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Abstract

We present a novel technique for creating realistic facial animations, given a small number
of real images and a few parameters for the in-between images. This scheme can also be used
for reconstructing facial movies, where the parameters can be automatically extracted from
the images. The in-between images are produced without ever generating a three-dimensional
model of the face. Since facial motion due to expressions are not well defined mathematically
our approach is based on utilizing image patterns in facial motion. These patterns were revealed
by an empirical study which analyzes and compares image motion patterns in facial expressions.
The major contribution of this work is showing how parameterized “ideal” motion templates can
generate facial movies for different people and different expressions, where the parameters are
extracted automatically from the image sequence. To test the quality of the algorithm, image
sequences (one of which was taken from a TV news broadcast) were reconstructed, yielding
hardly distinguishable movies from the originals.

Keywords: facial animation, facial expression reconstruction, image morphing.

1 Introduction

The human face is one of the most complex and interesting objects that we come across on a regular
basis. The face, and the myriad expressions and gestures that it is capable of making, are a key
component of human interaction and communication. People are extremely adept at recognizing
faces. This attribute presents both an advantage and a challenge to any system that manipulates
facial images. The viewer is likely to be able to instantly spot any defects or shortcomings in the
image. If the image is not a perfect rendition of an actual face, both in appearance and in motion,
the user will notice the discrepancies. Therefore, any facial application needs to be highly accurate
if it is to be successful.

In this paper we explore the issue of constructing images of facial expressions. Our method uses
a small number of full frames. In addition, for each in-between frame, a small number of points on
contours in the image are sufficient to describe the shape and the location of facial features, and to
generate these frames. We will show that our method is capable of generating an image sequence
in a faithful and complete manner.

This method can be used for producing computer graphics animations, for intelligent com-
pression of video-conferencing systems and other low-bandwidth video applications, for intelligent
man-machine interfaces, and for video databases of facial images or animations. Though the goal
is to produce animations, one plausible way to test the quality of the technique is to sample a real
facial movie, reconstruct it with our algorithm, and compare the two movies. This suggests that
the same method can be used for compression of facial movies. In this case, the control parameters
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igure 1 ample frames showing dot placement and movement

can be extracted automatically from the original movies using state-of-the-art tracking systems
eg., , 1

ost of the techniques for facial animations utilized in computer graphics are based on modeling
the three-dimensional structure of a human face and rendering it using some re ectance properties
see for a survey . These techniques are the state-of-the-art of facial animations, and generate
extremely compelling results. eometric interpolation between the facial models is used in ,
where the models are digitized by hand. easurements of real actors are usedin ,1 , . The
system described in 1 captures the facial expressions in three dimensions and can replay a three-
dimensional polygonal face model with a changing texture map. The process begins with a video
of a live actor s face.  eshes representing the face are used jointly with models of the skin and the
musclesin 1, 1, . The system of is designed to automatically animate a conversation
between human-like agents. enerating new face geometries automatically, depending on a math-
ematical description of possible face geometries is proposed in 11 . It has been shown in how
two-dimensional morphing techniques can be combined with three-dimensional transformations of
a geometric model to automatically produce three-dimensional facial expressions.

We propose a di erent approach which avoids modeling and rendering in three-dimensions. It
is thus less expensive. Instead, we use as a basis a set of real images of the face in question, and
create the animations in the image domain, by producing the in-between images.

In this regard, our work is more related to the image morphing approach, such as , 1,1 ,
which have been proven to be very e ective. One problem with most of this work however, is that
the end-user is required to specify dozens of carefully chosen parameters. oreover, these methods
are more appropriate for morphing one object into another, where the object can be a person. ince
the in-between person is not known, errors are more tolerable. Our goal, however, is di erent. We
want to generate a movie of a speci c¢ person, given a few frames from a movie of this person.

