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Abstra
t. Missing values in data are 
ommon in real world appli
a-

tions. In this resear
h we developed a new version of the well-known

k-means 
lustering algorithm that deals with su
h in
omplete datasets.

The k-means algorithm has two basi
 steps, performed at ea
h iteration:

it asso
iates ea
h point with its 
losest 
entroid and then it 
omputes

the new 
entroids. So, to run it we need a distan
e fun
tion and a mean


omputation formula. To measure the similarity between two in
omplete

points, we use the distribution of the in
omplete attributes. We propose

several dire
tions for 
omputing the 
entroids. In the �rst, in
omplete

points are dealt with as one point and the 
entroid is 
omputed a
-


ording to the developed formula derived in this resear
h. In the se
ond

and the third, ea
h in
omplete point is repla
ed with a large number

of points a

ording to the data distribution and from these points the


entroid is 
omputed. Even so, the runtime 
omplexity of the suggested

k-means is the same as the standard k-means over 
omplete datasets.

We experimented on six standard numeri
al datasets from di�erent �elds

and 
ompared the performan
e of our proposed k-means to other basi


methods. Our experiments show that our suggested k-means algorithms

outperform previously published methods.

Keywords: Clustering, k-means, missing values, in
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1 Introdu
tion

K-Means is the most popular and the simplest partitional 
lustering algorithm.

It has a ri
h and diverse history as it was independently dis
overed in di�erent

s
ienti�
 �elds [10, 14, 11℄. Ease of implementation, simpli
ity, e�
ien
y, and

empiri
al su

ess are the main reasons for its popularity. The k-means algorithm

(whi
h is an EM type algorithm) has two basi
 steps, performed at ea
h iteration:

(1) It asso
iates ea
h point with its 
losest 
entroid. (2) It 
omputes the new


entroids.

Developing su
h an algorithm for datasets with missing values is not a trivial


hallenge. It is important, sin
e missing values are very 
ommon in real world

datasets. They 
an be 
aused by human error, equipment failure, system gen-

erated errors, and so on. We were introdu
ed to the problem of missing data
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when we re
eived datasets from Applied Materials (AMAT), a 
ompany whi
h

develops ma
hines for the semi
ondu
tor industry. This data has many missing

values.

In general there are two ways to run the k-means 
lustering algorithm over in-


omplete datasets: 
ustomizing the data or 
ustomizing the k-means algorithm.

This means that we 
an prepro
ess the dataset so that it 
onsists only of 
omplete

points and then run the standard k-means, or we 
an develop a k-means 
lus-

tering algorithm that 
an deal with in
omplete datasets. Our proposed method

is of the latter type.

Based on [2, 7�9℄ there are three basi
 types of missing data:

1. Missing Completely at Random: Data are said to be MCAR if the failure to

observe a value is not related to any other sample.

2. Missing at Random: Data are said to be MAR if the probability that a value

is missing does not depend on the other missing values. Thus the 
onditional

probability of missingness may depend on any known values.

3. Not Missing at Random: Data are said to be NMAR if the probability that a

known value is missing depends on the value that would have been observed.

Several methods have been proposed to deal with missing data. These meth-

ods 
an be 
lassi�ed into two basi
 
ategories: (a) Case deletion method,

this method assumes that the missing values are missing 
ompletely at random

(MCAR). It therefore ignores all the instan
es with missing values and per-

forms the analysis on the rest [16℄. (b) Missing data imputation, whi
h repla
es

ea
h missing value with a known value a

ording to the dataset distribution. A


ommon method that imputes missing data is the Most Common Attribute

Value (MCA) method. The value of the attribute that o

urs most often is

sele
ted to be the value for all the unknown values of the attribute [5℄. The

Mean Imputation (MI) method repla
es a data point with missing values

with the mean of all the instan
es in the data. A variant of this method is to

repla
e the missing data for a given attribute with the Mean of all known values

of that Attribute-MA (i.e., the mean of ea
h attribute) in the 
oordinate where

the instan
e with missing data belongs as des
ribed by [12℄. All these methods

assume MCAR sin
e all of them based on the distribution of the whole data and

do not take into a

ount the 
orrelations between the observed and the unob-

served values. These imputation methods yield 
omplete datasets. As a result

the standard k-means 
lustering algorithm 
an be run.

