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Abstrat. Missing values in data are ommon in real world applia-

tions. In this researh we developed a new version of the well-known

k-means lustering algorithm that deals with suh inomplete datasets.

The k-means algorithm has two basi steps, performed at eah iteration:

it assoiates eah point with its losest entroid and then it omputes

the new entroids. So, to run it we need a distane funtion and a mean

omputation formula. To measure the similarity between two inomplete

points, we use the distribution of the inomplete attributes. We propose

several diretions for omputing the entroids. In the �rst, inomplete

points are dealt with as one point and the entroid is omputed a-

ording to the developed formula derived in this researh. In the seond

and the third, eah inomplete point is replaed with a large number

of points aording to the data distribution and from these points the

entroid is omputed. Even so, the runtime omplexity of the suggested

k-means is the same as the standard k-means over omplete datasets.

We experimented on six standard numerial datasets from di�erent �elds

and ompared the performane of our proposed k-means to other basi

methods. Our experiments show that our suggested k-means algorithms

outperform previously published methods.
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1 Introdution

K-Means is the most popular and the simplest partitional lustering algorithm.

It has a rih and diverse history as it was independently disovered in di�erent

sienti� �elds [10, 14, 11℄. Ease of implementation, simpliity, e�ieny, and

empirial suess are the main reasons for its popularity. The k-means algorithm

(whih is an EM type algorithm) has two basi steps, performed at eah iteration:

(1) It assoiates eah point with its losest entroid. (2) It omputes the new

entroids.

Developing suh an algorithm for datasets with missing values is not a trivial

hallenge. It is important, sine missing values are very ommon in real world

datasets. They an be aused by human error, equipment failure, system gen-

erated errors, and so on. We were introdued to the problem of missing data
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when we reeived datasets from Applied Materials (AMAT), a ompany whih

develops mahines for the semiondutor industry. This data has many missing

values.

In general there are two ways to run the k-means lustering algorithm over in-

omplete datasets: ustomizing the data or ustomizing the k-means algorithm.

This means that we an preproess the dataset so that it onsists only of omplete

points and then run the standard k-means, or we an develop a k-means lus-

tering algorithm that an deal with inomplete datasets. Our proposed method

is of the latter type.

Based on [2, 7�9℄ there are three basi types of missing data:

1. Missing Completely at Random: Data are said to be MCAR if the failure to

observe a value is not related to any other sample.

2. Missing at Random: Data are said to be MAR if the probability that a value

is missing does not depend on the other missing values. Thus the onditional

probability of missingness may depend on any known values.

3. Not Missing at Random: Data are said to be NMAR if the probability that a

known value is missing depends on the value that would have been observed.

Several methods have been proposed to deal with missing data. These meth-

ods an be lassi�ed into two basi ategories: (a) Case deletion method,

this method assumes that the missing values are missing ompletely at random

(MCAR). It therefore ignores all the instanes with missing values and per-

forms the analysis on the rest [16℄. (b) Missing data imputation, whih replaes

eah missing value with a known value aording to the dataset distribution. A

ommon method that imputes missing data is the Most Common Attribute

Value (MCA) method. The value of the attribute that ours most often is

seleted to be the value for all the unknown values of the attribute [5℄. The

Mean Imputation (MI) method replaes a data point with missing values

with the mean of all the instanes in the data. A variant of this method is to

replae the missing data for a given attribute with the Mean of all known values

of that Attribute-MA (i.e., the mean of eah attribute) in the oordinate where

the instane with missing data belongs as desribed by [12℄. All these methods

assume MCAR sine all of them based on the distribution of the whole data and

do not take into aount the orrelations between the observed and the unob-

served values. These imputation methods yield omplete datasets. As a result

the standard k-means lustering algorithm an be run.

There are also methods that run k-means over inomplete datasets without

imputation, as desribed in [6, 4℄. They estimate a Gaussian Mixture Model-

GMM (an extended version of k-means) over datasets with missing values with-

out imputation, but, as we show in this paper, our proposed method is di�erent

and yields better results.