In |, a related though di erent problem is discussed. The mouth regions are morphed in
order to lip-synch existing video to a novel sound-track. This method is di erent from ours since
it combines footage from two video sequences, while we generate the sequence arti cially. In 1
an animated talking head system is described, where morphing techniques are used to combine
visemes taken from an existing corpus. This method is di erent from ours since we generate the
visemes arti cially. In addition, in 1 the inter-viseme video sequence is generated by optical ow
while we use model-based optical ow as discussed below.

elated work has also been done in the eld of computer vision, where image-based approaches
are utilized, bypassing three-dimensional models. In 1 a face is described by a large number of
parameters describing its shape and its appearance. iven the parameters of a new image, it can
be reconstructed. This approach di ers from ours as we use information from neighboring images
in the movie in order to reconstruct the in-between images. s a result, not only much fewer
parameters are needed, but also the resulting images look sharper as we avoid warping. In |,
optical ow of a given image to a base image is utilized. oth texture vectors and shape vectors,



which form separate linear vector spaces, are used. The advantage of this approach is that optical
ow is done automatically and is well explored. In addition, it is general and is not model-based.
consequence of this generality is that the resulting images are not as sharp as the approach we
are pursuing, since optical ow is not always accurate. One way to look at our approach is as a
model-based optical ow, where the model of the optical ow has been discovered empirically and
is xed for each expression.
enerally, the animation of faces requires handling the e ects of the viewing position, the
illumination conditions and the facial expressions. There has been a lot of work considering the
e ects of viewing position and illumination, mostly in computer vision see s s
for a few examples . nlike the changes in the viewing position which can be described by rigid
transformations, the non-rigid transformations determining human expressions are not well de ned
mathematically. One way to handle these transformations is to learn from examples the set of
transformations of a face while talking or changing expressions.

In this paper we take this avenue while focusing on these non-rigid transformations. We have
been empirically studying image patterns in facial expressions. Though skin deformation can result
from complex muscle actions and bone motion, our experimentations revealed that patterns do
exist in images, both with respect to the same person on di erent occasions, and also between
di erent people performing the same expression.  oreover, these patters can be expressed in a
rather simple way. In addition, our experimentations showed that there exists a strong correlation
between the motion of regions in a face to the motion of a small number of contours bordering
them.

Thus, the major contribution of this work is showing, based on the empirical results, how param-
eterized motion templates can generate facial movies. These parameters are extracted automatically
from the image sequence. We show that given very few images and a few image parameters, the
full sequence can be reconstructed. Our technique is combined with existing techniques dealing
with changes in viewing position, yielding a system that deals both with head motion and facial
expressions in a faithful manner.

We ran our algorithm on several movies of people performing various expressions, including a
movie of a T broadcaster. In order to evaluate the quality of our algorithm, we compared our
arti cial movies to the original movies. The movies were hardly distinguishable. On average, one
full frame in fteen is need. If we take into account the other information we use the compression
rate is 1 1 . It is possible to combine our animation algorithm with standard compression schemes
to get higher compression rates. sing our algorithm above P reduces the size of the movie
by a factor of with respect to P . When the algorithm is used for compression, an accurate
tracking system is required.

The rest of this paper is organized as follows. In ection we describe the empirical experiments
we conducted and draw conclusions. The goal of the experiments was to nd image motion patterns
that occur during facial expressions. In ection we describe our algorithm for animating facial
expressions, using the empirical analysis. In ection we present the experimental results produced
by our animation algorithm. We conclude in ection

iric n i o ci r ion
In this section we describe our experiments for nding image patterns in facial expressions. The
goal of the empirical research was to nd parameters that can characterize the various expressions
and which can be used to produce animations. Thus, our empirical research was guided by two
main objectives. The rst was to see how much variance there was in the way a person performed
the same expression on di erent runs. Then, we wanted to determine if there was a correlation

between the way di erent people perform the same expression.
In order to provide a broad enough sample base, ve subjects were selected, and each expression



was repeated ve times. xpressions representative of the types encountered in normal conversa-
tional speech were selected. irst, a simple mouth open-close operation was performed, followed
by the sounds oh, oo, and ee. smile and a frown were then performed, as examples of non-
speech expressions that commonly occur during a normal conversation. In between the execution
of subsequent expressions, the subject returned to a neutral position, with mouth closed.

