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Abstract. Missing values in data are common in real world applica-
tions. In this research we developed a new version of the well-known
k-means clustering algorithm that deals with such incomplete datasets.
The k-means algorithm has two basic steps, performed at each iteration:
it associates each point with its closest centroid and then it computes
the new centroids. So, to run it we need a distance function and a mean
computation formula. To measure the similarity between two incomplete
points, we use the distribution of the incomplete attributes. We propose
several directions for computing the centroids. In the first, incomplete
points are dealt with as one point and the centroid is computed ac-
cording to the developed formula derived in this research. In the second
and the third, each incomplete point is replaced with a large number
of points according to the data distribution and from these points the
centroid is computed. Even so, the runtime complexity of the suggested
k-means is the same as the standard k-means over complete datasets.
We experimented on six standard numerical datasets from different fields
and compared the performance of our proposed k-means to other basic
methods. Our experiments show that our suggested k-means algorithms
outperform previously published methods.
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1 Introduction

K-Means is the most popular and the simplest partitional clustering algorithm.
It has a rich and diverse history as it was independently discovered in different
scientific fields [10,14,11]. Ease of implementation, simplicity, efficiency, and
empirical success are the main reasons for its popularity. The k-means algorithm
(which is an EM type algorithm) has two basic steps, performed at each iteration:
(1) Tt associates each point with its closest centroid. (2) It computes the new
centroids.

Developing such an algorithm for datasets with missing values is not a trivial
challenge. It is important, since missing values are very common in real world
datasets. They can be caused by human error, equipment failure, system gen-
erated errors, and so on. We were introduced to the problem of missing data



when we received datasets from Applied Materials (AMAT), a company which
develops machines for the semiconductor industry. This data has many missing
values.

In general there are two ways to run the k-means clustering algorithm over in-
complete datasets: customizing the data or customizing the k-means algorithm.
This means that we can preprocess the dataset so that it consists only of complete
points and then run the standard k-means, or we can develop a k-means clus-
tering algorithm that can deal with incomplete datasets. Our proposed method
is of the latter type.

Based on [2,7-9] there are three basic types of missing data:

1. Missing Completely at Random: Data are said to be MCAR  if the failure to
observe a value is not related to any other sample.

2. Missing at Random: Data are said to be MAR if the probability that a value
is missing does not depend on the other missing values. Thus the conditional
probability of missingness may depend on any known values.

3. Not Missing at Random: Data are said to be NMAR if the probability that a
known value is missing depends on the value that would have been observed.

Several methods have been proposed to deal with missing data. These meth-
ods can be classified into two basic categories: (a) Case deletion method,
this method assumes that the missing values are missing completely at random
(MCAR). It therefore ignores all the instances with missing values and per-
forms the analysis on the rest [16]. (b) Missing data imputation, which replaces
each missing value with a known value according to the dataset distribution. A
common method that imputes missing data is the Most Common Attribute
Value (MCA) method. The value of the attribute that occurs most often is
selected to be the value for all the unknown values of the attribute [5]. The
Mean Imputation (MI) method replaces a data point with missing values
with the mean of all the instances in the data. A variant of this method is to
replace the missing data for a given attribute with the Mean of all known values
of that Attribute-MA (i.e., the mean of each attribute) in the coordinate where
the instance with missing data belongs as described by [12]. All these methods
assume MCAR since all of them based on the distribution of the whole data and
do not take into account the correlations between the observed and the unob-
served values. These imputation methods yield complete datasets. As a result
the standard k-means clustering algorithm can be run.

There are also methods that run k-means over incomplete datasets without
imputation, as described in [6,4]. They estimate a Gaussian Mixture Model-
GMM (an extended version of k-means) over datasets with missing values with-
out imputation, but, as we show in this paper, our proposed method is different
and yields better results.

AbdAllah and Shimshoni [1] developed a new method to compute the dis-
tance function between incomplete points. Their distance is not only efficient but
also takes into account the distribution of each attribute. In the computation
procedure they take into account all the possible values with their probabilities,
which are computed according to the attribute’s distribution. This is in contrast



to the MCA and the MA methods, which replace each missing value only with
the mode or the mean of each attribute.

