING

A. Image recti�cation

In our algorithm, we use the Canny edge detector to detect
edges and extract from them line segments in the image. In
order to detect vanishing points we apply RANSAC [2] to �nd
points in the image plane which lie closest to the extensions of
a large number of lines in the maximum likelihood sense [35,
Chapter 8.6.1]. The two points with the highest number of
supporters are assumed to be the vertical and horizontal
vanishing points Vpv

and Vph
respectively.

Under the standard assumptions of square pixels, zero skew,
and that the principal point is at the image center, and using the
fact that the vanishing points represent orthogonal directions in
space, the internal calibration matrix K can be recovered [35,
Chapter 8]. When two orthogonal facades can be seen in the
image, there exists a third vanishing point candidate Vp3

with
a large number of supporting lines. We can use K to verify
whether this vanishing point represents a direction in 3D space
which is close to being orthogonal to the directions of the
other two vanishing points. This is done by computing the
angle between them as follows

cos−1

(

Vp3
ωVph

√

Vp3
ωVp3

√

Vph
ωVph

)

,

where ω = K−TK−1 is the image of the absolute conic.
Given the vertical vanishing point (the one with the largest

support) and one of the other two vanishing points, a rotation

matrix R can be recovered such that the directions of the
vanishing points in space are transformed into directions
parallel to the x and y coordinates. R is computed as follows:

R =





(K−1
Vph

)/|(K−1
Vph

)|
(K−1

Vpv
)/|(K−1

Vpv
)|

(KT (Vph
×Vpv

))/|(KT (Vph
×Vpv

))|



 .

When applying the homography

H = KRK−1, (3)

to the original image a fronto-parallel view of the facade is
generated. An example of the results of this procedure can be
seen in Fig. 3. The procedure returns three recti�ed images
(the two others are rotations of ±90◦ of the �rst) in order
to deal with the case when the vanishing points have been
swapped. When three orthogonal vanishing points have been
recovered six recti�ed images are generated, three for each of
the orthogonal facades. The algorithm will then be applied to
a single recti�cation of the �rst image with each of the three
or six recti�ed views of the second image.

(a) (b)

(c) (d)

Fig. 3. Image recti�cation. (a) The original second image (Fig . 2(b)) with
detected line segments, which are consistent with the three vanishing points.
(b) First fronto-parallel recti�ed image, which is recovere d from Vpv

and
Vph

. (c) Second fronto-parallel recti�ed image, which is recove red from
Vpv

and Vp3
. (d) The recti�cation and orientation of the second image

which is correctly aligned to the recti�cation of the �rst ima ge (Fig. 2(a)).

B. Keypoint extraction and clustering

For each recti�ed image we extract SIFT features and
descriptors (using the implementation provided by [36]). As
recommended for example in [23], [15], [21], [37], this step is
performed on the recti�ed images, since in the case of repeat ed
features, descriptors are more similar due to the reduction of
the projective distortion.

In general, each SIFT keypoint can be assigned an orienta-
tion, based on the local image gradient direction, which is the
key step in achieving invariance to rotation. In our case, we use
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upright SIFT keypoints, whose orientation is set to be vertical.
The single �xed orientation for all features is a natural cho ice,
given that the rotation is compensated for by the recti�cati on.
Moreover, it prevents features such as, for example, window
corners of different orientations, to be considered as the same
feature.

We then cluster the SIFT keypoints within a single im-
age based on their appearance similarity. When choosing a
clustering algorithm we take into account the fact that the
repeated features have undergone perspective distortion which
has been only partially corrected by the recti�cation. Thus ,
the further the features are in space, the more different they
are. We therefore assume that the shape of the clusters in
the descriptor space is non-isotropic. Moreover, the number
of clusters changes from case to case and therefore can not
be given as input to the algorithm which is the case in the
k-means algorithm.

Points are therefore clustered using the agglomerative clus-
tering method, with the single linkage criterion. This criterion
was chosen in order to be able to deal with the non-isotropic
nature of the clusters. We de�ne the distance measure betwee n
two keypoint descriptors as the Euclidean distance between
their normalized descriptors.