In order to track the motion, small uniformly colored stickers were attached to the subjects
faces. The stickers were applied in such a way as to maximize the resolution in the areas of the
face that were expected to move the most. The application pattern can be seen in igure 1.

Once the data were collected, several stages of analysis were performed in order to chart the
motion of the dots over time. irst, the data points associated with each sticker were grouped
together. ingular alue ecomposition was performed on each set of points, in order to
determine the in which each dot moved. The of
a matrix  yields three matrices, such that

is a diagonal matrix holding the of . The rst column of holds the normalized

and components of the directional vector which is the principle axis of an ellipsoid drawn to best

t the data points 1 . The was used to obtain a normalized vector indicating the direction

in which the maximum variance of the data points was found. The lengths of the vectors were
determined by projecting the data points along the directional eigenvector.

The vector data was used to create one graph per run, per person, per expression. In addition to
the individual graphs, graphs displaying the mean and standard deviation of the motion per person
for each expression were generated. ee for example, the graphs generated for the open-close
expression for a single subject in igure . inally, the data from all the runs of each expression
were averaged, resulting in six graphs displaying the overall results across subjects, as shown in

igure . The mean is drawn in blue and the standard deviation in red. This allowed us to see if
di erent people perform the same expression the same way.

igure ector graphs for the open-close expression for a single subject

fter examining the data, several important observations can be made. The most important
result is that clear patterns of motion emerge for the di erent expressions. The uniformity means
that it is safe to make the assumption that at least within certain bounds, people perform the
same expression the same way. Therefore, algorithms can be developed based on these results, and
should be applicable to the majority of people performing these expressions.

ariations in the motion were also observed, both between di erent runs by the same person,
as well as between di erent subjects. These variations can be attributed to several sources. irst,



the subjects were human, and not robotic automata, and therefore exhibited a certain degree of
individuality. or this same reason, they did not always perform the same expression the same way.

ariations were largest for those expressions which allowed the greatest freedom in the way they
could be performed. or example, although there is only one way to open and close the mouth, the
00 sound can be made with mouth open or closed, lips pursed or relaxed.

The results can best be described by dealing separately with the various expressions, and the
characteristics observed in the way the di erent subjects performed them.

The graphs provide a fairly intuitive way to understand how the face moved while performing
the various expressions. The vector associated with each sticker is positioned so that its midpoint
corresponds to the center of a bounding box drawn around the maximum extents of the point s
motion. It should be noted that the eigendirection vectors describe the overall dot movement, but
do not necessarily provide a complete picture of the dot s trajectory over time.

or the graphs involving data averaged over several runs, three vectors were drawn. The same
length, namely the mean, was used for all three, with the direction changing to illustrate the mean
standard deviation. 1l three vectors are drawn with their centers located at the average midpoint
of the various runs. We summarize our ndings for the six expressions below.

Of the expressions, Open- lose was the easiest to recognize from the graphs,
because of the large vertical displacement of the points on the chin. This motion, however,
also made it difficult to track, because the locations of the points on the chin overlapped as
the mouth was opened.

enerally, the oo expression was characterized by small motions. The corners of the
mouth move in, and the mouth opens slightly. ome of the subjects barely moved their
mouth s at all, others clearly pursed their lips.

The oh was a cross between the Open- lose and oo. The mouth opened, and the
edges of the mouth came slightly together.

The ee can be considered to be the opposite of the oo. The corners of the mouth
move out as opposed to in. gain, the mouth opeuns slightly.

In the smile expression, the corners of the mouth move up and out. This was the one
expression where the points under the eyes moved a signi cant amount, almost straight up
and down.