AbdAllah and Shimshoni [1℄ developed a new method to ompute the dis-

tane funtion between inomplete points. Their distane is not only e�ient but

also takes into aount the distribution of eah attribute. In the omputation

proedure they take into aount all the possible values with their probabilities,

whih are omputed aording to the attribute's distribution. This is in ontrast



3

to the MCA and the MA methods, whih replae eah missing value only with

the mode or the mean of eah attribute.

In a reent paper, Eirola et. al., [3℄ estimated the pairwise distane between

inomplete samples using the Gaussian mixture model with the algorithm de-

sribed in [6, 4℄. Mixture models of Gaussians have been studied extensively to

desribe the distributions of data sets.

In this researh we also developed a k-means algorithm that an run over

inomplete datasets without a preproessing proedure. To do so, we �rst need

(1) a distane funtion to measure the similarity between inomplete points and

eah entroid in order to assoiate eah point with the losest entroid; and (2) a

formula for omputing the new entroids of the lusters where eah luster may

ontain inomplete points.

As a result, in this researh we deided to work with the mean Eulidian

distane (MDE) presented in [1℄ to measure the dissimilarity between the in-

omplete points. The MDE distane is not only e�ient but also takes into

aount the distribution of eah attribute. This distane assumes that the miss-

ing values are randomly distributed aross all the samples. But, in real world

datasets, the missing values may depend on information from the known values

of the data. Thus, in this researh we generalized this distane funtion to deal

with other types of missing values.

We suggest three variants of k-means that an deal with inomplete datasets.

All use the MDE distane to assoiate the points with the losest enters. It is

important to note that by using this distane we are able to assoiate points

with the entroids without knowing their exat geometri loations. The three

diretions di�er in how to ompute the new entroid for eah luster, and more

spei�ally, in how to inlude the inomplete points within the mean omputa-

tion proedure. The �rst diretion assumes that eah inomplete point represents

one point and then it omputes the mean aording the developed formula for

omputing the mean. The other two diretions assume that eah inomplete

point represents a set of omplete points aording to the data distribution, so

they replae eah inomplete point with a set of points and then ompute the

mean aording to the new dataset. It is important to note that even though

we replae eah inomplete point with a large number of points, we use the

histograms of the data distribution in order to make the suggested algorithm

more e�ient. As a result, the runtime omplexity of the suggested k-means

algorithms is the same as the standard k-means over omplete datasets.

The proposed methods yield better results than previously published meth-

ods, as an be seen in the experiments. We experimented on six standard nu-

merial datasets from di�erent �elds from the Speeh and Image Proessing

Unit [15℄. Our experiments show that the performane of the k-means algorithm

using MDE distane funtion and the proposed mean and the k-means that use

the histogram of the data were superior to k-means using other methods.

The paper is organized as follows. A review of the inomplete data distane

funtion measure developed by [1℄ is desribed in Setion 2. The mean omputa-

tion is presented in Setion 3. Setion 4 desribes several diretions for integrat-
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ing the (MDE) distane and the omputed mean within the k-means lustering

algorithm. Experimental results of running several variants of the k-means lus-

tering algorithm on the Speeh and Image Proessing Unit [15℄ datasets are

presented in Setion 5. Finally, our onlusions are presented in Setion 6.

2 Inomplete Data Distane Measure

In this setion we desribe the method for measuring the distane between pairs

of points when they may ontain missing values developed by [1℄.

Let A ⊆ R
K
be a set of points. For the ith attribute Ai

, the onditional prob-

ability for Ai will be omputed aording to the known values for this attribute

from A (i.e., P (Ai) ∼ χi
), where χi

is the distribution of the ith oordinate.

