
Reconstruction of relief objects from line drawings

Michael Kolomenkin
Technion

michkol@tx.technion.ac.il

George Leifman
Technion

gleifman@tx.technion.ac.il

Ilan Shimshoni
The University of Haifa

ishimshoni@is.haifa.ac.il

Ayellet Tal
Technion

ayellet@ee.technion.ac.il

Abstract

This paper addresses the problem of automatic recon-
struction of a 3D relief from a line drawing on top of a given
base object. Reconstruction is challenging due to four rea-
sons – the sparsity of the strokes, their ambiguity, their large
number, and their inter-relations. Our approach is able to
reconstruct a model from a complex drawing that consists of
many inter-related strokes. Rather than viewing the inter-
dependencies as a problem, we show how they can be ex-
ploited to automatically generate a good initial interpreta-
tion of the line drawing. Then, given a base and an interpre-
tation, we propose an algorithm for reconstructing a consis-
tent surface. The strength of our approach is demonstrated
in the reconstruction of archaeological artifacts from draw-
ings. These drawings are highly challenging, since artists
created very complex and detailed descriptions of artifacts
regardless of any considerations concerning their future use
for shape reconstruction.

1. Introduction
Understanding the 3D shape of an object from its line

drawing is a basic human ability. Even young children can
easily recognize and reconstruct the shape in their minds
from a handful of lines [24]. Therefore, it is only natural
that line drawings would be used for automatic reconstruc-
tion. In some cases, a line drawing is not only the preferred
input, but rather the only available source of information.
For instance, in archaeology, if we wish to reconstruct ar-
tifacts found in the past, sometimes the only available data
is the line drawing appearing in the archaeological report
(Figure 1(a)).

Automatic reconstruction from a line drawing is a chal-
lenging task due to several reasons. First, the lines are usu-
ally sparse and thus, the object is not fully constrained by
the input. Second, the line drawings are often ambiguous,

(a) (b)

(c) (d)
Figure 1. Reconstruction of the relief on a Roman vase from a
manual drawing consisting of 571 curves. (a) is the original draw-
ing, (b) is our 3D reconstruction. (c) and (d) are zoomed versions
of (a) and (b).

since the lines may have different geometric meanings –
they can indicate 3D discontinuities, surface creases, or 3D
step edges. Third, the input may consist of a large number
of strokes that need to be specified by the user and han-
dled by the algorithm efficiently. Fourth, these strokes are
inter-related. For instance, in the relief of Figure 1, the dec-
orations are either protruded or indented as a whole, and a
solution in which some of the lines indicate protrusions and
others indentations is less likely.

Related work: Reconstruction of a 3D object from a
line drawing is a fundamental problem in computer vision;
see [6] for a survey. Approaches to reconstruction from a

1



line drawing typically consist of two steps: line labeling and
the reconstruction itself. Line labeling focuses on finding a
set of consistent labels given a set of lines [5, 8, 14, 20, 25].
A line is assumed to indicate depth or orientation disconti-
nuity of an object. A label states whether the line represents
a concave or convex edge or an occlusion.

Reconstruction algorithms build a 3D object from the la-
beled lines. Usually, the algorithms assume that the object
consists of planar faces [16, 22]. They find a set of consis-
tently oriented faces that generate a feasible object. Recent
algorithms are also able to handle drawings composed of
arcs and not only straight lines [4, 26].

The above algorithms are less suitable for relief objects
because of two reasons. First, the algorithms handle only
specific types of lines – lines representing depth or orien-
tation discontinuities. Relief objects, however, usually do
not have such discontinuities. Instead, they are described
by general lines representing 3D step edges. Second, the al-
gorithms are designed to reconstruct CAD-like objects and
do not handle effectively highly curved objects.

A related problem was addressed in computer graph-
ics, denoted by sketch-based modeling. Most of the work
modeled general objects [9, 10, 18]. The goal is to gener-
ate the smoothest-possible object constrained by the given
line. The techniques provide intuitive interfaces and gen-
erate visually-pleasing results. However, the underlying
smoothness assumption results in smooth, blob-like objects,
which cannot accurately convey the details of reliefs.

Techniques that focus on editing of reliefs are interactive
and can handle only one curve at a time [7, 11, 27] . They
have difficulties handling multiple strokes, which is one of
our goals.