In a recent paper, Eirola et. al., [3] estimated the pairwise distance between
incomplete samples using the Gaussian mixture model with the algorithm de-
scribed in [6, 4]. Mixture models of Gaussians have been studied extensively to
describe the distributions of data sets.

In this research we also developed a k-means algorithm that can run over
incomplete datasets without a preprocessing procedure. To do so, we first need
(1) a distance function to measure the similarity between incomplete points and
each centroid in order to associate each point with the closest centroid; and (2) a
formula for computing the new centroids of the clusters where each cluster may
contain incomplete points.

As a result, in this research we decided to work with the mean FEuclidian
distance (M Dp) presented in [1] to measure the dissimilarity between the in-
complete points. The M Dp distance is not only efficient but also takes into
account the distribution of each attribute. This distance assumes that the miss-
ing values are randomly distributed across all the samples. But, in real world
datasets, the missing values may depend on information from the known values
of the data. Thus, in this research we generalized this distance function to deal
with other types of missing values.

We suggest three variants of k-means that can deal with incomplete datasets.
All use the M D distance to associate the points with the closest centers. It is
important to note that by using this distance we are able to associate points
with the centroids without knowing their exact geometric locations. The three
directions differ in how to compute the new centroid for each cluster, and more
specifically, in how to include the incomplete points within the mean computa-
tion procedure. The first direction assumes that each incomplete point represents
one point and then it computes the mean according the developed formula for
computing the mean. The other two directions assume that each incomplete
point represents a set of complete points according to the data distribution, so
they replace each incomplete point with a set of points and then compute the
mean according to the new dataset. It is important to note that even though
we replace each incomplete point with a large number of points, we use the
histograms of the data distribution in order to make the suggested algorithm
more efficient. As a result, the runtime complexity of the suggested k-means
algorithms is the same as the standard k-means over complete datasets.

The proposed methods yield better results than previously published meth-
ods, as can be seen in the experiments. We experimented on six standard nu-
merical datasets from different fields from the Speech and Image Processing
Unit [15]. Our experiments show that the performance of the k-means algorithm
using M Dg distance function and the proposed mean and the k-means that use
the histogram of the data were superior to k-means using other methods.

The paper is organized as follows. A review of the incomplete data distance
function measure developed by [1] is described in Section 2. The mean computa-
tion is presented in Section 3. Section 4 describes several directions for integrat-



ing the (M Dg) distance and the computed mean within the k-means clustering
algorithm. Experimental results of running several variants of the k-means clus-
tering algorithm on the Speech and Image Processing Unit [15] datasets are
presented in Section 5. Finally, our conclusions are presented in Section 6.

2 Incomplete Data Distance Measure

In this section we describe the method for measuring the distance between pairs
of points when they may contain missing values developed by [1].

Let A C RX be a set of points. For the ith attribute A°, the conditional prob-
ability for A; will be computed according to the known values for this attribute
from A (i.e., P(A%) ~ x%), where x’ is the distribution of the ith coordinate.

Given two sample points X and Y from A, the goal is to compute the distance
between them. Let 2! and 3’ be the ith coordinate values from points X,Y
respectively. There are three possible cases for the values of z* and y*:

1. Two values are known: When the values of 2° and y° are given, the distance
between them will be defined as the Euclidian distance:

Dp(a',y') = (' —y")%. (1)

2. One value is missing: Suppose that x’ is missing and the value y° is given.
Since the value of 2% is unknown, we cannot compute its Euclidian distance.
Instead we model the distance as a random selection of a point from the
distribution of its attribute x* and compute its distance. The expectation of
this computation is our distance.

As a result, we approximate the mean Euclidian distance (M Dg) between
y® and the missing value m® as:

MDEWﬁyw—wa—wﬁy—/pwxx—¢FM»-Qy—uw?+wwﬁ.