There are also methods that run k-means over in
omplete datasets without

imputation, as des
ribed in [6, 4℄. They estimate a Gaussian Mixture Model-

GMM (an extended version of k-means) over datasets with missing values with-

out imputation, but, as we show in this paper, our proposed method is di�erent

and yields better results.

AbdAllah and Shimshoni [1℄ developed a new method to 
ompute the dis-

tan
e fun
tion between in
omplete points. Their distan
e is not only e�
ient but

also takes into a

ount the distribution of ea
h attribute. In the 
omputation

pro
edure they take into a

ount all the possible values with their probabilities,

whi
h are 
omputed a

ording to the attribute's distribution. This is in 
ontrast
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to the MCA and the MA methods, whi
h repla
e ea
h missing value only with

the mode or the mean of ea
h attribute.

In a re
ent paper, Eirola et. al., [3℄ estimated the pairwise distan
e between

in
omplete samples using the Gaussian mixture model with the algorithm de-

s
ribed in [6, 4℄. Mixture models of Gaussians have been studied extensively to

des
ribe the distributions of data sets.

In this resear
h we also developed a k-means algorithm that 
an run over

in
omplete datasets without a prepro
essing pro
edure. To do so, we �rst need

(1) a distan
e fun
tion to measure the similarity between in
omplete points and

ea
h 
entroid in order to asso
iate ea
h point with the 
losest 
entroid; and (2) a

formula for 
omputing the new 
entroids of the 
lusters where ea
h 
luster may


ontain in
omplete points.

As a result, in this resear
h we de
ided to work with the mean Eu
lidian

distan
e (MDE) presented in [1℄ to measure the dissimilarity between the in-


omplete points. The MDE distan
e is not only e�
ient but also takes into

a

ount the distribution of ea
h attribute. This distan
e assumes that the miss-

ing values are randomly distributed a
ross all the samples. But, in real world

datasets, the missing values may depend on information from the known values

of the data. Thus, in this resear
h we generalized this distan
e fun
tion to deal

with other types of missing values.

We suggest three variants of k-means that 
an deal with in
omplete datasets.

All use the MDE distan
e to asso
iate the points with the 
losest 
enters. It is

important to note that by using this distan
e we are able to asso
iate points

with the 
entroids without knowing their exa
t geometri
 lo
ations. The three

dire
tions di�er in how to 
ompute the new 
entroid for ea
h 
luster, and more

spe
i�
ally, in how to in
lude the in
omplete points within the mean 
omputa-

tion pro
edure. The �rst dire
tion assumes that ea
h in
omplete point represents

one point and then it 
omputes the mean a

ording the developed formula for


omputing the mean. The other two dire
tions assume that ea
h in
omplete

point represents a set of 
omplete points a

ording to the data distribution, so

they repla
e ea
h in
omplete point with a set of points and then 
ompute the

mean a

ording to the new dataset. It is important to note that even though

we repla
e ea
h in
omplete point with a large number of points, we use the

histograms of the data distribution in order to make the suggested algorithm

more e�
ient. As a result, the runtime 
omplexity of the suggested k-means

algorithms is the same as the standard k-means over 
omplete datasets.

The proposed methods yield better results than previously published meth-

ods, as 
an be seen in the experiments. We experimented on six standard nu-

meri
al datasets from di�erent �elds from the Spee
h and Image Pro
essing

Unit [15℄. Our experiments show that the performan
e of the k-means algorithm

using MDE distan
e fun
tion and the proposed mean and the k-means that use

the histogram of the data were superior to k-means using other methods.

The paper is organized as follows. A review of the in
omplete data distan
e

fun
tion measure developed by [1℄ is des
ribed in Se
tion 2. The mean 
omputa-

tion is presented in Se
tion 3. Se
tion 4 des
ribes several dire
tions for integrat-
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ing the (MDE) distan
e and the 
omputed mean within the k-means 
lustering

algorithm. Experimental results of running several variants of the k-means 
lus-

tering algorithm on the Spee
h and Image Pro
essing Unit [15℄ datasets are

presented in Se
tion 5. Finally, our 
on
lusions are presented in Se
tion 6.

2 In
omplete Data Distan
e Measure

In this se
tion we des
ribe the method for measuring the distan
e between pairs

of points when they may 
ontain missing values developed by [1℄.