Our approach: We propose an approach that is able to
reconstruct a relief from a complex drawing that consists
of many inter-related strokes, such as the one in Figure 1.
The algorithm manages to compute good results automat-
ically, by setting for each curve its interpretation, i.e., its
shape parameters. Yet, the user is allowed to fine-tune the
interpretation of the drawing.

The approach is derived from the observation that a re-
lief object can be represented as a composition of a smooth
base surface and a height function (relief) defined over that
base [13, 15]. We assume that the base is given and focus
on the reconstruction of the relief. The algorithm is based
on two key ideas. First, the inter-dependencies between
the strokes of the line drawing can be exploited to auto-
matically generate a good initial interpretation of the line
drawing. Second, given an interpretation, it is possible to
reconstruct a consistent surface.

For each idea, we provide a novel algorithm that solves
the corresponding problem. To interpret the detailed line
drawing, we show that our problem can be represented as

the problem of topological ordering of a graph and solved
efficiently. Given the base and the line-drawing interpreta-
tion, the surface is reconstructed by posing it as a pair of
linear optimization problems, which can be readily solved.

To demonstrate the strength of our approach, we apply
it to a highly challenging domain – the reconstruction of
archaeological artifacts from drawings. Artifacts contain-
ing reliefs are important sources of information, since they
are fingerprints of periods and cultures. Line drawings have
been the standard method of their documentation for many
years. While many findings might have been lost or de-
stroyed, their illustrations remain. Therefore, the only ex-
isting input for reconstruction are the line drawings. These
inputs are usually highly complex. State-of-the-art algo-
rithms were not designed with such drawings in mind.

The contribution of this paper is hence threefold. First,
we propose an efficient approach for reconstruction of re-
liefs from line drawings (Section 2). The method is able to
handle highly complex real drawings. Second, we propose
solutions to two problems – line-drawing interpretation and
relief reconstruction (Sections 3-4). Last but not least, the
method makes a significant step towards solving an impor-
tant problem in archaeology (Section 5) – a domain that re-
cently attracted a lot of attention in computer vision and
computer graphics [2, 12, 13, 19].

2. General approach

Given a line drawing of a relief object and a base surface,
our goal is to reconstruct the surface, as shown in Figure 1.
The algorithm reconstructs the relief on the input base re-
gardless of its shape. Below we present the problem defini-
tion and outline our algorithm.

Problem definition: In most relief objects the details can
be described as a height function defined on a surface
termed the base.

The lines of drawings of relief objects typically indicate
changes of the height function. This height function is usu-
ally smooth far from the lines and constant along them. Its
gradient is strongest near the lines in the direction perpen-
dicular to the lines. Hence, the value of the height func-
tion in the line’s neighborhood depends only on the distance
from the line.

A drawing consists of drawing curves, junctions, and
margins (Figure 2(a)). We define the drawing curves, or
simply the curves, as the lines of the given drawing. They
indicate visually-meaningful locations on the relief. The
curves may be connected by junctions, but cannot cross
them. Margins are the borders of a curve’s neighborhood.

A drawing defines the relief (the height function). Out-
side the margins, the relief is assumed to be smooth. In-
side the margins the relief is approximated by a step edge



(a) Drawing data types (b) The corresponding relief
Figure 2. Notations. Curves are solid lines, junctions are yellow
circles, margins are dashed lines, and step edge directions are ar-
rows. Each curve and margin is drawn in a different color.

(a) (b)
Figure 3. A step edge approximation. (a) A cross section of a
normalized step edge. (b) A 3D view of a normalized step edge.

Figure 4. The relief in a curve’s neighborhood is a combination of
the step edge p(u) and the base B.

of height h and width w (Figure 3). Height h can be both
positive or negative, representing the direction of the edge.
The shape of the relief defined by step edge s(x) is p(u):

p(u) = h · s(u/w), (1)

where u ∈ [−w,w] is the width parameter of the step edge.
The sought-after surface is a combination of the base B

and the relief. If we look at a cross section perpendicular
to the curve, B(u) is defined at the point on B at (signed)
distance u from the curve. Thus, the surface S within the
curve’s margins on the cross section can be written as:

S(u) = p(u) +B(u) = h · s(u/w) +B(u). (2)

We can now rephrase our goal. Given a line drawing, we
want to compute the relief object, such that near the curves
the shape of the cross section will match the 3D step edge
p, whereas elsewhere its shape will be smooth and similar
to the base B.