This metric measures the distance between 3 and each suggested value of
2" and takes into account the probability p(x) for this value according to
the evaluated probability distribution. It is important to note that in this
computation the probability was computed according to the whole dataset.
The authors did not take into account the possible correlations between the
missing values and the other known values. It means that they assumed
MCAR (missing completely at random) missing data type. The resulting
mean Euclidian distance will be:

MDs(n' ) = (0 - + (). @)

where y’ and (0%)? are the mean and the variance for all the known values
of the attribute.



3. The two values are missing: In this case, in order to estimate the mean
Euclidian distance, we have to randomly select values for both 2z and y°.
Both these values are selected from distribution x*.

We compute the expectation of the Euclidean distance between each selected
value as we did for the one missing value. As a result the distance is:

MDs(wi ) = [ [ oalpto) o~ pPasdy = ((Bla] - B+ 02 + 02 ).

As z and y belong to the same attribute, E[z] = E[y] := p® and 0, = 0, :=
o'. Thus: o _
MDg(a',y") = 2(o")*. (3)

Studying the equation described above, we conclude that the main limitation
of this distance is its assumption that the missing data is MCAR. However,
many real world datasets are not MCAR. So, if the missing are MAR then the
probability p(z) depends on the other observed values and then the distance will
be computed as:

MDE(mzvyl) = /p(ILEObS)(‘r - yl)zd‘r = ((yl - :u;|mob5)2 + (U;mobs)2>7

where x,ps denotes the observed attributes of point X, and
are the conditional mean and variance, respectively.

On the other hand, if the missing values are of type NMAR, then the prob-
ability p(x) that was used in Equation 2 will be computed according to this
information and then the distance will be:

and (U;I%bs )2

i
z|Tobs

MDg(m',y') = /p(l‘lmi)(w —y')de = <(yi = Higme)” + (UZ””")z)’

where p(x|m?) is the distribution of x when z is missing.

3 Mean Computation

In order to develop a k-means clustering algorithm over datasets with missing
values, we still need a formula that uses the M D distance to compute the mean
of a given set that contains missing values.

Let A C R¥ be a set of n points that may contain points with missing values.
Then the mean of this dataset is defined as:

n
Z = argmin Z (distance(z, p;))” ,
zeR 4

for any z € R¥ | where p; € A denotes each point from the set A, and distance()
is a distance function.



Let f(z) be a multidimensional function: f : RX :— R which is defined as:

n
Z (distance(z,p;))?

=1

In our case, the distance() = M Dg. Thus,

n n 2 n K
Z (distance(x, p;)) Z< ZMDE J?J,pZ > = ZZ MDg( Ij,pz)
i=1 i=1 i=1 j=1

Jj=1

The M Dg() distance

where 27 is the coordinate j and pg is the coordinate j in point p;. Since each
point p; may contain missing attributes, and according to the definition of the
M Dp distance in the previous section, f(x) will be:

f(x):i[ i(;cj—p{)z’ n i((ﬂ_ua‘)%r(aﬂ'f) ]

i=1

there are n; known coordinates there are m; missing coordinates

Z is the solution of f/(z) = 0, but since f(z) is a multidimensional function
then Z is the solution of Vf = 0, where

vf= (fgl,fgg,...,f;k) _0

is the gradient of function f. In our derivation we will first deal with one coor-
dinate and then we will generalize it for all the other coordinates.

ny my
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Thus, we simply get:
a =l (4)
Repeating this for all the coordinates yields # = (u!, p2, ..., #¥). In other words,
each coordinate of the mean is the mean of the known values of that coordinate.
In the same way, we derive a formula for computing the weighted mean for
each coordinate [, yielding:

ng el ny 1
Z Doimg Wiy + YL wip
- b)

v Z?:l Wi




where w; is the weight of point x;. Thus, in order to compute the weighted
mean of an attribute [, where some of its values are missing, we must distinguish
between two cases: known and missing values. If the value is known we multiply
it with its weight. When, however, the value is missing, we replace it with the
mean of the known values of the attribute [ and then multiply it by the matching
weight. We then sum the terms and divide them by the sum of all the weights.