Let A ⊆ R
K
be a set of points. For the ith attribute Ai

, the 
onditional prob-

ability for Ai will be 
omputed a

ording to the known values for this attribute

from A (i.e., P (Ai) ∼ χi
), where χi

is the distribution of the ith 
oordinate.

Given two sample pointsX and Y from A, the goal is to 
ompute the distan
e

between them. Let xi
and yi be the ith 
oordinate values from points X,Y

respe
tively. There are three possible 
ases for the values of xi
and yi:

1. Two values are known: When the values of xi
and yi are given, the distan
e

between them will be de�ned as the Eu
lidian distan
e:

DE(x
i, yi) = (xi − yi)2. (1)

2. One value is missing: Suppose that xi
is missing and the value yi is given.

Sin
e the value of xi
is unknown, we 
annot 
ompute its Eu
lidian distan
e.

Instead we model the distan
e as a random sele
tion of a point from the

distribution of its attribute χi
and 
ompute its distan
e. The expe
tation of

this 
omputation is our distan
e.

As a result, we approximate the mean Eu
lidian distan
e (MDE) between

yi and the missing value mi
as:

MDE(m
i, yi) = E[(x− yi)2] =

∫

p(x)(x − yi)2dx =

(

(yi − µi)2 + (σi)2
)

.

This metri
 measures the distan
e between yi and ea
h suggested value of

xi
and takes into a

ount the probability p(x) for this value a

ording to

the evaluated probability distribution. It is important to note that in this


omputation the probability was 
omputed a

ording to the whole dataset.

The authors did not take into a

ount the possible 
orrelations between the

missing values and the other known values. It means that they assumed

MCAR (missing 
ompletely at random) missing data type. The resulting

mean Eu
lidian distan
e will be:

MDE(m
i, yi) =

(

(yi − µi)2 + (σi)2
)

, (2)

where µi
and (σi)2 are the mean and the variance for all the known values

of the attribute.
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3. The two values are missing: In this 
ase, in order to estimate the mean

Eu
lidian distan
e, we have to randomly sele
t values for both xi
and yi.

Both these values are sele
ted from distribution χi
.

We 
ompute the expe
tation of the Eu
lidean distan
e between ea
h sele
ted

value as we did for the one missing value. As a result the distan
e is:

MDE(xi, yi) =

∫ ∫

p(x)p(y)(x − y)2dxdy =

(

(E[x]− E[y])2 + σ2
x + σ2

y

)

.

As x and y belong to the same attribute, E[x] = E[y] := µi
and σx = σy :=

σi
. Thus:

MDE(x
i, yi) = 2(σi)2. (3)

Studying the equation des
ribed above, we 
on
lude that the main limitation

of this distan
e is its assumption that the missing data is MCAR. However,

many real world datasets are not MCAR. So, if the missing are MAR then the

probability p(x) depends on the other observed values and then the distan
e will

be 
omputed as:

MDE(m
i, yi) =

∫

p(x|xobs)(x − yi)2dx =

(

(yi − µi
x|xobs

)2 + (σi
x|xobs

)2
)

,

where xobs denotes the observed attributes of point X , and µi
x|xobs

and (σi
x|xobs

)2

are the 
onditional mean and variance, respe
tively.

On the other hand, if the missing values are of type NMAR, then the prob-

ability p(x) that was used in Equation 2 will be 
omputed a

ording to this

information and then the distan
e will be:

MDE(m
i, yi) =

∫

p(x|mi)(x − yi)2dx =

(

(yi − µi
x|mi)2 + (σi

x|mi)2
)

,

where p(x|mi) is the distribution of x when x is missing.

3 Mean Computation

In order to develop a k-means 
lustering algorithm over datasets with missing

values, we still need a formula that uses the MDE distan
e to 
ompute the mean

of a given set that 
ontains missing values.

Let A ⊆ R
K
be a set of n points that may 
ontain points with missing values.

Then the mean of this dataset is de�ned as:

x̄ = argmin
x∈R

n∑

i=1

(distance(x, pi))
2
,

for any x ∈ R
K
, where pi ∈ A denotes ea
h point from the set A, and distance()

is a distan
e fun
tion.