The clustering process terminates when the clusters are too
dissimilar to be merged, with the distance threshold set to 0.45.
This value was chosen in order to prevent over-segmentation,
which is less preferable in our case, as will be explained in
Section V-A. For each cluster, we select the medoid of the
repeating points' descriptors as the cluster descriptor.

This feature extraction and clustering process is performed
for one of the three rotations of the plane. For the other rota-
tions all that needs to de done is to transform the coordinates
and apply a permutation on the feature descriptor vectors.

The result of this step is not perfect. Not all clusters
represent real repeating objects and not all repeating objects
are represented by a cluster of repeating features, as can be
seen in Fig. 2. Both images show ten windows. Thus, in
theory, ten features are expected in the matched clusters of
both views. However, in Fig. 2(a) there are seven features in
the cluster, whereas in Fig. 2(b) only six features were found
and clustered.

Nonetheless, the number of recovered clusters can be used
to differentiate between image pairs with or without repetitive
objects, by counting the number of clusters. Fig. 4(a) shows
a typical example of an image without repetitive structures:
4 clusters of features, marked by different colors, are shown.
Fig. 4(b) shows a typical example of an image with repetitive
structures: there, 38 clusters of features, also marked with
different colors, are shown. We de�ne an image as having
repetitive structures if there are at least 10 clusters in both
recti�ed images in the pair.

C. Cluster matching

For each pair of recti�ed images, we match keypoint clusters
from the previous stage. Here this process has to be repeated
for each rotation of the second image due to the change
in descriptors. We check all possible cluster pairs from the

(a) (b)

Fig. 4. The number of recovered clusters can be used to differentiate between
image pairs with or without repetitive structures. (a) Image without repetitive
structures (4 clusters). (b) Image with repetitive structures (38 clusters).

two images and compute the Euclidean distance between the
cluster descriptor vectors of each pair. As in Lowe's approa ch,
we de�ne the best match as the one with the minimal distance.
We determine the probability that a cluster match is correct by
taking the ratio of distances from the closest neighbor to the
distance of the second closest. Small clusters (smaller than 5
points), or those that do not have any good match (distance
ratio larger than 0.8), are discarded.

V. PLANAR TRANSFORMATION ESTIMATION

As we consider two separate cases of urban architecture,
based on different assumptions, we will divide this section
into two independent parts. We will �rst describe, in Sec-
tion V-A, the algorithm for the non-periodic case and then,
in Section V-B, the treatment for grids of repeated objects.

A. The non-periodic case

We start the image registration process by searching for
a speci�c transformation H , induced by the recti�ed plane
with repeating elements on it, that maps one recti�ed image t o
another. For that purpose we assume that repeating keypoints
appear on the same vertical and horizontal lines, without
speci�c requirements about distances or periodicity. From
them we build a list of candidate transformations.

When searching for all possible homographies, we use the
recti�ed images extracted previously. As a result, both tra ns-
formed images are fronto-parallel. Thus, instead of searching
for eight degrees of freedom of a general projective trans-
formation H , we are left with only three, namely the two
coordinates of a relative translation (tx,ty) and the relative
scale s. This is a simpli�ed case of a similarity transformation

H =





H11 H12 H13

H21 H22 H23

H31 H32 H33



 =⇒





s 0 tx
0 s ty
0 0 1



 . (4)

To detect H candidates, we check all the feature points from
the two images. For each point from the �rst image xc =
(xcx, xcy, 1)

T we look for its vertical xv = (xcx, xvy, 1)
T

and horizontal xh = (xhx, xcy, 1)
T nearest neighbors within

the same cluster, if they exist. Each such point triplet will be
denoted T . We perform an identical procedure on the second
image; the resulting point triplets are each denoted T ′.
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Since we work with point triplets within the same clusters,
it is clear now why we prefer under-segmentation. If there
is over-segmentation, possible triplets might be split between
several clusters, reducing our chances of �nding the correc t
ones. Although under-segmentation might introduce additional
triplets that combine points from different clusters, our algo-
rithm eliminates these hypotheses.