Given two sample pointsX and Y from A, the goal is to ompute the distane

between them. Let xi
and yi be the ith oordinate values from points X,Y

respetively. There are three possible ases for the values of xi
and yi:

1. Two values are known: When the values of xi
and yi are given, the distane

between them will be de�ned as the Eulidian distane:

DE(x
i, yi) = (xi − yi)2. (1)

2. One value is missing: Suppose that xi
is missing and the value yi is given.

Sine the value of xi
is unknown, we annot ompute its Eulidian distane.

Instead we model the distane as a random seletion of a point from the

distribution of its attribute χi
and ompute its distane. The expetation of

this omputation is our distane.

As a result, we approximate the mean Eulidian distane (MDE) between

yi and the missing value mi
as:

MDE(m
i, yi) = E[(x− yi)2] =

∫

p(x)(x − yi)2dx =

(

(yi − µi)2 + (σi)2
)

.

This metri measures the distane between yi and eah suggested value of

xi
and takes into aount the probability p(x) for this value aording to

the evaluated probability distribution. It is important to note that in this

omputation the probability was omputed aording to the whole dataset.

The authors did not take into aount the possible orrelations between the

missing values and the other known values. It means that they assumed

MCAR (missing ompletely at random) missing data type. The resulting

mean Eulidian distane will be:

MDE(m
i, yi) =

(

(yi − µi)2 + (σi)2
)

, (2)

where µi
and (σi)2 are the mean and the variance for all the known values

of the attribute.
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3. The two values are missing: In this ase, in order to estimate the mean

Eulidian distane, we have to randomly selet values for both xi
and yi.

Both these values are seleted from distribution χi
.

We ompute the expetation of the Eulidean distane between eah seleted

value as we did for the one missing value. As a result the distane is:

MDE(xi, yi) =

∫ ∫

p(x)p(y)(x − y)2dxdy =

(

(E[x]− E[y])2 + σ2
x + σ2

y

)

.

As x and y belong to the same attribute, E[x] = E[y] := µi
and σx = σy :=

σi
. Thus:

MDE(x
i, yi) = 2(σi)2. (3)

Studying the equation desribed above, we onlude that the main limitation

of this distane is its assumption that the missing data is MCAR. However,

many real world datasets are not MCAR. So, if the missing are MAR then the

probability p(x) depends on the other observed values and then the distane will

be omputed as:

MDE(m
i, yi) =

∫

p(x|xobs)(x − yi)2dx =

(

(yi − µi
x|xobs

)2 + (σi
x|xobs

)2
)

,

where xobs denotes the observed attributes of point X , and µi
x|xobs

and (σi
x|xobs

)2

are the onditional mean and variance, respetively.

On the other hand, if the missing values are of type NMAR, then the prob-

ability p(x) that was used in Equation 2 will be omputed aording to this

information and then the distane will be:

MDE(m
i, yi) =

∫

p(x|mi)(x − yi)2dx =

(

(yi − µi
x|mi)2 + (σi

x|mi)2
)

,

where p(x|mi) is the distribution of x when x is missing.

3 Mean Computation

In order to develop a k-means lustering algorithm over datasets with missing

values, we still need a formula that uses the MDE distane to ompute the mean

of a given set that ontains missing values.

Let A ⊆ R
K
be a set of n points that may ontain points with missing values.

Then the mean of this dataset is de�ned as:

x̄ = argmin
x∈R

n∑

i=1

(distance(x, pi))
2
,

for any x ∈ R
K
, where pi ∈ A denotes eah point from the set A, and distance()

is a distane funtion.
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Let f(x) be a multidimensional funtion: f : RK :→ R whih is de�ned as:

f(x) =

n∑

i=1

(distance(x, pi))
2
,

In our ase, the distance() = MDE. Thus,

f(x) =
n∑

i=1

(distance(x, pi))
2 =

n∑

i=1

(
√
√
√
√

K∑

j=1

MDE(xj , p
j
i )