Specifically, we need to compute the height h for the step
edge of every curve in a consistent manner. We assume that
the margin width w and the step edge’s shape s(x) are con-
stant for all the curves. The margin width is set to 0.05%
of the diagonal of the object’s bounding box. The step edge
shape is the shape of an ideal step edge smoothed with a
Gaussian of standard deviation equal to an average edge
length. Both w and s(x) can be later modified by the user.

Algorithm overview: In a pre-processing step, the curves
are extracted from the image of the drawing, using the ridge
detection algorithm of [21]. Then, junctions are detected
and margins are generated. These elements serve as the in-
put to our algorithm. Sine the input drawing is manual, we
assume it does not contain noise and all the curves represent
real features. We only remove short lines that are often used
for shading effects.

Initially, an automatic interpretation of the line drawing
is computed, by calculating consistent height values for the
step edges (Section 3). Given the curves and the step edges,
the surface is reconstructed (Section 4).

3. Line drawing interpretation
Interpreting the line drawing requires setting the height

of the step edge of each curve. Doing this manually for
a complex drawing composed of dozens, or even hundreds
of curves is a cumbersome process. Moreover, the set of
assigned heights has to be consistent. Consistency refers
to the requirement that two different paths between points
should result in the same height difference (Figure 5). The
solution to this problem should address the challenges of
interpretation consistency combined with a large number of
strokes.

Object Line drawing
Figure 5. Height consistency. The height of step edge A should be
equal to the sum of the heights of the step edges B and C.

The key idea of our method for computing the heights
of the step edges is to reduce this problem to the problem
of a constrained topological ordering of a graph. A similar
reduction is proposed in [23] for adding depth to cartoons.
Below we first describe the reduction and then the algorithm
for solving the corresponding graph problem.

Reduction to a graph problem: Given a drawing (Fig-
ure 6(a)), we initially represent it by an undirected graph



(a) Original drawing (b) Graph reduction (c) Directed graph (d) Topological ordering
Figure 6. Graph representation. (a) A drawing in which each curve is colored differently. The margins are denoted by vi. The black
segments represent the step edges. (b) The corresponding graph. Each step edge is colored consistently with the curve it crosses. (c) Given
the undirected graph, our algorithm directs it and finds its weights w. (d) The topological levels of the graph. The weight of an edge is
equal to the difference between the levels of its nodes.

G = {V,E} as follows (Figure 6(b)). The margins are the
nodes of the graph. There exists an edge between two nodes
whenever a curve lies between the corresponding margins.

Our goal is to direct the graph and find for each directed
edge a positive weight. The weight corresponds to the
height difference between the source and the target nodes of
the edge. A directed edge indicates that the margin repre-
senting the source node is lower than the margin represent-
ing the target node. The weights should be consistent, i.e.,
all paths between two nodes should have the same weight.
Let us denote the height of node v ∈ V by hv and the weight
of the edge ekm from node k to m by wkm. We aim at gen-
erating a weighted directed graph that satisfies the following
constraints:

1. wkm > 0, positive height.

2. hk + wkm = hm, height consistency.

Note that due to transitivity, Constraint 2 guarantees that all
the paths between two nodes have equal weights.

3. Given directions of some edges ekm.

Constraint 3 explicitly specifies the direction of some edges
of the graph, i.e. which of the two nodes has a lower height.
This constraint is important for correct reconstruction, since
without it the resulting surface is randomly chosen. It is
used, for example, to make the reliefs consistently higher or
lower than the base.

Our algorithm employs the following heuristic to deter-
mine this constraint. Nodes representing the base margins
are identified as nodes that are adjacent to many edges.
Hence, we set the directions such that they point out of these
nodes. As a result, the reliefs are consistently higher than
the base surface.

Algorithm: To estimate the weights of the edges satisfy-
ing the above constraints we divide the task into two sub-
tasks. First, the graph is directed. Next, the edge weights
are computed. We elaborate below.