After the point triplets have been obtained for both recti�e d
images in the pair, we match pairs of point triplets that belong
to the matched clusters. This results in three matched points.
Every such matched triplet

MT = {T , T ′} (5)

is used to compute a transformation H , which is given by:

s =
x′
hx − x′

cx

xhx − xcx

=
x′
vy − x′

cy

xvy − xcy

, (6)

tx =
x′
cxxhx − x′

hxxcx

xhx − xcx

, (7)

ty =
x′
cyxvy − x′

vyxcy

xvy − xcy

. (8)

The decision to work with triplets is a compromise between
two contradictory preferences:

• Relying on the minimal subset of features from a given
cluster is preferable due to partial clustering that might
result from occlusions and noise; namely, points might
be missing from the clusters. Generally, if the scale
constraint in Eq. 6 is used, the minimal requirement
for transformation estimation is two feature point pairs,
which could even be from different clusters.

• Relying on triplets from the same cluster gives rise to
fewer candidates and much more accurate results. The
scale constraint is exploited to eliminate transformations
that do not satisfy it.

When the triplet strategy fails due to lack of candidates, we
resort to using pairs of feature points from each image.

To illustrate the feature subset selection process, we present
in Fig. 5 a typical result. In both images two point triplets are
marked by blue stars. These two point triplets can be used to
compute the correct H . The red points in Fig. 5(a) indicate
additional points that support that H . The green squares in
Fig. 5(b) represent an alternative point triplet from which an
additional (incorrect) H candidate is computed.

(a) (b)

Fig. 5. Typical results, when building a list of all possible homographies. (a)
Blue stars: An arbitrary point with its vertical and horizontal nearest neighbors
within the same cluster. Red points: Additional points from the same cluster,
that support the same H . (b) Blue stars: correct point match and its nearest
neighbors. Green squares: An alternative point match.

The result of this step is a list {Hi} of hypothesized
transformations of the recti�ed plane.

B. Grids of repeated structures

Here we confront a more challenging case than that dis-
cussed earlier, the case of periodic repeating elements.

As in the non-periodic case, a general projective transfor-
mation H that maps one recti�ed image to another is reduced
to Eq. 4, with only three unknowns left: the relative translation
(tx, ty) and the relative scale s. In the case of a grid of repeated
objects we address this problem differently. We compute the
relative scale s using the periodicity, whereas the relative
translation (tx, ty) is extracted from the non-repeating keypoint
correspondences.

1) Computation of the relative scale s: During the �rst step
of image recti�cation, additional information can be extra cted
using the detected line segments. Assuming periodicity, we
estimate the optimal horizontal Ix and vertical Iy repetition
intervals separately for each recti�ed image. The relative scale
s is then calculated from those repetition intervals, as will be
explained below.

For all vertical and horizontal lines detected in the recti� ed
image, their intersections are computed with the horizontal and
vertical axes respectively. We de�ne the difference betwee n
every pair of those intersections as a possible horizontal or
vertical repetition interval, and search for the best one. We
describe here in detail this search for the horizontal interval.
The second case of the vertical interval is identical.

Consider, for example, two vertical line segments, we
denote their intersection points with the “x” axis x1 and
x2, respectively. If those line segments support a horizontal
interval I , then

x1 − x2 = kI (9)

for some integer k. Counting how many line pairs support
interval length I requires O(N2) computations. Instead we
can use the following equivalent equation.

mod(x1, I) = mod(x2, I). (10)

Thus, for every possible interval I , we build a histogram
hn of {mod(xi, I)}. Thus, the number of supporting pairs of
lines for an interval will be

NI =

⌈I−1⌉
∑

n=0

hn(I)(hn(I)− 1)/2. (11)

If an interval I is a good candidate, we expect to have sharp
peaks in the histogram that come from the uni�ed intersectio ns
of the repeating lines.