4 K-Means Clustering using the M Dg Distance

The aim of this research is to develop k-means clustering algorithms for incom-
plete datasets. The M Dpg distance and the mean are general and can be used
within any algorithm that computes distances and means. It is not, however,
clear how it can be integrated into such an algorithm. In this section we de-
scribe our proposed method for doing so for the k-means clustering algorithm.
For illustration purposes we assume that all the points are from R?. We propose
three different versions for k-means. It is important to note that the first ver-
sion is similar to the GMM algorithm described [6, 4], where each incomplete
point is considered a single point. However, the other two versions are different
and replace each incomplete point with a set of points according to the data
distribution. As will be shown in our experiments, they outperform the first
algorithm.

Given dataset D that may contain points with missing values, the k-means
algorithm has two basic steps, performed at each iteration: (1) It associates each
point with its closest centroid. (2) It computes the new centroids. In the first step
the M Dg distance is used to compute the distances between the points and the
k centroids in order to associate each point with the closest centroid. There are
several possible ways to then compute the new centroids of the clusters. These
possibilities will be illustrated using Figure 1(a). According to this example, there
are two clusters (i.e., C1 is assigned to the yellow cluster and C?2 is assigned to
the brown cluster). The goal is to compute the centroid of each cluster. For
simplicity we will deal with C'1. If none of the instances contain missing values,
the centroid will be computed according to the Euclidian mean formula, resulting
in the magenta star.

When the dataset contains points with missing values, it is not clear how to
compute the mean. In the given example, let (xq,?) (i-e., the red star) be a point
with a missing y value and x = x(. Although the exact geometric location for
this point is unknown, we still can associate it with C'1’s cluster using the M Dg
distance as follows:

distance®((z,?), (ze, ye)) = MD%((2,?), (2, ye)) = (ze —20)* + (yc—uy)2—|—0§.

Using the MA-method, on the other hand, the point (xg, ?) will be replaced with
(20, pty)- It is clear that the difference between the two methods is only in o7, a
fixed value that does not influence the association result.
Let the Att,ossibie group denote all the possible values for each attribute.
Thus, in our case:
Yypossivte = {y € R|3(z,y) € D}.
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Fig.1. An example for computing the centroids for two clusters in a dataset with
missing values. (a) Shows the results of the different methods of computing the mean.
(b) Shows the Voronoi diagram.

Let
(20)possivie = { (o, yp)|yp € Ypossivie }
be the set of all the possible points that satisfy @ = x, assume y is missing (the
blue “+”), and let
Clyear = {(:E,y) € D|(:E,y) € Cl}

be the set of all the data points without missing values that are associated with
the C1 cluster.

The naive method to compute the new centroid is by replacing the point
with the missing value with all the possible points (zo)possitie, and then com-
puting the mean according to these points (Clyeq and (zo)possivie), Where each
point from C1,, has weight one and each point from (x¢)possibie has weight

L . As a result, the weighted mean of C'1 is:

‘ Ypossible

Z( Y)EC T car (‘Tvy) + (*TOv/Ly)
|Clreal| + Z ‘

mean(C1) = (5)

Yposszble

This is identical to the Euclidian mean when the missing point is replaced with
(w0, fty) and is equivalent to the MA method when (xo, ) is associated with
C1. As a result, the real centroid of the cluster (the magenta star) moves to
the green star. That is because this computation assumes that all the possible
points (o)possivie are represented as (xo, tty), and ignores the other possible
points, which in general is suboptimal, as can be seen in Figure 1 (b), where not
all the blue “+” marks are associated with C'1.