6

Let f(x) be a multidimensional fun
tion: f : RK :→ R whi
h is de�ned as:

f(x) =

n∑

i=1

(distance(x, pi))
2
,

In our 
ase, the distance() = MDE. Thus,

f(x) =
n∑

i=1

(distance(x, pi))
2 =

n∑

i=1

(
√
√
√
√

K∑

j=1

MDE(xj , p
j
i )

︸ ︷︷ ︸

The MDE() distan
e

)2

=
n∑

i=1

K∑

j=1

MDE(x
j , p

j
i ),

where xj
is the 
oordinate j and p

j
i is the 
oordinate j in point pi. Sin
e ea
h

point pi may 
ontain missing attributes, and a

ording to the de�nition of the

MDE distan
e in the previous se
tion, f(x) will be:

f(x) =

K∑

j=1

[ nj∑

i=1

(xj − p
j
i )

2

︸ ︷︷ ︸

there are nj known 
oordinates

+

mj∑

i=1

(

(xj − µj)2 + (σj)2
)

︸ ︷︷ ︸

there are mj missing 
oordinates

]

.

x̄ is the solution of f ′(x) = 0, but sin
e f(x) is a multidimensional fun
tion

then x̄ is the solution of ∇f =
−→
0 , where

∇f =

(

f ′
x1 , f

′
x2 , ..., f

′
xk

)

= 0,

is the gradient of fun
tion f . In our derivation we will �rst deal with one 
oor-

dinate and then we will generalize it for all the other 
oordinates.

⇒ f ′
xl = 2

nl∑

i=1

(xl − pli) + 2

ml∑

i=1

(xl − µl) = 0

⇒ nxl =

nl∑

i=1

pli +mlµ
l ⇒ xl =

∑nl

i=1 p
l
i

n
+

mlµ
l

n

⇒ xl =
nl

n

∑nl

i=1 p
l
i

nl

+
n− nl

n
µl = µl.

Thus, we simply get:

xl = µl. (4)

Repeating this for all the 
oordinates yields x̄ = (µ1, µ2, ..., µk). In other words,

ea
h 
oordinate of the mean is the mean of the known values of that 
oordinate.

In the same way, we derive a formula for 
omputing the weighted mean for

ea
h 
oordinate l, yielding:

xl
w =

∑nl

i=1 wix
l
i +

∑nl

i=1 wiµ
l

∑n

i=1 wi

,



7

where wi is the weight of point xi. Thus, in order to 
ompute the weighted

mean of an attribute l, where some of its values are missing, we must distinguish

between two 
ases: known and missing values. If the value is known we multiply

it with its weight. When, however, the value is missing, we repla
e it with the

mean of the known values of the attribute l and then multiply it by the mat
hing

weight. We then sum the terms and divide them by the sum of all the weights.

4 K-Means Clustering using the MDE Distan
e

The aim of this resear
h is to develop k-means 
lustering algorithms for in
om-

plete datasets. The MDE distan
e and the mean are general and 
an be used

within any algorithm that 
omputes distan
es and means. It is not, however,


lear how it 
an be integrated into su
h an algorithm. In this se
tion we de-

s
ribe our proposed method for doing so for the k-means 
lustering algorithm.

For illustration purposes we assume that all the points are from R
2
. We propose

three di�erent versions for k-means. It is important to note that the �rst ver-

sion is similar to the GMM algorithm des
ribed [6, 4℄, where ea
h in
omplete

point is 
onsidered a single point. However, the other two versions are di�erent

and repla
e ea
h in
omplete point with a set of points a

ording to the data

distribution. As will be shown in our experiments, they outperform the �rst

algorithm.

Given dataset D that may 
ontain points with missing values, the k-means

algorithm has two basi
 steps, performed at ea
h iteration: (1) It asso
iates ea
h

point with its 
losest 
entroid. (2) It 
omputes the new 
entroids. In the �rst step

the MDE distan
e is used to 
ompute the distan
es between the points and the

k 
entroids in order to asso
iate ea
h point with the 
losest 
entroid. There are

several possible ways to then 
ompute the new 
entroids of the 
lusters. These

possibilities will be illustrated using Figure 1(a). A

ording to this example, there

are two 
lusters (i.e., C1 is assigned to the yellow 
luster and C2 is assigned to

the brown 
luster). The goal is to 
ompute the 
entroid of ea
h 
luster. For

simpli
ity we will deal with C1. If none of the instan
es 
ontain missing values,

the 
entroid will be 
omputed a

ording to the Eu
lidianmean formula, resulting

in the magenta star.