An example of such a procedure can be seen in Fig. 6. In
Fig. 6(a) a recti�ed image with all the detected horizontal l ine
segments is shown. On the bottom of Fig. 6(b) we present a
typical histogram for a bad candidate of Iy . In this case all
the bins are relatively uniform, without any preference for a
speci�c position. On the top of Fig. 6(b), a typical histogra m
for a good candidate of Iy is shown. There is a peak at 79,
indicating the uni�cation of repeating lines, which are col ored
in blue in Fig. 6(a). Another peak colored in green also exists.
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Fig. 6. Estimation of optimal Iy . (a) Recti�ed image with all the detected horizontal line seg ments. (b) Histograms for good (Iy = 95.6) and bad (Iy = 40)
candidates of Iy .

However, for intervals
{

I
2
, I
3
, I
4
. . .
}

, we expect to have even
sharper histograms, as bins of the histogram of I are merged
together. Thus, the score for interval I is set to

SI = NII (12)

to induce a preference for I and not for its fractions. The
algorithm builds a list of several (three in our implementation)
candidates for I with the maximal scores, so that even when
the correct interval obtains the second or third highest score
it will be found.

An example of the function SI(I) can be seen in Fig. 7(a).
The multiples and fractions of I also obtain quite high scores.
In this case, three candidates for I with the maximal scores
are Imax = 84.7, 42.4, 169.2.

In addition, the value of SI(Imax) can be used to detect
images with a grid of repeating structures. In general, we
expect that the value of SI(Imax) will be higher in the case
of a grid of repeated objects than in the non-periodic case,
as shown in Fig. 7. Thus we can distinguish between the two
cases by thresholding it.

During the next step, when building the list of all possible
transformations between the two recti�ed images, we exploi t
the list of horizontal and vertical repetition intervals extracted
previously. We compute the relative scale s from Eq. 4, by:

s = Ix2
/Ix1

= Iy2
/Iy1

, (13)

where Ixi
and Iyi

are the horizontal and vertical repetition
intervals in the two recti�ed images which obtained the
maximal scores. This process succeeds when Ix1

and Ix2

represent the same horizontal distance in the 3D scene. This
also has to hold for Iy1

and Iy2
but the vertical distance might

be different.
Eq. 13 is used to select sets of consistent interval values and

the scale s. Thus, when estimating the transformation between
the two recti�ed images, we are left with only two out of the
eight degrees of freedom of a general projective transformation
H: the two coordinates of the relative translation tx and ty .

2) Extraction of the relative translation tx, ty: A single
keypoint correspondence is suf�cient for the estimation of
the relative translation, which yields a transformation H .
Assuming that this H is correct, it should be supported
not only by repeating keypoints, but also by corresponding
locations of non-repeating SIFT keypoints. Thus, it is possible
to build a candidate for H from each non-repeating keypoint
correspondence. As in the non-periodic case, the output of
this step is also a list of candidate transformations {Hi} of
the recti�ed plane.
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(a) (b)

Fig. 7. The combined interval score SI vs. repetition interval size I . (a)
The case of a grid of repeated objects. (b) The non-periodic case.

VI. HOMOGRAPHY IMPROVEMENT AND RANKING

From this point on, all the homography improvement and
ranking steps, as well as those for image registration, are
identical for the non-periodic case and for grids of repeated
structures and is performed on the original images.

A. Homography improvement

For each candidate transformation Hi, other feature point
pairs from different cluster pairs which satisfy the transfor-
mation relation are accumulated and are considered point
matches which support the transformation. Relying on them,
we improve the accuracy of Hi using LO-RANSAC [10] as
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follows. We iteratively calculate a homography by randomly
selecting half of the supporting point matches, and compute
Hi using a non-linear method which minimizes Sampson's
approximation to the geometric re-projection error. As a result
we obtain a more accurate homography that relies on many
points, instead of a single triplet in the non-periodic case or a
relative scale and a point pair in the case of grids of repeated
structures. This calculation is immune to the inaccuracies
of the recti�cation procedure and the proximity between the
points in the triplet. See Fig. 8 for all the point matches which
support the transformation relation H . The result of this step
is a list of candidate homographies {Hi} and the hypothesized
matches which support each one of them.

Fig. 8. Feature points from different clusters which satisfy the transformation
relation H . Different markings indicate feature points from different clusters.