Thus, we must take into account the association of each possible point. There
are two possible ways to do that. The first (which we name k-mean-MDg) is



to include within the mean computation, in addition to the real points within
the yellow circle, all the possible points (xo,y) € (20)possibie such that their y
coordinates are the y coordinates of the real data points from the yellow cluster
(i.e., the blue “+” belonging to the yellow circle). Formally, the mean will be
computed according to all the real points C1,..4; and

Cl(zo)possible = {(x()ayp) € (:EO)possible|3(:Eu y) € Clreal Ny = yp}

The weight for each point from C1,..,; is 1 and the weight for each point from
OlPOSSible Is: [Clpossiblel

This means that all the weights are computed only according to the distribu-
tion of the points associated with C'1. So, using only this set of points, the mean
can be computed directly using (4). As a result, the centroid will be preserved,
yielding the magenta star in the given example.

Computing the new centroid using (4) yields not only the same centroid as
using the Euclidian distance, but also preserves the runtime of the standard
k-means using the Euclidian distance.

Another method (which we name k-mean-HistMDg) is to use all the points
from (0)possivie that are associated with the C'1 cluster and not only the points
from (o)possivle Whose y coordinates are from the real points associated with
that cluster. Thus, we first associate each of the points from (zo)y possivle With
its closest centroid (the blue “+” in the red circles in Figure 1 (b)), and then
compute a weighted mean. Formally, the mean will be computed according to
all the real points C'l,.cq;, and

PClpossible = {(Ian;D) € ($0)possible|($07yp) € Ol}

In this case we cannot use (4), because the weights are computed using the
entire dataset. We therefore suggest three methods for implementing the mean
computation:

1. Simple weighted mean: Simply replace each point with a missing value with
the ‘Ypossible | points, each with a weight | , and run weighted k-means

Ypossible
on the new dataset. Thus, the weighted mean of C1 is:

E(myy)601real ({E, y) + - ’ E(moyyp)EPC:Lpossible (JJQ, yp)

‘Ypossible

|Clreal| + m . |P01possible}
(6)

This method is simple to implement, but its runtime is high, since each point
with, for example, a missing y value will be replaced with ‘Ypossible‘ points.
As a result, the size of the dataset will be:

meani(C1) =

‘Dreal‘ + (‘D| - ‘Dreal‘) . |Attpossible )
where D,..q; is the set of all the data points that do not contain missing
values. We therefore chose to implement more efficient methods to compute
the mean of the cluster.
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2.

Voronoi Diagram method: Using the Voronoi diagram, the data space is
partitioned to k subspaces (as can be seen in Figure 1 (b)). Each point is
associated with the subspace of the cluster in which it lies. We can use the
intersection between the Voronoi edges and the z = xg line to identify all the
possible points associated with cluster C'1, that is, the PC1pss5ip1e points.
Then all the possible points within this cluster will be represented by their
Euclidian mean (assigned as (z,, Ym,)). Its weight is:

o |P01possible |

wml - I

|}/possible |

and the weight for each point within C'1,.4; is one. Thus, the mean formula
is:

E(m,y)ec‘lrml (ZZ?, y) + Wy (‘Tml ) yml)

meanz(C1) = CTooa T
rea mi

It is easy to see that this equation is identical to (6). However, this method
is more efficient. Another possible and efficient approximation method is
described below.

Histogram method: Instead of including each possible point in the computa-
tion procedure, we divide the y value space to several disjoint intervals. Each
interval will be represented by its mean, and the weight of each interval will
be the ratio between the number of points in the interval to the number of all
possible points. Formally, let A; = {yp € [Yi-1, yi]‘yp IS Ypossible} be interval
i. Then its representative point is: r; = (g, mean(4;)) and its weight will

7

be w; = } . The weight for each point within C1,.4; is one. Thus, the

Ypossible
formula for the mean is:

Z(C&y)eClrml (‘Iv y) + ZHECI Wi+ 1
‘Clreal‘ + ZT-;GCl W;

means(C1) = (7)

This method approximates the method that computes the weighted mean;
the only difference is for the intervals that intersect the Voronoi edges. For
all the other intervals the two methods are identical. In the experiments
we conclude that this method does not strongly depend on the number of
intervals. This method is called k-mean-HistMDpg. Consider the following
two special cases. In the first case each interval contains only one point (i.e.,
A; = {yp}, where y, € Vyossivie). Then