1. Directing the graph: Given an undirected graph (Fig-
ure 6(b)), we aim at generating a directed graph that will
allow us later to assign consistent weights according to the
second constraint (Figure 6(c)). This will specify the direc-
tion of every step edge, i.e. specify its lower and its higher
ends.

We observe that a basic requirement of the sought so-
lution is that the resulting directed graph should be acyclic
(DAG). This is so since as all the weights are positive, a
cycle in the graph would be of a positive weight wcycle,
contradicting Constraint 2 that for a node v on the cycle
hv + wcycle = hv .

Any undirected graph may be made into a DAG by
choosing a total (linear) order for its vertices and orienting
every edge from the earlier endpoint in the order to the later
endpoint. Our algorithm chooses an order which is consis-
tent with Constraint 3. The direction of unconstrained edges
is chosen so as to produce a DAG.

2. Assigning weights to the edges: Given a DAG, the
goal is to compute the positive weights of the edges such
that Constraints 1-3 hold. The weights correspond to the
heights of the step edges.

Initially, the graph is partitioned into topological levels,
similarly to the way it is performed in topological sorting
(Figure6 (d)). In this partition, level 0 includes only nodes
for which there are no incoming edges and recursively, level
i includes only nodes for which the incoming edges come
from nodes at level i−1 or smaller, and at least one of them
comes from level i− 1.

We assign the weights of the nodes at level i to i and
assign the edge weights wkm to the difference between the
weight of node k to that of node m. This setting satisfies
the constraints.



4. Surface reconstruction

Given a base, a set of curves, and the heights of their
step edges that were computed in Section 3, the goal is to
reconstruct the surface. The output of the algorithm is a
height function defined for every point on the base, yielding
the resulting surface.

The algorithm should address two of the challenges spec-
ified in the introduction, namely the sparsity of the input
curves and interactions between close curves. The sparsity
challenge is approached by producing a smooth interpola-
tion in regions in which curves do not exist. The interac-
tion challenge requires that the reconstructed surface will
not contain undesirable artifacts due to interactions between
close curves.

To achieve these goals, we require that the reconstructed
height function satisfy two constraints. Locally, the relief in
the curve’s neighborhood is defined up to a constant using
only the step edges of the margins. The constant is impor-
tant since a relief can be defined either on the base or on an-
other relief, yet the height function is measured relative to
the base. Globally, the relief should be the smoothest func-
tion that coincides with the relief obtained locally for ev-
ery curve. During the reconstruction, the algorithm should
compute for each curve its constant. Hereafter, we describe
our algorithm for realizing these two requirements.

1. Computing the relief locally: Given a curve and its
step edge, the goal is to compute its relief locally, indepen-
dently of other curves. Let p = (ν, υ) be a point in the
curve’s neighborhood (defined by the step edge’s width),
where υ is the arc-length parameter along the curve of its
closest point on the curve and ν is the signed distance from
it to p (0 for a point on the curve). The relief r(p) = r(ν, υ)
at point p is set to:

r(p) = p(ν, υ) + Cp, (3)

where p(p) is the corresponding step edge and Cp is the
height of the step edge with respect to the base, whose com-
putation will be discussed below.

2. Computing the relief model: Given a mesh of the
base and the height function r(p) computed locally for each
curve, our goal is to compute the global height function (re-
lief) R on the whole surface. This function should coincide
with r in the neighborhoods of the curves (boundary condi-
tions) and be smooth elsewhere.

The key idea is to reconstruct the surface in two linear
steps. First, the smoothest Laplacian of the desired function
R is estimated, such that it satisfies the boundary conditions.
Then, it is used to calculate R. The linearity of these stages
allows us to deal with complex line drawings efficiently.

COMPUTING THE LAPLACIAN OF THE RELIEF: To formu-
late the smoothness requirement, we demand that the Lapla-
cian of the Laplacian of the relief is zero. Intuitively, it is
roughly equivalent to the requirement that the mean curva-
ture of the surface changes linearly. Note that if we required
only a zero Laplacian, the reconstructed surface would be
planar in between the curves, which is undesirable. Con-
sider, for example, Figure 2. The non-planar reconstruction
of the surface in between the curves in Figure 2(b) is the
result of this requirement.