When the dataset 
ontains points with missing values, it is not 
lear how to


ompute the mean. In the given example, let (x0, ?) (i.e., the red star) be a point

with a missing y value and x = x0. Although the exa
t geometri
 lo
ation for

this point is unknown, we still 
an asso
iate it with C1's 
luster using the MDE

distan
e as follows:

distance2
(
(x, ?), (xc, yc)

)
= MD2

E

(
(x, ?), (xc, yc)

)
= (xc−x0)

2+(yc−µy)
2+σ2

y.

Using the MA-method, on the other hand, the point (x0, ?) will be repla
ed with

(x0, µy). It is 
lear that the di�eren
e between the two methods is only in σ2
y, a

�xed value that does not in�uen
e the asso
iation result.

Let the Attpossible group denote all the possible values for ea
h attribute.

Thus, in our 
ase:

Ypossible =
{
y ∈ R

∣
∣∃(x, y) ∈ D

}
.
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(a) (b)

Fig. 1. An example for 
omputing the 
entroids for two 
lusters in a dataset with

missing values. (a) Shows the results of the di�erent methods of 
omputing the mean.

(b) Shows the Voronoi diagram.

Let

(x0)possible =
{
(x0, yp)

∣
∣yp ∈ Ypossible

}

be the set of all the possible points that satisfy x = x0, assume y is missing (the

blue �+�), and let

C1real =
{
(x, y) ∈ D

∣
∣(x, y) ∈ C1

}

be the set of all the data points without missing values that are asso
iated with

the C1 
luster.

The naïve method to 
ompute the new 
entroid is by repla
ing the point

with the missing value with all the possible points (x0)possible, and then 
om-

puting the mean a

ording to these points (C1real and (x0)possible), where ea
h
point from C1real has weight one and ea
h point from (x0)possible has weight

1∣
∣Ypossible

∣
∣
. As a result, the weighted mean of C1 is:

mean(C1) =

∑

(x,y)∈C1real
(x, y) + (x0, µy)

∣
∣C1real

∣
∣+

∑ 1∣
∣Ypossible

∣
∣

. (5)

This is identi
al to the Eu
lidian mean when the missing point is repla
ed with

(x0, µy) and is equivalent to the MA method when (x0, µy) is asso
iated with

C1. As a result, the real 
entroid of the 
luster (the magenta star) moves to

the green star. That is be
ause this 
omputation assumes that all the possible

points (x0)possible are represented as (x0, µy), and ignores the other possible

points, whi
h in general is suboptimal, as 
an be seen in Figure 1 (b), where not

all the blue �+� marks are asso
iated with C1.
Thus, we must take into a

ount the asso
iation of ea
h possible point. There

are two possible ways to do that. The �rst (whi
h we name k-mean-MDE) is
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to in
lude within the mean 
omputation, in addition to the real points within

the yellow 
ir
le, all the possible points (x0, y) ∈ (x0)possible su
h that their y


oordinates are the y 
oordinates of the real data points from the yellow 
luster

(i.e., the blue �+� belonging to the yellow 
ir
le). Formally, the mean will be


omputed a

ording to all the real points C1real and

C1(x0)possible =
{
(x0, yp) ∈ (x0)possible

∣
∣∃(x, y) ∈ C1real ∧ y = yp

}
.

The weight for ea
h point from C1real is 1 and the weight for ea
h point from

C1possible is:

1
|C1possible|

.

This means that all the weights are 
omputed only a

ording to the distribu-

tion of the points asso
iated with C1. So, using only this set of points, the mean


an be 
omputed dire
tly using (4). As a result, the 
entroid will be preserved,

yielding the magenta star in the given example.

Computing the new 
entroid using (4) yields not only the same 
entroid as

using the Eu
lidian distan
e, but also preserves the runtime of the standard

k-means using the Eu
lidian distan
e.

Another method (whi
h we name k-mean-HistMDE) is to use all the points

from (x0)possible that are asso
iated with the C1 
luster and not only the points

from (x0)possible whose y 
oordinates are from the real points asso
iated with

that 
luster. Thus, we �rst asso
iate ea
h of the points from (x0)Y possible with

its 
losest 
entroid (the blue �+� in the red 
ir
les in Figure 1 (b)), and then


ompute a weighted mean. Formally, the mean will be 
omputed a

ording to

all the real points C1real, and

PC1possible =
{
(x0, yp) ∈ (x0)possible

∣
∣(x0, yp) ∈ C1

}
.