The frown was the expression that the subjects had the most difficulty with. 1 erent
subjects performed completely di erent motions under the guise of frown . There was also a
variance between runs of the same person. In addition, it was the most difficult expression to
analyze. 1 erent points tended to move in di erent directions, even points in close proximity
to each other.

Ideally, each expression would be performed in a unique manner, the motion of the points would
be large, linear, and smooth, and the motion would be symmetrical between the left and right sides
of the face. In practice, however, there were variations between the way the di erent subjects
performed the expressions. In general, the subjects exhibited various aspects of the following
categories. There was no single person who completely t a single pro le. evertheless, such a
classi cation is useful, as it allows us to focus on the types of difficulties encountered when video
of real people is used as input.

The rst group that deviated from the ideal were those who exhibited non-linear
motion. The points follow curved trajectories, or else exhibit hysteresis i.e. the point does
not follow the same path when closing the mouth as it did when opened .
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any tasks would be made easier if everyone moved their faces symmetri-
cally. If that were the case, then we could compute the motions from one side of the face,
and merely re ect them for the other side. nfortunately, this was not always the case

I of the subjects were inconsistent to a certain degree between runs of the
same expression. or instance, sometimes the jaw would shift to the left, other times to the
right. In some cases, the mouth was opened for the oo, other times not. Of the expressions,
the frown produced the least consistent results, with sometimes wild uctuations from run to
run.

One of the most interesting results is how little the upper part of the face moves during most
of the expressions. There are other expressions, however, in which the eyebrows move as well.
This implies that we can cut communication and processing costs by concentrating on the part
of the face that does move, and using a much coarser algorithm for the upper face. This savings
could be achieved by using fewer bits to represent the data, or making updates less frequently. If
we are only interested in handling normal speech, then the region of interest can be constrained
to the lower part of the face. This would be sufficient for applications such as lip reading or low
bandwidth video-conferencing, possibly allowing a higher resolution image to be used with lower
communication requirements.

ci r ion ni tion

The goal of the animation system is to construct a full sequence of face images while moving the
head, talking and changing expressions. The input to the animation system is a few images of a
given face, a set of image parameters that describe the location of a few facial features for each
of the in-between frames, and the type of expression. These image parameters can be determined
either manually when a new movie is generated or automatically by a tracking system e.g., 1,
when used for video compression. The image parameters contain a few control points between 1
and on the lip, chin, and eye contours, and the pixels that build up the mouth interior. The
output of the animation system is the sequence of the in-between frames and the movie built out
of it.

The study of pixel movements presented in the previous section yields a set of reconstruction
algorithms for each expression and each facial region. We view each such algorithm as a motion
template parameterized according to the speci c face at hand. These parameters are extracted
from the image sequence as described below. In other words, for each expression we have a function

which gives for each point | template, at time 1 during the expression the
ideal motion vector of the frame at time . The vector is represented by its length
and its direction , such that .

In practice, however, this function is very complex to de ne as one entity. Therefore, the face
is partitioned into regions with a common typical motion, as illustrated in igure . These regions
depend only upon the given contours and are extracted from them without user intervention. The
motion of the pixels in the region can be induced from a few parameters. We denote the regions
of the face as template, for 1 no_regions. or each region we denote by the
function de ned on that region, 1 no_regions, , 1, such that

The function  should be continuous and di erential. pecial care should be taken to ensure these
properties hold on the boundaries between the regions.

et the two given static images be and , the in-between image we wish to construct
be , and a point . We are seeking functions , 1, over the vector eld such that



a a diagram b the di erent regions of the news broadcaster s face

igure n illustration of the di erent regions into which the face is divided. These regions are
computed automatically from the given lip and chin contours.

is continuous, di erential and

where , 1. That is to say that  describes the motion of a point to its position
in . ad the image sequence been of an ideal subject, we could have derived these functions
using where is the time of in the sequence. owever, as ideal subjects are
hard to nd, has to be modi ed to +t the subject. This is not difficult to do because

is parameterized by a small number of motion vectors for each region while the motion vectors
for all the pixels can be inferred from them. These motion vectors are computed from the given
control points on the contours, and the time is computed from the relative distances between
the contours of the three images as will be described below.