Let us denote by ∆ the Laplacian operator on a scalar
function. We are seeking the Laplacian L of R, which is
a scalar function defined on the base surface. L should
be equal to the Laplacian of r in the neighborhoods of the
curves and its Laplacian ∆(L) should be zero elsewhere.

Formally, L is the solution of the following system of
linear equations. Let p be a vertex of the mesh, we search
for L that satisfies:

L(p) = ∆r(p), p ∈ curve’s neighborhood, (4)
∆L(p) = 0, elsewhere.

Assume that N(p) is the set of the neighbors of p, A
is the area of the Voronoi cell of p, and γj and δj are the
angles opposite the edge [p,pj ] of the triangles adjacent to
this edge.

The Laplacian ∆ of a scalar function f (either r or L) at
point p on a mesh is calculated as [17]:

∆f(p) =
1

2A

∑
j∈N(p)

(cot(γj) + cot(δj))(f(p)− f(pj)).

(5)
Obviously, Equation (5) is linear in the values of f . Hence,
any linear-equation solver can be utilized to calculate f .

To solve the system of Equations (4), we need to know
the values of r. Recall however that by Equation (3), r is
known only up to constants Cp. The trick used here is that
we can compute the Laplacian of r without knowing them,
since these constants add a linear component to the function
and the Laplacian is independent of the linear components.

COMPUTING THE RELIEF: Given the Laplacian of the re-
lief, we calculate the relief (height function)R on the whole
base. In the neighborhoods of the curves R should coin-
cide with r, whereas elsewhere the Laplacian ∆R should
be equal to the computed Laplacian L. Hence, R is the so-
lution of the following system of linear equations:

R(p) = r(p), p ∈ A curve’s neighborhood, (6)
∆R(p) = L(p), elsewhere.

In this system of equations, the unknowns are the values
of R at every vertex p and the constants Cp. This system
of equations is similar to that of Equation (4) and thus it is
solved similarly.



Dealing with curve interactions: The problem of curve
interaction manifests itself when a point belongs to several
curve neighborhoods. Such a point will therefore appear in
several equations in the systems of Equations (4) and (6).
Each such equation is weighted according to the relative
distance of the point from the corresponding curve. There
are several ways to express the requirement that the surface
near the curve coincides with the profile. It was determined
empirically that the method we use avoids creating spurious
artifacts on the object in cases of curve interactions.

5. Implementation and results
Implementation and running times: We implemented
the two components of the algorithm: line drawing inter-
pretation and reconstruction. The former is implemented in
C++. Since it has a linear asymptotic complexity, the run-
ning time is negligible.

Reconstruction, however, may provide a challenge for
large models, since large and sparse linear systems in Equa-
tions 4 and 6 need to be solved by iterative optimization
methods. To overcome this problem, we took two measures.
First, we employ the results of the line drawing interpreta-
tion to initialize the optimization procedure. Second, we
implemented the Biconjugate Gradient optimization on the
GPU using cusp library [1]. Under this implementation the
running times of the algorithm are in the range of 15 sec-
onds for an 80,000-vertex model (Figure 12) to 200 sec-
onds for a 970,000-vertex model (Figure 7) on a 2.4GHz
Intel Core 2 Duo processor with 2GB of memory.

Results: We will now present several examples of auto-
matic reconstruction of reliefs of archaeological artifacts,
demonstrating the capabilities of our algorithm to deal with
complex line drawings. All the archaeological drawings ap-
pearing in this section were taken from [3].

Figures 1 and 7 show the reconstruction of the intri-

(a) Given drawing (b) Reconstruction
Figure 7. Reconstruction of the relief of a Roman vase

cate reliefs of two vases. Though these drawings consist
of 571 & 1300 tightly interconnected lines, the reconstruc-
tion achieves visually-pleasing results. The speed-up steps
described above enable the reconstruction of these objects
in a reasonable time.

Figure 1(c) zooms in on the fine details of the recon-
structed relief, showing for example, that the reliefs are in-
deed of different heights. Note that manual reconstruction
techniques, such as [27], would require the user to provide
parameters for each of the 571 or 1300 lines one after the
other, which would be extremely labor intensive.

Figure 8 demonstrates the reconstruction of the relief of
two Roman oil lamps. The drawings contain 39 and 49
lines, respectively. It can be seen that our automatic recon-
structions are quite good.