In this 
ase we 
annot use (4), be
ause the weights are 
omputed using the

entire dataset. We therefore suggest three methods for implementing the mean


omputation:

1. Simple weighted mean: Simply repla
e ea
h point with a missing value with

the

∣
∣Ypossible

∣
∣
points, ea
h with a weight

1∣
∣Ypossible

∣
∣
, and run weighted k-means

on the new dataset. Thus, the weighted mean of C1 is:

mean1(C1) =

∑

(x,y)∈C1real
(x, y) + 1∣

∣Ypossible

∣
∣
·
∑

(x0,yp)∈PC1possible
(x0, yp)

∣
∣C1real

∣
∣ + 1∣

∣Ypossible

∣
∣
·
∣
∣PC1possible

∣
∣

.

(6)

This method is simple to implement, but its runtime is high, sin
e ea
h point

with, for example, a missing y value will be repla
ed with

∣
∣Ypossible

∣
∣
points.

As a result, the size of the dataset will be:

∣
∣Dreal

∣
∣+

(
∣
∣D

∣
∣−

∣
∣Dreal

∣
∣

)

·
∣
∣Attpossible

∣
∣,

where Dreal is the set of all the data points that do not 
ontain missing

values. We therefore 
hose to implement more e�
ient methods to 
ompute

the mean of the 
luster.
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2. Voronoi Diagram method: Using the Voronoi diagram, the data spa
e is

partitioned to k subspa
es (as 
an be seen in Figure 1 (b)). Ea
h point is

asso
iated with the subspa
e of the 
luster in whi
h it lies. We 
an use the

interse
tion between the Voronoi edges and the x = x0 line to identify all the

possible points asso
iated with 
luster C1, that is, the PC1possible points.

Then all the possible points within this 
luster will be represented by their

Eu
lidian mean (assigned as (xm1 , ym1)). Its weight is:

wm1 =
|PC1possible|
∣
∣Ypossible

∣
∣

,

and the weight for ea
h point within C1real is one. Thus, the mean formula

is:

mean2(C1) =

∑

(x,y)∈C1real
(x, y) + wm1 · (xm1 , ym1)

|C1real|+ wm1

.

It is easy to see that this equation is identi
al to (6). However, this method

is more e�
ient. Another possible and e�
ient approximation method is

des
ribed below.

3. Histogram method: Instead of in
luding ea
h possible point in the 
omputa-

tion pro
edure, we divide the y value spa
e to several disjoint intervals. Ea
h

interval will be represented by its mean, and the weight of ea
h interval will

be the ratio between the number of points in the interval to the number of all

possible points. Formally, let ∆i =
{
yp ∈ [yi−1, yi]

∣
∣yp ∈ Ypossible

}
be interval

i. Then its representative point is: ri = (x0,mean(∆i)) and its weight will

be wi =

∣
∣∆i

∣
∣

∣
∣Ypossible

∣
∣
. The weight for ea
h point within C1real is one. Thus, the

formula for the mean is:

mean3(C1) =

∑

(x,y)∈C1real
(x, y) +

∑

ri∈C1wi · ri
∣
∣C1real

∣
∣+

∑

ri∈C1 wi

. (7)

This method approximates the method that 
omputes the weighted mean;

the only di�eren
e is for the intervals that interse
t the Voronoi edges. For

all the other intervals the two methods are identi
al. In the experiments

we 
on
lude that this method does not strongly depend on the number of

intervals. This method is 
alled k-mean-HistMDE . Consider the following

two spe
ial 
ases. In the �rst 
ase ea
h interval 
ontains only one point (i.e.,

∆i = {yp}, where yp ∈ Ypossible). Then

ri = (x0, yp) ∈ PC1possible , wi =
1

∣
∣Ypossible

∣
∣
,

and the mean will be:

mean(C1) =

∑

(x,y)∈C1real
(x, y) +

∑

ri∈C1 wi · ri
∣
∣C1real

∣
∣+

∑

ri∈C1 wi

.
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As a result, this mean is identi
al to mean1, des
ribed in (6). In the se
ond


ase, when there is only one interval, then

∆i = Ypossible, ri = (x0,mean(Ypossible)) = (x0, µy), andwi =
|∆i|

∣
∣Ypossible

∣
∣
= 1.