The facial expression animation algorithm consists of two main parts at rst, a rigid trans-
formation is found to compensate for head movements and then the non-rigid transformation is
recovered to deal with facial expressions. xtensive work has been done in the area of recovery
of rigid transformations , , . We will discuss it and describe the method we use later. Our
main contribution however, is in recovering the non-rigid transformations which do not have simple
mathematical descriptions. This method will be presented now.

Our method for recovering the non-rigid transformation consists of four stages contour construc-
tion, contour correspondence, pixel correspondence, and color interpolation. We elaborate on each
of these stages below.

We are given a few points on the lips, chin, and eyes contours 1
points on each contour . These points can be either speci ed by the end user or can be recovered
automatically by a tracking system e.g., 1 . Our algorithm constructs -splines which follow
the contours using the the control points. These contours are extracted both for the in-between
image and for the static images , 1.

t this stage a correspondence between points on the contours
is established. The correspondence is found between the various contours on the three images
the two static frames , 1, and the in-between image that needs to be constructed.



et a contour 5 1, and the matching contour . We require that the
following equation holds for every point on the contour Our correspon-
dence strategy is based on arc-length parameterization. rc-length parameterization can e ectively
handle stretches of the contours.

iven the location of a pixel , the objective is to nd two
corresponding pixels, and , such that and . This is
done for every pixel location in image . This correspondence is based both upon the templates

found for the various expressions as described in ection  and upon the contour correspondence
previously computed.

We now use to denote the regions of the face. imilarly, we denote the regions of the
face in the input images as , 1 no_regions, 1. We require that the following
equation holds for the contours bordering the regions

The above conditions under-constrain the required function. This is actually the situation in which
optical- ow based systems operate. The optical ow of points on the contours can be computed
quite accurately. owever, in the regions between the contours the optical- ow is estimated very
poorly and therefore the resulting optical- ow is an interpolation of the optical- ow values which
were found on the boundaries.

Therefore we use the empirical knowledge in order to add enough constraints and to guarantee
the correct reconstruction. We have several types of functions and therefore, several types of
functions . The function is very simple for the rigid regions and more complicated for the
non-rigid regions of course a rigid function is a simple special case of a non-rigid function .

enerally, we proceed in three stages inding the locations of the contour points in related
to the point , nding the corresponding contour points in and , and nally, nding the
corresponding pixels  and

ote that the pixel correspondence function has to be continuous both within the regions and
on the borders between the various regions. In ection . we will discuss the function for each
region of the face in detail.

uring the previous stage, two corresponding pixels and

were found for a given pixel in the output frame. The goal of the current stage is

to compute the value intensity or color of . We found that a linear interpolation between the
two corresponding pixels is sufficient. We compute the distances between the mouth curve in the
in-between image to the mouth curves in the static images and . The coeflicients
used for the linear interpolation are the relative distances between the mouth curves on the various
images. et resp. be the value of resp. . et be the relative
distance between the mouth curve in to the mouth curve in . The resulting intensity of the

pixel is thus
1

There are various ways to nd distances between contours. We use a very simple scheme which
nds the average distance between the corresponding points on the curves, using the correspondence
found in stage . Other methods for nding distances between curves can be used as well e.g., see

?

iven a pixel the goal is to nd the corresponding pixels and . We will
now show how they are found for each region of the face.



We made an e ort to nd motion patterns which could be used in as many facial expressions
as possible. In most cases we were able to nd a single algorithm that ts all the expressions.
The exception is the region above the mouth where we use two di erent algorithms, one for mile,
Open- lose and e and the other for Oo and Oh. The reason for that is that the upper lip gets
more contracted in the Oo and Oh expressions than in the other expressions.