Figure 9 shows a recently-discovered Rhodian stamp
(third millennium AD) indicating a major annual celebra-
tory event.

The same stamp was discovered on a bunny (Figure 10),
demonstrating that our method can place reliefs on any base
surface irrespective of its complexity.

Figure 8. Reconstruction of the reliefs of two Roman oil lamps. The given drawing is on the left side of a pair and the reconstructed relief
is on the right.



Figure 9. A recent major discovery of a Rhodian stamp (circa 21st

century AD)

User interaction: The automatically reconstructed sur-
face is usually satisfactory. However, in some cases, it is
desirable to give the user the ability to fine-tune the result-
ing surface. It may happen when the user has information
regarding the geometry of the surface that our algorithm
cannot deduce from the drawing or when our assumption
that the surface can be accurately portrayed by a step edge
in the line’s neighborhood is not suitable.
Therefore, we provide the user with three interaction op-
tions, which are easily executed with a single mouse click:
1. A curve’s cross section can be depicted with any free-
form profile instead of a step edge. For example, ridges and
valleys can be employed.
2. The height and the direction of the step edge (or other
profile) can be set by the user and added to Constraint 3 of
the interpretation algorithm (Section 3).
3. The user can set an arbitrary number of profiles per curve,
enabling the shape of the surface to change along the curve.

For example, the automatic interpretation fails when the
drawing represents impossible objects, such as the ones cre-
ated by Escher. However, our system can create a 3D relief
by different profiles with different heights along the curves.
Thus, straight lines in the drawing yield curved lines in 3D.
This is illustrated in Figure 11.

Figure 10. CVPR logo put onto the bunny.

(a) Given drawing (b) Manual reconstruction
Figure 11. Limitation – impossible objects cannot be reconstructed
automatically. They will, however, be reconstructed if the user
provides several profile heights along the curves.

In Figure 12, the user added to two of the curves extra
step edges and modified the height of other two step edges.
These changes enable height changes along a curve and im-
prove the quality of the bird’s tail and wing. Also, the draw-
ing includes ridges (the birds legs) and valleys (the bird’s
eye and the centers of the leaves) which are not supported
by the automatic algorithm and were specified by the user.

(a) Drawing (b) Automatic reconstruction (c) Manual intervention (d) Zoom-in
Figure 12. An example of manual fine-tuning of the results. The original drawing (a) includes ridges (bird’s legs) and valleys (bird’s eye
and leaves). Automatic reconstruction (b) is enhanced by several simple manual operations to produce (c). Zoom-in (d) on the automatic
and the manual reconstructions reveals that the automatically-obtained surface is less accurate.



6. Conclusions
In this paper we addressed the problem of automatic re-

construction of a relief object from a line drawing. We iden-
tified four challenges that have to be tackled in order to re-
construct reliefs from complex line drawings: the sparsity
of the lines, the ambiguity of the line drawing, the large
number of strokes comprising the line drawing, and the in-
teractions between close curves.

Based on the observation that relief objects are com-
posed of a smooth base and relief details, a novel algorithm
was proposed that addresses these challenges. It consists of
two parts. First, the line drawing is interpreted, solving the
challenges of ambiguity and input size, without requiring
the user to manually specify the complex line drawing in-
terpretation. Second, given the base and the interpretation,
the relief object is reconstructed, addressing the challenges
of sparsity and close-curve interaction.

The algorithm was implemented and tested on real com-
plex archaeological illustrations. This lets the archaeolo-
gists reconstruct the shapes of artifacts for which, in many
cases, the line drawings are the only remaining evidence.
The 3D models can be used for comparison to 3D scans of
newly-found artifacts of the same type.

Aknowledgements. This research was supported in part
by the Israel Science Foundation (ISF) 628/08, Olendorff
foundation, the joint Technion University of Haifa research
foundation, and the Goldbers fund for electronics research.

References
[1] Cusp - CUDA based sparse linear algebra library.

http://code.google.com/p/cusp-library/.
[2] B. Brown, C. Toler-Franklin, D. Nehab, M. Burns,

D. Dobkin, A. Vlachopoulos, C. Doumas, S. Rusinkiewicz,
and T. Weyric. A system for high-volume acquisition and
matching of fresco fragments: Reassembling Theran wall
paintings. ACM Trans. Graph., 27(3):84:1–9, 2008.