︸ ︷︷ ︸

The MDE() distane

)2

=
n∑

i=1

K∑

j=1

MDE(x
j , p

j
i ),

where xj
is the oordinate j and p

j
i is the oordinate j in point pi. Sine eah

point pi may ontain missing attributes, and aording to the de�nition of the

MDE distane in the previous setion, f(x) will be:

f(x) =

K∑

j=1

[ nj∑

i=1

(xj − p
j
i )

2

︸ ︷︷ ︸

there are nj known oordinates

+

mj∑

i=1

(

(xj − µj)2 + (σj)2
)

︸ ︷︷ ︸

there are mj missing oordinates

]

.

x̄ is the solution of f ′(x) = 0, but sine f(x) is a multidimensional funtion

then x̄ is the solution of ∇f =
−→
0 , where

∇f =

(

f ′
x1 , f

′
x2 , ..., f

′
xk

)

= 0,

is the gradient of funtion f . In our derivation we will �rst deal with one oor-

dinate and then we will generalize it for all the other oordinates.

⇒ f ′
xl = 2

nl∑

i=1

(xl − pli) + 2

ml∑

i=1

(xl − µl) = 0

⇒ nxl =

nl∑

i=1

pli +mlµ
l ⇒ xl =

∑nl

i=1 p
l
i

n
+

mlµ
l

n

⇒ xl =
nl

n

∑nl

i=1 p
l
i

nl

+
n− nl

n
µl = µl.

Thus, we simply get:

xl = µl. (4)

Repeating this for all the oordinates yields x̄ = (µ1, µ2, ..., µk). In other words,

eah oordinate of the mean is the mean of the known values of that oordinate.

In the same way, we derive a formula for omputing the weighted mean for

eah oordinate l, yielding:

xl
w =

∑nl

i=1 wix
l
i +

∑nl

i=1 wiµ
l

∑n

i=1 wi

,
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where wi is the weight of point xi. Thus, in order to ompute the weighted

mean of an attribute l, where some of its values are missing, we must distinguish

between two ases: known and missing values. If the value is known we multiply

it with its weight. When, however, the value is missing, we replae it with the

mean of the known values of the attribute l and then multiply it by the mathing

weight. We then sum the terms and divide them by the sum of all the weights.

4 K-Means Clustering using the MDE Distane

The aim of this researh is to develop k-means lustering algorithms for inom-

plete datasets. The MDE distane and the mean are general and an be used

within any algorithm that omputes distanes and means. It is not, however,

lear how it an be integrated into suh an algorithm. In this setion we de-

sribe our proposed method for doing so for the k-means lustering algorithm.

For illustration purposes we assume that all the points are from R
2
. We propose

three di�erent versions for k-means. It is important to note that the �rst ver-

sion is similar to the GMM algorithm desribed [6, 4℄, where eah inomplete

point is onsidered a single point. However, the other two versions are di�erent

and replae eah inomplete point with a set of points aording to the data

distribution. As will be shown in our experiments, they outperform the �rst

algorithm.

Given dataset D that may ontain points with missing values, the k-means

algorithm has two basi steps, performed at eah iteration: (1) It assoiates eah

point with its losest entroid. (2) It omputes the new entroids. In the �rst step

the MDE distane is used to ompute the distanes between the points and the

k entroids in order to assoiate eah point with the losest entroid. There are

several possible ways to then ompute the new entroids of the lusters. These

possibilities will be illustrated using Figure 1(a). Aording to this example, there

are two lusters (i.e., C1 is assigned to the yellow luster and C2 is assigned to

the brown luster). The goal is to ompute the entroid of eah luster. For

simpliity we will deal with C1. If none of the instanes ontain missing values,

the entroid will be omputed aording to the Eulidianmean formula, resulting

in the magenta star.