The algorithm for the chin region is also used for the regions above and below

the eyes. The algorithm has the following steps. We rst draw a vertical line passing through

and nd the intersection points and  of this line with the contours of the chin and the

lower lip. or each of these points we nd the arc-length parameter on the corresponding curve

see igure a and use these values to compute the corresponding points on the other two

images see igure b . Wealso nd the ratio of the distance from to  with respect to the
distance from to

a In the destination image b In the source images , 1

igure  The chin region

We then nd the corresponding points corresponding to utilizing the equation
1

ote that the case where the motion is not completely vertical but somewhat tilted is also handled.

cheek region is characterized by zero motion near the ear which gets larger
for points closer to the chin. The initial angle of the motion vector is between which
approaches as we approach the chin. iven a point we would like to nd the angle
and length of the motion vector. We denote by the minimal angle of the motion vector near
the ear and the rst three points on the chin contour as 1 . is estimated as the
average tangent direction at these rst three points. We also nd the horizontal ratio of the
distance from to with respect to the distance from to the beginning of the chin region see

igure a
ext we nd which is the maximal length of the motion vector between points on
and . This length is recovered from points on chin curve on the border of the chin area.
To nd and in we use the following equation see also igure b
inally, we nd and using the following equations.

cos sin



a In the destination image b In the source images , 1

igure  The cheek region

1 cos sin

where denotes the closeness of to as described above.

or this region two di erent algorithms are utilized. One for
the expressions mile, e and Open- lose. nd the other for the expressions Oo and Oh. We will

rst describe the former algorithm. iven we nd the point  which is closest to on the
upper lip contour and its arc-length parameter on the contour . We also nd the distance from
to  denoted as ee igure a . sing we ndthe point on the lip contours of . We
draw a normal to the curve of length from to nd in as illustrated in igure b
a In the destination image b In the source images , 1

igure  The region above the mouth in the smile, ee and open-close expressions

This algorithm is not appropriate for the Oo and Oh expressions because in these expressions
the upper lip shrinks considerably. Thus we use an algorithm similar to the one described for the
cheeks. ather than elaborating on this algorithm we illustrate it in igure

One of the most challenging problems is to construct a model of the
inner mouth containing the tongue and the teeth. In this paper we assume we have the image of

the inner mouth whose size is on average of the total size of the face.
ince the forehead hardly deforms, given a pixel we choose
such that . This identity transformation is obviously applied after the rigid

transformation which has been applied to the whole face.

The eyes exhibit quite complex motions which have to be compensated for by

the algorithm. yes can open and close, pupils can dilate and contract and the eye itself can move
within its socket.

11



igure  The region above the mouth in the oo and oh expressions

We assume that for each image in the sequence we are given a few points on the contours of
the eyelids, the location of the center of the pupil and the radii of the pupil and the iris a tracking
system can supply this information . or each such sequence of images we construct a canonical

image for each eye. Then, when we want to create the eye in image all is needed is a small
number of parameters, and the canonical image. We will now describe how the canonical eye image
is built and how the eye image of is reconstructed.

The canonical image of the eye is comprised of three sub-images. The white region of the eye is
created from the union of all the white regions of the eye in the image sequence. This is required
because in each image we see di erent parts of the white region because of the motion of the iris
and the opening and closing of the eyelids. imilarly we compute the union of the iris images and

nally we extract the image of the biggest pupil. ee ig. for an illustration of this process. ee
ig. 1 for the results of this algorithm which was run on an image sequence.

igure xtracting the eye parameters

uppose now that we are given the canonical image and we wish to construct the eye of
We need to obtain a few points on the eye contours, the center of the pupil , the radius of the
pupil and the radius of the iris . iven a point in the eye we wish to reconstruct, we
determine to which of the three regions it belongs and copy the color value from the respective eye
component image.

efore we start compensating for the motion due to expressions we have to compensate for total
head movement. We would like to recover the motion of the head. ut as we do not have



igure 1  The result of the extraction process or each of the two eyes three regions are shown
the white of the eye, the iris, and the pupil

a model we are looking for a transformation which will compensate as much as possible for
this movement. We thus assume that the face is a planar surface and estimate the projective
transformation that this plane undergoes from image to image.