[3] Z. Brusic. Hellenistic and Roman relief pottery in Liburnia
(North-East Adriatic, Croatia). British Archaeological re-
ports (BAR) International Series 817, 1999.

[4] X. Chen, S. Kang, Y. Xu, J. Dorsey, and H. Shum. Sketch-
ing reality: Realistic interpretation of architectural designs.
ACM Trans. Graph., 27(2):370–381, 2008.

[5] M. B. Clowes. On seeing things. Artif. Intell., 2(1):79–116,
1971.

[6] M. Cooper. Line drawing interpretation. Springer-Verlag
New York Inc, 2008.

[7] Y. Gingold and D. Zorin. Shading-based surface editing.
ACM Trans. Graph. (TOG), 27(3):95–101, 2008.

[8] D. Huffman. Impossible objects as nonsense sentences.
Computer methods in image analysis, pages 338–347, 1977.

[9] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketch-
ing interface for 3D freeform design. ACM Transactions on
Graphics (TOG), 19(3):409 – 416, 1999.

[10] O. Karpenko and J. Hughes. SmoothSketch: 3D free-form
shapes from complex sketches. Proceedings of ACM SIG-
GRAPH 2006, 25(3):589–598, 2006.

[11] B. Kerautret, X. Granier, and A. Braquelaire. Intuitive shape
modeling by shading design. In International Symposium on
Smart Graphics, pages 163–174, 2007.

[12] D. Koller, J. Trimble, T. Najbjerg, N. Gelfand, and M. Levoy.
Fragments of the city: Stanford’s digital forma urbis romae
project. J. of Roman Arch., 61(1):237–252, 2006.

[13] M. Kolomenkin, I. Shimshoni, and A. Tal. On edge detection
on surfaces. In (CVPR), pages 2767–2774, 2009.

[14] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-based optimiza-
tion for 3D object reconstruction from single line drawings.
PAMI, 30(2):315–327, 2007.

[15] S. Liu, R. Martin, F. Langbein, and P. Rosin. Background
surface estimation for reverse engineering of reliefs. Int. J.
of CAD/CAM, 7, 2007.

[16] J. Malik. Interpreting line drawings of curved objects. IJCV,
1(1):73–103, 1987.

[17] M. Meyer, M. Desbrun, P. Schroder, and A. H. Barr. Discrete
differential-geometry operators for triangulated 2-manifolds.
VisMath, 3(7):34–57, 2002.

[18] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Fiber-
mesh: designing freeform surfaces with 3D curves. ACM
Trans. Graph. (TOG), 26(3):41–51, 2007.

[19] H. Rushmeier. Eternal Egypt: experiences and research di-
rections. In Modeling and Visualization of Cultural Heritage,
pages 22–27, 2005.

[20] I. Shimshoni and J. Ponce. Recovering the shape of poly-
hedra using line-drawing analysis and complex reflectance
models. Comp. Vis. and Img. Under., 65(2):296–310, 1997.

[21] C. Steger. An unbiased detector of curvilinear structures.
PAMI, 20(2):113–125, 1998.

[22] K. Sugihara. Mathematical structures of line drawings of
polyhedrons-toward man-machine communication by means
of line drawings. PAMI, 3(5):458–469, 1982.

[23] D. Sỳkora, D. Sedlacek, S. Jinchao, J. Dingliana, and
S. Collins. Adding depth to cartoons using sparse depth (in)
equalities. Comp. Grap. Forum, 29(2):615–623, 2010.

[24] J. Todd. The visual perception of 3D shape. Trends in Cog-
nitive Sciences, 8(3):115–121, 2004.

[25] D. Waltz. Understanding line drawings of scenes with shad-
ows. The Psy. of Comp. Vis., pages 19–91, 1975.

[26] Y. Wang, Y. Chen, L. Liu, and X. Tang. 3D reconstruc-
tion of curved objects from single 2D line drawings. CVPR,
33(1):85–103, 2009.

[27] T. Wu, C. Tang, M. Brown, and H. Shum. ShapePalettes: in-
teractive normal transfer via sketching. ACM Trans. Graph.
(TOG), 26(3):44–52, 2007.