When the dataset ontains points with missing values, it is not lear how to

ompute the mean. In the given example, let (x0, ?) (i.e., the red star) be a point

with a missing y value and x = x0. Although the exat geometri loation for

this point is unknown, we still an assoiate it with C1's luster using the MDE

distane as follows:

distance2
(
(x, ?), (xc, yc)

)
= MD2

E

(
(x, ?), (xc, yc)

)
= (xc−x0)

2+(yc−µy)
2+σ2

y.

Using the MA-method, on the other hand, the point (x0, ?) will be replaed with

(x0, µy). It is lear that the di�erene between the two methods is only in σ2
y, a

�xed value that does not in�uene the assoiation result.

Let the Attpossible group denote all the possible values for eah attribute.

Thus, in our ase:

Ypossible =
{
y ∈ R

∣
∣∃(x, y) ∈ D

}
.
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(a) (b)

Fig. 1. An example for omputing the entroids for two lusters in a dataset with

missing values. (a) Shows the results of the di�erent methods of omputing the mean.

(b) Shows the Voronoi diagram.

Let

(x0)possible =
{
(x0, yp)

∣
∣yp ∈ Ypossible

}

be the set of all the possible points that satisfy x = x0, assume y is missing (the

blue �+�), and let

C1real =
{
(x, y) ∈ D

∣
∣(x, y) ∈ C1

}

be the set of all the data points without missing values that are assoiated with

the C1 luster.

The naïve method to ompute the new entroid is by replaing the point

with the missing value with all the possible points (x0)possible, and then om-

puting the mean aording to these points (C1real and (x0)possible), where eah
point from C1real has weight one and eah point from (x0)possible has weight

1∣
∣Ypossible

∣
∣
. As a result, the weighted mean of C1 is:

mean(C1) =

∑

(x,y)∈C1real
(x, y) + (x0, µy)

∣
∣C1real

∣
∣+

∑ 1∣
∣Ypossible

∣
∣

. (5)

This is idential to the Eulidian mean when the missing point is replaed with

(x0, µy) and is equivalent to the MA method when (x0, µy) is assoiated with

C1. As a result, the real entroid of the luster (the magenta star) moves to

the green star. That is beause this omputation assumes that all the possible

points (x0)possible are represented as (x0, µy), and ignores the other possible

points, whih in general is suboptimal, as an be seen in Figure 1 (b), where not

all the blue �+� marks are assoiated with C1.
Thus, we must take into aount the assoiation of eah possible point. There

are two possible ways to do that. The �rst (whih we name k-mean-MDE) is
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to inlude within the mean omputation, in addition to the real points within

the yellow irle, all the possible points (x0, y) ∈ (x0)possible suh that their y

oordinates are the y oordinates of the real data points from the yellow luster

(i.e., the blue �+� belonging to the yellow irle). Formally, the mean will be

omputed aording to all the real points C1real and

C1(x0)possible =
{
(x0, yp) ∈ (x0)possible

∣
∣∃(x, y) ∈ C1real ∧ y = yp

}
.

The weight for eah point from C1real is 1 and the weight for eah point from

C1possible is:

1
|C1possible|

.

This means that all the weights are omputed only aording to the distribu-

tion of the points assoiated with C1. So, using only this set of points, the mean

an be omputed diretly using (4). As a result, the entroid will be preserved,

yielding the magenta star in the given example.

Computing the new entroid using (4) yields not only the same entroid as

using the Eulidian distane, but also preserves the runtime of the standard

k-means using the Eulidian distane.

Another method (whih we name k-mean-HistMDE) is to use all the points

from (x0)possible that are assoiated with the C1 luster and not only the points

from (x0)possible whose y oordinates are from the real points assoiated with

that luster. Thus, we �rst assoiate eah of the points from (x0)Y possible with

its losest entroid (the blue �+� in the red irles in Figure 1 (b)), and then

ompute a weighted mean. Formally, the mean will be omputed aording to

all the real points C1real, and

PC1possible =
{
(x0, yp) ∈ (x0)possible

∣
∣(x0, yp) ∈ C1

}
.