In this 
ase the mean will be:

mean(C1) =

∑

(x,y)∈C1real
(x, y) + (x0, µy)

∣
∣C1real

∣
∣ + 1

.

Then, this method will be equivalent to the MA imputation method de-

s
ribed in (5).

Dis
ussion

There are several di�eren
es between k-means-MDE and k-means-HistMDE.

They di�er in their performan
e, e�
ien
y and the way that they work. The k-

means-MDE performs better when there are 
orrelations between the attributes,

while the k-means-HistMDE performs better when there are no strong 
orre-

lations between the attributes. This is due to the di�erent ways in whi
h they

asso
iate points generated to represent the points with the missing values to the


lusters.

Moreover, the k-means-MDE method is more e�
ient and its runtime is

equivalent to the standard k-means as des
ribed above. In addition, the results

of the two methods are di�erent, as illustrated in Figure 1(b), where in the �rst

method only the blue �+� signs in the yellow 
ir
le are in
luded, while in the

k-means-HistMDE method all the points within the red ellipses are in
luded.

4.1 Algorithm Convergen
e

In the previous se
tion we des
ribed our new suggested methods of k-means. Now

we will prove that all these new methods 
onverge to a lo
al minimum of the 
ost

fun
tion. This has been proven for the original k-means algorithm. In the �rst

method (naïve k-means), as 
an be seen in the previous se
tion, ea
h missing

value is repla
ed with the mean of all the known values of that 
oordinate.

Then the standard k-means 
lustering algorithm is run on the modi�ed data

set. The algorithm therefore has the same properties as the standard k-means

and it therefore also 
onverges. A similar analysis is performed for the k-means-

HistMDE algorithm. In this 
ase ea
h point that has a missing value is repla
ed

with several points using the data distribution. Then again the algorithm 
an


onsidered as if it were the standard weighted k-means algorithm whi
h is run

over this modi�ed dataset. Thus, this method also has the standard k-means

properties.

Sin
e a simple redu
tion is not possible for the k-means-MDE algorithm we

will now prove that this method also 
onverges after a �nite number of iterations.

Let c(k), k = 1..K be the 
entroids of ea
h 
luster Ck, where

Ck = {x ∈ X : the 
losest representative of x is c(k)}.
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The goal of the k- means algorithm is to �nd the K 
entroids that minimize the


ost fun
tion:

{c(1), c(2), ..., c(K)} = argmin
{c(1),c(2),...,c(K)}

cost(C1, C2, ..., CK , c(1), c(2), ..., c(K))

= argmin
{c(1),c(2),...,c(K)}

K∑

k=1

∑

x∈Ck

distance2(x, c(k)).

The standard k-means algorithm 
onverges due to the fa
t that the value of the


ost fun
tion monotoni
ally de
reases be
ause in ea
h iteration the new 
entroids

c′(i) satisfy c(i) = argmin
∑

x∈Ci
distance2(x, c) and ea
h point is asso
iated

with its 
losest 
entroid. We will now show that in the k-means-MDE algorithm

the value of the 
ost fun
tion also de
reases monotoni
ally in the same manner.

In the previous se
tion we showed that in the asso
iation step that using the

MDE distan
e fun
tion ea
h point will be asso
iated to the 
losest 
entroid.

This is true for regular points as well as for in
omplete points. For ea
h 
lus-

ter, 
onsidering the points asso
iated with it, the mean is 
omputed using the

derivation performed in Se
tion 3, whi
h satis�es:

c(k) = argmin
c∈Rd

∑

x∈Ck

distance2(x, c) = argmin
c∈Rd

∑

x∈Ci

∑

MD2
E(x, c),

whi
h is what is required.

As a result we 
on
lude that the k-means-MDE 
lustering algorithm also


onverges to a lo
al minimum like the standard k-means.

5 Experiments on Numeri
al Datasets

In order to measure the ability of k-means-MDE and k-means-HistMDE to


luster the in
omplete datasets, we 
ompare the performan
e of the k-means (k

is �xed for ea
h dataset) 
lustering algorithm on 
omplete data (i.e., without

missing values) to its performan
e on data with missing values, using the MDE

distan
e measure (k-means-MDE and k-means-HistMDE) and then again using

k-means-(MCA, MA, MI), where ea
h missing value in ea
h attribute is repla
ed

using the MCA, MA or MI method respe
tively on whi
h a standard k-means

is run. In our experiments, k-means-HistMDE was run with 20 intervals. Later

(in Se
tion 5.1) we 
an see that the number of intervals is not 
riti
al for the

algorithm's performan
e.