There are two ways to recover this transformation, one which uses point correspondences to
compute the transformation and the other which tries to minimize an error function of the di erence
in color values in the two images.

We tried to use the rst method by choosing four corresponding points in each image. To get
the best estimate we chose the points to be nearly co-planar. This method yielded very inaccurate
results due to this method s non-robustness to small uncertainties in point positions.

We therefore turned to the second method which tries to nd a transformation which minimizes
the di erence between the transformed image and the other image as follows

projective transformation of a planar point in that plane moves it to
where and have the following functions.

When we are given the parameters the transformation can simply be applied. When however,
we are given images whose rigid transformation needs to be determined, our mission is to nd
such that the transformed image and the other image are most similar. i.e.

where and are the image intensities at pixels in the two images, is the
error function, and is a function applied to the error at a pixel. The standard choice for
is which is the least squares error estimate. This choice is not appropriate when the

model does not explain totally the motion as is the case with faces where various other motions are
involved 1 . We therefore have to choose a more robust function which is not drastically a ected
by large errors in small parts of the face. We therefore chose to use the eman ¢ lure function

where is the control parameter of which determines the tolerance for large errors. The larger
is, is tolerant for larger errors.



We minimize the error using the imultaneous Over- elaxation method O . This method
starts with an initial guess for the parameters and using a gradient descent method converges to
a local minimum of the error function. owever, to converge to the global minimum an initial guess
which is close to that minimum should be found. The biggest problem is to nd an initial guess
for the translation component which might be quite large where as the rotation components
are usually quite small and can be estimated as zero. We therefore use a pyramid based method
to estimate it. t rst the algorithm is run on a small image which is a scaled down version of
the original image. The result is then used as the initial guess for an image twice as big in both
coordinates. This process continues until the algorithm is run on the original image. uring the
iterative optimization procedure the parameter of the function is reduced causing the optimized
function to be less tolerant to errors raduated on- onvexity

The above procedure is used to extract the rigid motion parameters between two
images. We apply this procedure twice once between the input image and the image we are
constructing  , and the second time between and . sing the extracted parameters we
transform and and their respective contours to the head position of . The non-rigid
transformation described in ection .1 is applied to the transformed images.

ri nt ut

To test our algorithm, we recorded movies of several people performing the various expressions.

This group of people is di erent from the group of people whose expressions were analyzed in the
empirical experiments. econstructing in-between images of the movie is the best way to test
the quality of the algorithm both because we can extract life-like image parameters from the real
images and because we can compare the reconstructed images to the real images from the sequence
to evaluate the quality of the results.

We rst tested the algorithm on image sequences in which actors were asked to perform a
single expression. The nal experiment was on a image sequence recorded from a television
news broadcast. The full sequences can be viewed in http www.ee.technion.ac.il  ayellet facial-
reconstruction.html.

Our algorithm was given the rst and the last frame of each expression and the image parameters
of the in-between frames. The parameters of the rigid transformation were extracted automatically.
The points used for computing the facial contours were marked manually 1 pixel locations .

ome of the results are demonstrated below. igures 11 1 show snapshots from three of the
movies that were generated by our algorithm. igure 11 shows the snapshots from a movie that
generated an open-close expression. igure 1 shows the snapshots from a movie that generated
an oh expression. igure 1 shows the snapshots from a movie that generated a smile expression.

To test the quality of our algorithm, we compared the actual in-between images to the images
synthetically generated by our system. ome of the results are demonstrated below. or each
expression, we show the two given images, a couple of in-between images as generated by our
system, the actual in-between images from the real movie, and images that compare the two i.e.,
the inverse of the picture generated by subtracting the colors of the pixels of the real and synthesized

images . igures1 1 show afewsuchresults. n O  expression isillustratedin igurel . n
OO expression is shown in igure1 .  smile is demonstrated in igure 1 . n expression
is illustrated in igure 1 . inally, the open-close expression is shown in igure 1 .