In this ase we annot use (4), beause the weights are omputed using the

entire dataset. We therefore suggest three methods for implementing the mean

omputation:

1. Simple weighted mean: Simply replae eah point with a missing value with

the

∣
∣Ypossible

∣
∣
points, eah with a weight

1∣
∣Ypossible

∣
∣
, and run weighted k-means

on the new dataset. Thus, the weighted mean of C1 is:

mean1(C1) =

∑

(x,y)∈C1real
(x, y) + 1∣

∣Ypossible

∣
∣
·
∑

(x0,yp)∈PC1possible
(x0, yp)

∣
∣C1real

∣
∣ + 1∣

∣Ypossible

∣
∣
·
∣
∣PC1possible

∣
∣

.

(6)

This method is simple to implement, but its runtime is high, sine eah point

with, for example, a missing y value will be replaed with

∣
∣Ypossible

∣
∣
points.

As a result, the size of the dataset will be:

∣
∣Dreal

∣
∣+

(
∣
∣D

∣
∣−

∣
∣Dreal

∣
∣

)

·
∣
∣Attpossible

∣
∣,

where Dreal is the set of all the data points that do not ontain missing

values. We therefore hose to implement more e�ient methods to ompute

the mean of the luster.
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2. Voronoi Diagram method: Using the Voronoi diagram, the data spae is

partitioned to k subspaes (as an be seen in Figure 1 (b)). Eah point is

assoiated with the subspae of the luster in whih it lies. We an use the

intersetion between the Voronoi edges and the x = x0 line to identify all the

possible points assoiated with luster C1, that is, the PC1possible points.

Then all the possible points within this luster will be represented by their

Eulidian mean (assigned as (xm1 , ym1)). Its weight is:

wm1 =
|PC1possible|
∣
∣Ypossible

∣
∣

,

and the weight for eah point within C1real is one. Thus, the mean formula

is:

mean2(C1) =

∑

(x,y)∈C1real
(x, y) + wm1 · (xm1 , ym1)

|C1real|+ wm1

.

It is easy to see that this equation is idential to (6). However, this method

is more e�ient. Another possible and e�ient approximation method is

desribed below.

3. Histogram method: Instead of inluding eah possible point in the omputa-

tion proedure, we divide the y value spae to several disjoint intervals. Eah

interval will be represented by its mean, and the weight of eah interval will

be the ratio between the number of points in the interval to the number of all

possible points. Formally, let ∆i =
{
yp ∈ [yi−1, yi]

∣
∣yp ∈ Ypossible

}
be interval

i. Then its representative point is: ri = (x0,mean(∆i)) and its weight will

be wi =

∣
∣∆i

∣
∣

∣
∣Ypossible

∣
∣
. The weight for eah point within C1real is one. Thus, the

formula for the mean is:

mean3(C1) =

∑

(x,y)∈C1real
(x, y) +

∑

ri∈C1wi · ri
∣
∣C1real

∣
∣+

∑

ri∈C1 wi

. (7)

This method approximates the method that omputes the weighted mean;

the only di�erene is for the intervals that interset the Voronoi edges. For

all the other intervals the two methods are idential. In the experiments

we onlude that this method does not strongly depend on the number of

intervals. This method is alled k-mean-HistMDE . Consider the following

two speial ases. In the �rst ase eah interval ontains only one point (i.e.,

∆i = {yp}, where yp ∈ Ypossible). Then

ri = (x0, yp) ∈ PC1possible , wi =
1

∣
∣Ypossible

∣
∣
,

and the mean will be:

mean(C1) =

∑

(x,y)∈C1real
(x, y) +

∑

ri∈C1 wi · ri
∣
∣C1real

∣
∣+

∑

ri∈C1 wi

.
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As a result, this mean is idential to mean1, desribed in (6). In the seond

ase, when there is only one interval, then

∆i = Ypossible, ri = (x0,mean(Ypossible)) = (x0, µy), andwi =
|∆i|

∣
∣Ypossible

∣
∣
= 1.