We use the Rand index [13℄, whi
h is a measure of similarity between two

data 
lusterings, to 
ompare how similar the results of the standard k-means


lustering algorithm were to the results of the other algorithms for datasets with

missing values.

We ran our experiments on six standard numeri
al datasets from the Spee
h

and Image Pro
essing Unit [15℄ from di�erent �elds: the Flame dataset, the Jain

dataset, the Pathbased dataset, the Spiral dataset, the Compound dataset, and

the Aggregation dataset; dataset 
hara
teristi
s are shown in Table 1.
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Table 1. Spee
h and Image Pro
essing Unit Dataset Properties

Dataset Dataset size Clusters

Flame 240× 2 2

Jain 373× 2 2

Pathbased 300× 2 3

Spiral 312× 2 3

Compound 399× 2 6

Aggregation 788× 2 7

As 
an be seen in Figure 2, the two versions of k-means that use the MDE

distan
e outperformed the other algorithm on all the datasets. Our intuitive

explanation for the performan
e of our algorithms is as follows. In the MA MCA

methods, the whole distribution of values is repla
ed by a single value (the mean

or the mode of the distribution of known values). In our two algorithms we use the

distribution of the observed values in all the 
omputation stages. This additional

information is probably the reason for the improved performan
e of our methods


ompared to the known heuristi
s. Moreover, we 
an see that, in most 
ases, k-

means-HistMDE outperformed k-means-MDE. The di�eren
e in performan
e

is due to the data distribution as mentioned in dis
ussion in Se
tion 4.
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Fig. 2. Results of k-means 
lustering algorithm using the di�erent distan
e fun
tions

on the six datasets from the Spee
h and Image Pro
essing Unit.
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5.1 The e�e
t of the number of intervals on the performan
e of

k-means-HistMDE

We performed yet another experiment to determine the extent to whi
h the al-

gorithm depends on the number of intervals. In this experiment we evaluated the

performan
e of the algorithm on the Spiral dataset. We ran k-means-HistMDE

using six di�erent numbers of intervals (1, 5, 10, 15, 20, 50, 100) and 
ompared

the performan
e to that of the standard k-means. As Figure 3 
learly shows, the

performan
e of k-means-HistMDE does not 
riti
ally depend on the number of

intervals. When k-means-HistMDE was run with one interval, its performan
e

was identi
al to that of k-means-MA, and when k-means-HistMDE was run

with �ve intervals, its performan
e improved. At 10 intervals, its performan
e


onverged and did not 
hange for larger numbers of intervals, as 
an be seen

in the resulting 
urves. In our experiments we 
hose therefore to work with 20

disjoint intervals.
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Fig. 3. Results of k-means-HistMDE 
lustering algorithm, when k = 3, using di�erent

numbers of intervals on the Spiral dataset.

6 Con
lusions

Missing attribute values are very 
ommon in real-world datasets. In this work,

we have proposed a new version of the k-means 
lustering algorithm that 
an

deal with datasets with missing values.

We also derived a formula for the mean of a given dataset when it 
ontains

points with missing values. This formula provides the mean of the known values.

The 
omputational 
omplexity for 
omputing themean using theMDE distan
e

is the same as that of the standard mean using the Eu
lidian distan
e.

We integrated theMDE distan
e fun
tion and themean 
omputation within

the framework of the k-means 
lustering algorithm proposed three di�erent ways

to 
ompute the 
entroids while taking into a

ount the asso
iations between the

data points and the 
entroids. This is in 
ontrast to the other basi
 methods for

dealing with missing values, whi
h do not take into a

ount these asso
iations.
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We 
ondu
ted experiments using the k-means 
lustering algorithm on six

standard datasets. Our k-means methods outperformed the standard methods

for datasets with missing values.

These proposed methods are general and 
an be used as part of any algorithm

that 
omputes the distan
e between data points or means. Moreover, they 
an

be used for di�erent datasets in di�erent appli
ation areas. So, our future vision

is devoted to in
orporating this distan
e fun
tion within other 
lustering and


lassi�
ation algorithms.
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