In the nal experiment we recorded a movie of a news broadcaster saying a sentence. The
sequence is  frames long eight words . The sequence is manually divided into expressions and
the algorithm is applied. Only ve full frames are used to reconstruct the full sequence and the
results are very good as can be seen in igures 1 -

s the results are hardly distinguishable from the original image sequence, our method can also
be used for video compression, in case a tracking system extracts the parameters accurately. In



this case, it is important to know how much storage is required with respect to other compression
techniques. On average, we transfer one full frame in fteen. or each of the in-between frames we
transfer a few parameters describing the contours approximately  pixel locations , which can be
neglected.  oreover, for each of the in-between frames we transfer the pixels on the inner mouth,

which might vary between pixels mouth is closed to pixels mouth is open for an image
of a size of pixels. In addition we transfer one image of the eyes for the whole sequence
of approximate size 1 . Thus on average, we get a storage reduction in the order of 11 .

It is important to mention that the full images that need to be stored or transmitted, as well as
the images of the inner mouth of the in-between frames, can be compressed by any of the well-known
compression schemes, on top of our technique. When this is done, we get a much better storage
reduction. or instance, if standard P is used on top of our proposed technique, assuming a
compression by a factor of 1 1 , we can get a compression by a factor of about 1 1 on
average.

inally we compared the compression rate of our algorithm to that of P . P should
work wonders on this frame sequence since the background does not change and the motions are
very small which is exactly what P exploits in its compression scheme. We compressed the
original sequence using P and compared it to our key frames compressed using P . The
resulting movie is four times smaller than the original P movie. Qur compression rate is only
and not 1 because the di erence between the key-frames is larger than the di erence between
consecutive frames in the original movie. We got this major improvement over P because we
exploit our knowledge of the typical motion of the face while undergoing expressions.

onc u ion

The human face is one of the most important and interesting objects encountered in our daily lives.
To be able to animate the human face is an intriguing challenge. ealistic facial animations can
have numerous applications, among which are generation of new scenes in movies, dubbing, video
compression, video-conferencing, and intelligent man-machine interfaces.

In this paper we have explored the issue of generating movies of facial expressions given only a
small number of frames from a sequence, and very few image parameters for the in-between frames.

ince the change of expressions cannot be described mathematically, we have been empirically
studying image patterns in facial motion. Our experimentations revealed that patterns do exist.

The empirical results served as a guide in the creation of a facial animation system.  major
contribution of this paper is in showing how an ideal motion stored in a template can be used to
generate animations of real faces, using a few parameters.

The results we achieved are very good. The animations created are highly realistic. In fact,
the comparisons between the synthesized images created by our system and the original in-between
images show that the di erences are negligible. When the method is used for compression, one
full image in fteen is needed on average, and we get a compression rate of 11 . In this case an
accurate tracking system is required. ombining our scheme with P yields results which are
four times better than using only P

There are several possible future directions. irst, the empirical results can be applicable to a
wide range of uses, most notably expression recognition. nother issue we are exploring is how
to build a model of the inner mouth. The goal is to make it possible to further reduce the storage
and the bandwidth requirements. Third, incorporating illumination models into the system seems
an intriguing problem. urrently, drastic changes in illumination are handled by sending more
images as a key-frames. inally, we are planning to use our algorithm in various applications such
as distance-learning systems and dubbing systems.
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igure 11 The open-close movie snapshots



igure 1 The O movie snapshots



igure 1  The smile movie snapshots



The original images
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igure 1 The O expression
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igure 1  The OO expression



The original images

The original in-betweens The synthesized in-betweens The reverse di erence images

igure 1  The smile expression
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igure 1  The OO expression of the news broadcaster
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igure 1 The open-close expression of the news broadcaster
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igure The smile expression of the news broadcaster