B. Homography ranking

Once the set of homographies has been generated, the next
task is to rank them. The main challenge of this step is to dif-
ferentiate between the correct homography and homographies
which are translations of it, since they will also have a large
number of supporting matches. In order to better deal with
this task, we exploit the fact that not only repeating elements
appear on the plane, but also several non-repeating keypoints.
Although there might not be many such matches we use
them to detect the correct homography. The algorithm exploits
the fact that the probability that a non-repeating keypoint
candidate match will approximately satisfy one of a limited
number of incorrect homographies is quite low.

We start by matching the SIFT keypoints from the two
images, using the standard technique proposed by Lowe. We
rank each homography from the list by the number of keypoint
matches which are consistent with it. If the homography H is
the correct one, it should return not only repeating keypoints
from several clusters, but also corresponding locations of non-
repeating SIFT keypoints. Therefore, we rank the homogra-
phies by means of the following score:

SH = Nrep + αNnon−rep, (14)

where α is a weight constant and Nrep and Nnon−rep are the
numbers of supporting correspondences from repeating and
non-repeating keypoints respectively. In our experiments we

set α = 100 (the algorithm works well for α > 10), to
emphasize that we mainly rely on a small number of non-
repeating keypoint matches to rank the homographies.

One of the advantages of our method is that we can empir-
ically tune this weight constant α, by changing the preference
of non-repeating over repeating keypoints. In [20], [21], [23],
this would be impossible, since only the number of matches is
counted. As a result, for an image pair with partial occlusion
of the repeating elements, the homography H having the
maximal overlap would be chosen, as there are naturally more
repeating keypoints in the images. In our method, on the other
hand, a few highly weighted non-repeating keypoints would
be suf�cient to detect the correct H , regardless of occlusion or
a partially non-overlapping scene. This step results in a list of
candidate homographies, sorted in descending order according
to the score SH .

VII. IMAGE REGISTRATION

After the homographies have been ranked, a RANSAC
process will be run on each candidate homography H to
estimate the epipole e

′ on I2. Combining it with the homog-
raphy H yields F , as stated in Eq. 2. This process is run
on homographies from the ranked set until no improvement is
obtained. When looking for the correct fundamental matrix F ,
we assume that the repeating elements lie on the underlying
plane, and therefore they are not considered in this step.
Correspondences of non-repeating keypoints however, can
appear on or off the plane. Thus, we select off-plane non-
repeating keypoints for the estimation of F . Those point pairs
{xi,x

′
i} must satisfy:

‖Hxi − x
′
i‖ = ‖x′′

i − x
′
i‖ = |ρi| > dproj , (15)

where x
′′
i = Hxi, ρi is the projective depth, relative to

the underlying plane, which is equal to zero for points on
the plane. dproj is a constant distance threshold. In our
experiments dproj was set to �ve pixels.

Another problem, often overlooked in the literature and
rarely addressed is demonstrated in Fig. 9. This is the problem
of putative matches (pairs of type x

′ and x
′′ are shown),

which are due to incorrect matches between repetitive features
that were not detected as such during the clustering phase. In
general RANSAC is able to deal with outliers. However, when
the feature pairs lie on a horizontal or vertical line on the
facade, as can be seen in the �gure, these incorrect matches
will vote together for an incorrect epipole, the horizontal
or vertical vanishing point. This choice usually produces an
incorrect solution. We therefore remove these putative matches
from consideration. These removed matches satisfy

Hx− x
′ ∼= Vp, (16)

where Vp is one of the vanishing points.
All the remaining matches, termed candidate F supporters,

are used in the RANSAC step to recover the epipole e
′. This is

done as follows. Substituting Eq. 2 into the epipolar constraint
yields

x
′T [e′]×Hx = 0. (17)
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Fig. 9. Wrong matches of non-repeating keypoints that result from repetitive
elements. Original image with non-repeating keypoints x

′

i marked by yellow
circles and x

′′

i by red crosses. Green lines are proportional to the projective
depth ρi.