1

i |Ypossible‘

)

Ty = (fEanp) € PClpossible , W

and the mean will be:

Z(r,y)echeal (z,y) + ZmeCl Wi - T4

mean(C1) = |Clreat| + 22, conwi
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As a result, this mean is identical to mean,, described in (6). In the second
case, when there is only one interval, then

| A

— =1.
}Y;Dossible |

Ai - }/possiblev Ty = (.Io, mea'n(}/possible)) - (-IOv /Ly)5 andwi -

In this case the mean will be:

Z(m,y)EClreal (z,y) + (o, /Ly)
}Clreal} +1

mean(C1) =

Then, this method will be equivalent to the MA imputation method de-
scribed in (5).

Discussion

There are several differences between k-means-M D g and k-means-HistM D .
They differ in their performance, efficiency and the way that they work. The k-
means-M Dg performs better when there are correlations between the attributes,
while the k-means-HistM Dg performs better when there are no strong corre-
lations between the attributes. This is due to the different ways in which they
associate points generated to represent the points with the missing values to the
clusters.

Moreover, the k-means-M D method is more efficient and its runtime is
equivalent to the standard k-means as described above. In addition, the results
of the two methods are different, as illustrated in Figure 1(b), where in the first
method only the blue “+” signs in the yellow circle are included, while in the
k-means-HistM D method all the points within the red ellipses are included.

4.1 Algorithm Convergence

In the previous section we described our new suggested methods of k-means. Now
we will prove that all these new methods converge to a local minimum of the cost
function. This has been proven for the original k-means algorithm. In the first
method (naive k-means), as can be seen in the previous section, each missing
value is replaced with the mean of all the known values of that coordinate.
Then the standard k-means clustering algorithm is run on the modified data
set. The algorithm therefore has the same properties as the standard k-means
and it therefore also converges. A similar analysis is performed for the k-means-
HistM Dg algorithm. In this case each point that has a missing value is replaced
with several points using the data distribution. Then again the algorithm can
considered as if it were the standard weighted k-means algorithm which is run
over this modified dataset. Thus, this method also has the standard k-means
properties.

Since a simple reduction is not possible for the k-means-M Dp algorithm we
will now prove that this method also converges after a finite number of iterations.
Let ¢ k = 1..K be the centroids of each cluster C}, where

Cr = {x € X : the closest representative of z is ¢},
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The goal of the k- means algorithm is to find the K centroids that minimize the
cost function:

{c(l),c(Q),...,c(K)} = arg min COSt(Cl,CQ,...,CK,C(I),C(2),...,C(K))
(e 6@, o)}

K

= argmin Z Z distance? (z, ¢®).

{e®,e@,.cO} T vec,

The standard k-means algorithm converges due to the fact that the value of the
cost function monotonically decreases because in each iteration the new centroids
d@ satisfy () = argmin > sec, distance®(x, ¢) and each point is associated
with its closest centroid. We will now show that in the k-means-M D algorithm
the value of the cost function also decreases monotonically in the same manner.

In the previous section we showed that in the association step that using the
M Dp distance function each point will be associated to the closest centroid.
This is true for regular points as well as for incomplete points. For each clus-
ter, considering the points associated with it, the mean is computed using the
derivation performed in Section 3, which satisfies:

¢®) = argmin Z distance?(x, c) = arg min Z ZMD%(CE, c),
c€R e c€RT o

which is what is required.
As a result we conclude that the k-means-M Dpg clustering algorithm also
converges to a local minimum like the standard k-means.

5 Experiments on Numerical Datasets

In order to measure the ability of k-means-M D and k-means-HistM Dg to
cluster the incomplete datasets, we compare the performance of the k-means (k
is fixed for each dataset) clustering algorithm on complete data (i.e., without
missing values) to its performance on data with missing values, using the M Dg
distance measure (k-means-M D g and k-means-Hist M Dg) and then again using
k-means-(MCA, MA, MI), where each missing value in each attribute is replaced
using the MCA, MA or MI method respectively on which a standard k-means
is run. In our experiments, k-means- Hist M D was run with 20 intervals. Later
(in Section 5.1) we can see that the number of intervals is not critical for the
algorithm’s performance.