In this ase the mean will be:

mean(C1) =

∑

(x,y)∈C1real
(x, y) + (x0, µy)

∣
∣C1real

∣
∣ + 1

.

Then, this method will be equivalent to the MA imputation method de-

sribed in (5).

Disussion

There are several di�erenes between k-means-MDE and k-means-HistMDE.

They di�er in their performane, e�ieny and the way that they work. The k-

means-MDE performs better when there are orrelations between the attributes,

while the k-means-HistMDE performs better when there are no strong orre-

lations between the attributes. This is due to the di�erent ways in whih they

assoiate points generated to represent the points with the missing values to the

lusters.

Moreover, the k-means-MDE method is more e�ient and its runtime is

equivalent to the standard k-means as desribed above. In addition, the results

of the two methods are di�erent, as illustrated in Figure 1(b), where in the �rst

method only the blue �+� signs in the yellow irle are inluded, while in the

k-means-HistMDE method all the points within the red ellipses are inluded.

4.1 Algorithm Convergene

In the previous setion we desribed our new suggested methods of k-means. Now

we will prove that all these new methods onverge to a loal minimum of the ost

funtion. This has been proven for the original k-means algorithm. In the �rst

method (naïve k-means), as an be seen in the previous setion, eah missing

value is replaed with the mean of all the known values of that oordinate.

Then the standard k-means lustering algorithm is run on the modi�ed data

set. The algorithm therefore has the same properties as the standard k-means

and it therefore also onverges. A similar analysis is performed for the k-means-

HistMDE algorithm. In this ase eah point that has a missing value is replaed

with several points using the data distribution. Then again the algorithm an

onsidered as if it were the standard weighted k-means algorithm whih is run

over this modi�ed dataset. Thus, this method also has the standard k-means

properties.

Sine a simple redution is not possible for the k-means-MDE algorithm we

will now prove that this method also onverges after a �nite number of iterations.

Let c(k), k = 1..K be the entroids of eah luster Ck, where

Ck = {x ∈ X : the losest representative of x is c(k)}.
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The goal of the k- means algorithm is to �nd the K entroids that minimize the

ost funtion:

{c(1), c(2), ..., c(K)} = argmin
{c(1),c(2),...,c(K)}

cost(C1, C2, ..., CK , c(1), c(2), ..., c(K))

= argmin
{c(1),c(2),...,c(K)}

K∑

k=1

∑

x∈Ck

distance2(x, c(k)).

The standard k-means algorithm onverges due to the fat that the value of the

ost funtion monotonially dereases beause in eah iteration the new entroids

c′(i) satisfy c(i) = argmin
∑

x∈Ci
distance2(x, c) and eah point is assoiated

with its losest entroid. We will now show that in the k-means-MDE algorithm

the value of the ost funtion also dereases monotonially in the same manner.

In the previous setion we showed that in the assoiation step that using the

MDE distane funtion eah point will be assoiated to the losest entroid.

This is true for regular points as well as for inomplete points. For eah lus-

ter, onsidering the points assoiated with it, the mean is omputed using the

derivation performed in Setion 3, whih satis�es:

c(k) = argmin
c∈Rd

∑

x∈Ck

distance2(x, c) = argmin
c∈Rd

∑

x∈Ci

∑

MD2
E(x, c),

whih is what is required.

As a result we onlude that the k-means-MDE lustering algorithm also

onverges to a loal minimum like the standard k-means.

5 Experiments on Numerial Datasets

In order to measure the ability of k-means-MDE and k-means-HistMDE to

luster the inomplete datasets, we ompare the performane of the k-means (k

is �xed for eah dataset) lustering algorithm on omplete data (i.e., without

missing values) to its performane on data with missing values, using the MDE

distane measure (k-means-MDE and k-means-HistMDE) and then again using

k-means-(MCA, MA, MI), where eah missing value in eah attribute is replaed

using the MCA, MA or MI method respetively on whih a standard k-means

is run. In our experiments, k-means-HistMDE was run with 20 intervals. Later

(in Setion 5.1) we an see that the number of intervals is not ritial for the

algorithm's performane.