Two candidate F supporters are suf�cient to estimate e
′. The

candidate H and the recovered e
′ will then be combined to

yield the fundamental matrix F = [e′]×H .
In this step the putative matches come from two sources:

• Matched features extracted from the recti�ed images;
these features come mainly from the parallel planes
consisting of the building's facade.

• Matched features extracted from the original images.
These matches usually come from off-plane 3D points,
since they become too distorted in the recti�cation pro-
cess to be matched using the recti�ed images.

Once the RANSAC step has been completed, all the matches
that support the fundamental matrix F (including the ones that
support the homography) are given to a �nal RANSAC; this
step accurately recovers the homography H .

The question that remains is whether the algorithm should
return F or whether there is not enough evidence to support a
fundamental matrix (when, for example, the overlap between
the two scenes is close to planar) and only H should be
returned. We answer this question by counting the number of
matches that support F and do not support H . If there are more
than a certain number of supporters (10 in our experiments),
F is returned by the algorithm and if not, only H is returned.

VIII. EXPERIMENTAL RESULTS

We will now present experimental results of our implemen-
tation of the algorithm. We ran experiments with the same
parameters on all the results included in this work. These
parameters were automatically selected to produce optimal
results. We used the publicly available ZubuD database [3]
to test our method. The database contains 1005 color images
of 201 buildings (5 images per building) from Zurich, taken
from different viewpoints and under different illumination
conditions, yielding 2010 image pairs. A typical set of �ve
images of the same building are shown in Figure 10. The
gradual change in the viewpoint yields a signi�cant rotatio n
between the two most distant views as can be seen. The state of
the art algorithms failed to correctly match these two images,
while our algorithm matched them correctly. The success can
be attributed to two reasons. When the images are recti�ed,

the projective distortion is eliminated making the images more
similar. These images also contain a large number of repeated
features which are dealt with by the algorithm.

As we were interested in the additional value that our
method can contribute, we compared it to the state-of-the-art
wide baseline registration algorithms BLOGS [5], USAC [6],
and BEEM [4], which can estimate the epipolar geometry
in many dif�cult cases. In addition we implemented the
Generalized RANSAC algorithm [7], developed especially for
scenes containing similar repetitive structures and compared its
performance to the others. For BLOGS, USAC and BEEM we
used the original implementations, available on the Internet,
including all the algorithms' parameters, as proposed by th eir
authors. Our implementation of the Generalized RANSAC
algorithm, was based on all the details speci�ed in the paper .
The number of iterations was signi�cantly increased and set
to 100,000 instead of 2000 that was used in the paper.

In order to choose a set of challenging image pairs, we
automatically selected all the image pairs, for which BEEM
found less than 30 inliers, and then manually checked the
resulting fundamental matrices. As a result 139 image pairs
were found, for which BEEM failed to �nd a correct funda-
mental matrix. This set is denoted “ZuBuD1 set”. In addition,
it is also important to test how does the method perform
on “easy” pairs compared to other algorithms. We therefore
randomly selected 139 image pairs, out of the remaining pairs
from the ZuBuD database. This set is denoted “ZuBuD2 set”.
Following BLOGS, for each image pair we manually marked
16 correspondences, different from the SIFT features used to
estimate the epipolar geometry. These serve as the ground truth
and the mean of roots of the Sampsons distances of these hand
marked correspondences serve as the quantitative performance
measure. In the cases where there was not enough evidence to
support a fundamental matrix and our algorithm returned H ,
performance evaluation was performed on the in-plane ground
truth correspondences only.

In general we tested two different schemes for running our
algorithm. It can be run as a standalone method denoted by
“our method alone”. It can also be run as combination of our
method with any other standard algorithm. In that scheme our
algorithm is ran only when the standard method fails to �nd a
convincing solution. A solution which is supported by less than
a certain number of matches is assumed to be a failure. Here
we report the results of BLOGS combined with our method,
denoted by “our method + BLOGS”, since this combination
produced the best results. The failure threshold was set at 50
supporting matches.