We use the Rand index [13], which is a measure of similarity between two
data clusterings, to compare how similar the results of the standard k-means
clustering algorithm were to the results of the other algorithms for datasets with
missing values.

We ran our experiments on six standard numerical datasets from the Speech
and Image Processing Unit [15] from different fields: the Flame dataset, the Jain
dataset, the Pathbased dataset, the Spiral dataset, the Compound dataset, and
the Aggregation dataset; dataset characteristics are shown in Table 1.
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Table 1. Speech and Image Processing Unit Dataset Properties

Dataset |Dataset size|Clusters
Flame 240 x 2 2
Jain 373 x 2 2
Pathbased 300 x 2 3
Spiral 312 x 2 3
Compound | 399 x 2 6
Aggregation| 788 x 2 7

As can be seen in Figure 2, the two versions of k-means that use the M Dg
distance outperformed the other algorithm on all the datasets. Our intuitive
explanation for the performance of our algorithms is as follows. In the MA MCA
methods, the whole distribution of values is replaced by a single value (the mean
or the mode of the distribution of known values). In our two algorithms we use the
distribution of the observed values in all the computation stages. This additional
information is probably the reason for the improved performance of our methods
compared to the known heuristics. Moreover, we can see that, in most cases, k-
means-Hist M D g outperformed k-means-M Dg. The difference in performance
is due to the data distribution as mentioned in discussion in Section 4.
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Fig. 2. Results of k-means clustering algorithm using the different distance functions
on the six datasets from the Speech and Image Processing Unit.
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5.1 The effect of the number of intervals on the performance of

k-means-Hist M Dg

We performed yet another experiment to determine the extent to which the al-
gorithm depends on the number of intervals. In this experiment we evaluated the
performance of the algorithm on the Spiral dataset. We ran k-means-HistM Dg
using six different numbers of intervals (1, 5, 10, 15, 20, 50, 100) and compared
the performance to that of the standard k-means. As Figure 3 clearly shows, the
performance of k-means- HistM Dy does not critically depend on the number of
intervals. When k-means-Hist M D was run with one interval, its performance
was identical to that of k-means-MA, and when k-means-HistM Dg was run
with five intervals, its performance improved. At 10 intervals, its performance
converged and did not change for larger numbers of intervals, as can be seen
in the resulting curves. In our experiments we chose therefore to work with 20
disjoint intervals.

Spiral dataset

Rand Index

3Means-HistD, 15intervals
——— 3Means-HistMD20Intervals

3Means-HistVD,S0intervals
—— 3Means-HistMD_ 1001
3Means-HistMA with missing values

015 02 02 03 035 04 045 05 055 06
9% samples with missing values

Fig. 3. Results of k-means-HistM Dg clustering algorithm, when k = 3, using different
numbers of intervals on the Spiral dataset.

6 Conclusions

Missing attribute values are very common in real-world datasets. In this work,
we have proposed a new version of the k-means clustering algorithm that can
deal with datasets with missing values.

We also derived a formula for the mean of a given dataset when it contains
points with missing values. This formula provides the mean of the known values.
The computational complexity for computing the mean using the M D distance
is the same as that of the standard mean using the Euclidian distance.

We integrated the M Dy distance function and the mean computation within
the framework of the k-means clustering algorithm proposed three different ways
to compute the centroids while taking into account the associations between the
data points and the centroids. This is in contrast to the other basic methods for
dealing with missing values, which do not take into account these associations.
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We conducted experiments using the k-means clustering algorithm on six

standard datasets. Our k-means methods outperformed the standard methods
for datasets with missing values.

These proposed methods are general and can be used as part of any algorithm

that computes the distance between data points or means. Moreover, they can
be used for different datasets in different application areas. So, our future vision
is devoted to incorporating this distance function within other clustering and
classification algorithms.
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