We use the Rand index [13℄, whih is a measure of similarity between two

data lusterings, to ompare how similar the results of the standard k-means

lustering algorithm were to the results of the other algorithms for datasets with

missing values.

We ran our experiments on six standard numerial datasets from the Speeh

and Image Proessing Unit [15℄ from di�erent �elds: the Flame dataset, the Jain

dataset, the Pathbased dataset, the Spiral dataset, the Compound dataset, and

the Aggregation dataset; dataset harateristis are shown in Table 1.



13

Table 1. Speeh and Image Proessing Unit Dataset Properties

Dataset Dataset size Clusters

Flame 240× 2 2

Jain 373× 2 2

Pathbased 300× 2 3

Spiral 312× 2 3

Compound 399× 2 6

Aggregation 788× 2 7

As an be seen in Figure 2, the two versions of k-means that use the MDE

distane outperformed the other algorithm on all the datasets. Our intuitive

explanation for the performane of our algorithms is as follows. In the MA MCA

methods, the whole distribution of values is replaed by a single value (the mean

or the mode of the distribution of known values). In our two algorithms we use the

distribution of the observed values in all the omputation stages. This additional

information is probably the reason for the improved performane of our methods

ompared to the known heuristis. Moreover, we an see that, in most ases, k-

means-HistMDE outperformed k-means-MDE. The di�erene in performane

is due to the data distribution as mentioned in disussion in Setion 4.
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Fig. 2. Results of k-means lustering algorithm using the di�erent distane funtions

on the six datasets from the Speeh and Image Proessing Unit.
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5.1 The e�et of the number of intervals on the performane of

k-means-HistMDE

We performed yet another experiment to determine the extent to whih the al-

gorithm depends on the number of intervals. In this experiment we evaluated the

performane of the algorithm on the Spiral dataset. We ran k-means-HistMDE

using six di�erent numbers of intervals (1, 5, 10, 15, 20, 50, 100) and ompared

the performane to that of the standard k-means. As Figure 3 learly shows, the

performane of k-means-HistMDE does not ritially depend on the number of

intervals. When k-means-HistMDE was run with one interval, its performane

was idential to that of k-means-MA, and when k-means-HistMDE was run

with �ve intervals, its performane improved. At 10 intervals, its performane

onverged and did not hange for larger numbers of intervals, as an be seen

in the resulting urves. In our experiments we hose therefore to work with 20

disjoint intervals.
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Fig. 3. Results of k-means-HistMDE lustering algorithm, when k = 3, using di�erent

numbers of intervals on the Spiral dataset.

6 Conlusions

Missing attribute values are very ommon in real-world datasets. In this work,

we have proposed a new version of the k-means lustering algorithm that an

deal with datasets with missing values.

We also derived a formula for the mean of a given dataset when it ontains

points with missing values. This formula provides the mean of the known values.

The omputational omplexity for omputing themean using theMDE distane

is the same as that of the standard mean using the Eulidian distane.

We integrated theMDE distane funtion and themean omputation within

the framework of the k-means lustering algorithm proposed three di�erent ways

to ompute the entroids while taking into aount the assoiations between the

data points and the entroids. This is in ontrast to the other basi methods for

dealing with missing values, whih do not take into aount these assoiations.
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We onduted experiments using the k-means lustering algorithm on six

standard datasets. Our k-means methods outperformed the standard methods

for datasets with missing values.

These proposed methods are general and an be used as part of any algorithm

that omputes the distane between data points or means. Moreover, they an

be used for di�erent datasets in di�erent appliation areas. So, our future vision

is devoted to inorporating this distane funtion within other lustering and

lassi�ation algorithms.
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