We compare the performance of different registration algo-
rithms on the two sets in Figure 11. For every algorithm on
each image pair we check the mean of roots of Sampsons
distances of the hand marked correspondences and consider it
as a success when the performance measure is smaller than a
threshold. We present percentage of correct epipolar geometry
estimations on each set of 139 image pairs as a function of
the threshold. As can be seen from the results, for a threshold
greater than seven pixels our method alone outperforms all
the others on the dif�cult “ZuBuD1 set”, while there is
considerable degradation relative to all others on the easy
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Fig. 10. A typical set of �ve images of the same building.

“ZuBuD2 set”. When combining our method with BLOGS, the
results somewhat improve on the dif�cult set and dramatical ly
improve on the easy dataset, achieving the best performance
for every threshold on both datasets. Considering the two
graphs, it seems that the notion of easy and dif�cult cases
is very different for our method and the general algorithms.
Therefore, even though our algorithm alone performs well on
hard cases, it is recommended to always use the combined
scheme.

When the reasons for the failures of our method were
analyzed, we found that the main cause for failure was when
one of the original images was taken with a large view angle
relative to the normal of the fronto-parallel plane. There are
of course other reasons such as occlusion, or cases when
our assumptions about the architecture were not satis�ed
(buildings almost without repetitions or non planar buildings),
but in the vast majority of cases our algorithm failed due to the
large view angle (larger than 40◦). A typical example of such
an image is presented in Fig. 12(a). Due to the perspective
distortion, even when the image is recti�ed as can be seen in
Fig. 12(b), there is not enough information for the algorithm
to use. As a result it fails.

(a) (b)

Fig. 12. A typical example of an image taken with a large view angle relative
to the fronto-parallel. (a) The original image. (b) Part of the recti�ed image.

To show the typical numerical results of the various steps of
our algorithm, as well as a comparison to the other registration
algorithms, we chose 20 image pairs of different buildings out
of image pairs for which BEEM or BLOGS algorithms failed
to �nd a correct fundamental matrix, whereas our algorithm
ran successfully. We summarize the statistics of the main
parameters on the typical runs in Table I.

Due to the low number of non-repeating feature points
in those images, our implementation of the Generalized
RANSAC algorithm succeeded on only 3 image pairs, whereas
BEEM succeeded on 4. We also veri�ed that USAC failed
on all image pairs. The best performance from the compared
algorithm was achieved by BLOGS on the chosen set of 20
image pairs, it succeeded in 6 of the cases.

We provide in Table I for each image pair its object number
as it appears in the database. In the second column we indicate
the type of output result obtained by our algorithm. “H” stands
for the fully planar case, “F” for cases when the fundamental
matrix has been found, and “P” for cases decided by our
algorithm as grids of repeated structures. In the third column
we present the manually veri�ed ground truth (“F” or “H”).

Next we show that the typical number of SIFT keypoints
extracted from the �rst image of each image pair is around
3000. Those points are grouped in clusters if similar, or com-
bined in non-repeating match pairs otherwise. In the following
three columns we show that the algorithm typically handles
about 700 non-repeating match pairs and approximately 40
different clusters of keypoints. These are used to generate
a set of candidate homographies. The next two columns in
Table I are H inliers and F supporters (number of matches
that are inliers of F but not of H), which were described in
sections VI-B and VII . The last four columns indicate which
of the other registration algorithms succeeded.

In Figure 13 we present four representative results. For each
image pair we show the non-repeating matches that are inliers
of the fundamental matrix F . The matches, which are also
inliers of the homography H , are connected by green lines,
and those that were considered as F supporters (matches that
are inliers of F but not of H) are connected by cyan lines.
The large number of repeating matches are not shown in the
�gure in order not to clutter it.

In Fig. 13(a) we can see an example of a fully planar case,
since there is only one building facade in the left image. As
a result, an in�nite number of fundamental matrices could be
chosen, one of which is shown here. In that case, as discussed
earlier, the con�dence in F is low due to the small number of
its supporters (cyan lines), and we report only the recovered
H with its inliers (green lines).

In Fig. 13(b), on the other hand, both buildings have two
facades. As a consequence, we obtain a large number of key-
points at different depths and report a fundamental matrix F
along with its inliers. We can clearly see a color differentiation
between on-plane and off-plane keypoints. Keypoints located
on the plane are connected by green lines, whereas off-plane
matches are in cyan.

A building with two parallel planes on the same facade
is presented in Fig. 13(c). In this situation, the correct H
maps only one of the planes, but the keypoints from the other
plane have different depths and are colored in cyan. In this
example the correct H maps keypoints from the inner plane.
The matches from the other plane are used to estimate the
fundamental matrix correctly.

In Fig. 13(a) and 13(c) we demonstrate the non-periodic
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Fig. 11. Performance comparison of the different registration algorithms. (a) “ZuBuD1 set”. (b) “ZuBuD2 set”.

ZuBuD Type GT Points Matches Clusters Hs H-in. F -supporters USAC BLOGS BEEM Generalized RANSAC

2 P-F H 3338 648 43 431 14 20

7 H H 2616 511 26 4 30 2

8 H H 3600 781 53 15 78 7 X

10 H H 2882 706 39 18 91 4 X

39 H H 3073 671 48 11 61 7

41 H H 3680 772 26 164 78 5

53 H H 2084 481 15 2 47 8

57 F F 3707 785 44 195 92 13 X

61 P-F H 4515 874 36 619 17 21

66 F F 2956 795 36 1 106 24 X X

67 H H 3167 727 29 2 95 7 X

92 F F 3992 898 46 7 102 10 X

101 F H 4065 712 36 285 16 16

110 F F 2618 700 28 20 42 13 X

112 F F 3482 1029 30 10 314 16 X X

116 H H 2549 721 20 1564 183 7 X X

120 H H 3472 809 21 3 215 3 X

131 P-F F 3974 799 37 575 19 30

162 F F 4085 785 62 43 13 31

184 H H 3247 682 38 33 88 5

TABLE I
STATISTICS SUMMARY OF THE MAIN PARAMETERS.

case, whereas in Fig. 13(b) and 13(d) grids of repeated
structures are presented.

Finally, in Fig. 13(d), an incorrect result is shown. Our
method decided that the image is a P-F type rather than a
H type in accordance with the ground truth. In this case
a homography between two views of the building facade
is accurately calculated and indicated by the green lines.
However, not only is the incorrect epipole selected during the
RANSAC search, as indicated by the cyan lines, but it has
enough supporters to be reported as correct.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we presented a registration algorithm for
scenes of building facades with repeating structures. Even
though the algorithm assumes that the image contains a large
global structure, it is local in nature and thus able to handle
noisy, partially occluded scenes.

The algorithm divides the task of epipolar geometry esti-
mation into three steps. It �rst recti�es the images. Then it
recovers the homography associated with the recti�ed facad e
and �nally recovers the epipole. Whereas most image regis-
tration algorithms neglect repeated features, they play a major
role in ours, both in the estimation and veri�cation steps. I n
our method similar features are clustered in each of the two
images, after which clusters of features are matched. From
these cluster pairs, a set of hypothesized homographies of the
building facade are generated and ranked. For each candidate
homography the epipole is recovered in a separate step.

Due to the recti�cation step, the algorithm is able to deal
with wide baseline image pairs. It does however have problems
in dealing with images where the angle between the viewing
direction and the normal to the recti�ed plane is large.

The algorithm was implemented and tested on two sets of
image pairs from the publicly available ZuBuD database, a set
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(a) object0010. Our method: H type.
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(b) object0131. Our method: P-F type.
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(c) object0066. Our method: F type.
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(d) object0061. Our method: P-F type.

Fig. 13. Experimental results of our method on object0010, object0061, object0066 and object0131 from the ZuBuD database.

of hard cases and a set of easy cases. Analyzing the results,
it seems that the notion of easy and dif�cult cases is very
different for our method and the general algorithms. Therefore,
even though our algorithm alone performs well on hard cases,
it is recommended to �rst run one of the general algorithms
and on automatically reported failures run our algorithm. This
scheme produced superior results.

Future research will be dedicated to developing an algorithm
also capable of dealing with images of man-made, non-planar
objects and natural scenes with repeating objects. In addition

we intend to address the case of planar textures.
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