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represented by a set of linear equalities and inequalities� and the uncertainty in vertex

position is explicitly taken into account�

We have shown that this scheme can be used to recover the �D structure of objects

which have complex re�ectance models� It can actually be used for any polyhedral object

whose re�ectance can be reliably modelled� This includes images with shadows� metallic

or dielectric objects� rough or smooth objects etc��� Re�ectance parameters �such as

albedo or roughness and light source parameters can be recovered as part of the process�

The main limitation of this approach is that it assumes that the line�drawing has been

correctly extracted by the edge detector� Future research should be directed to combining

line�drawing analysis and shading information to correctly extract the line�drawing� fully

automating the shape recovery process�
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these results to be quite good taking into account that the re�ectance model does not

model exactly the re�ectance of the object�
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Figure ��� Results for the model for specular objects� �a the input image� �b the
line�drawing� �c two views of the recovered shape� �d the errors in the angles between
adjacent faces presented in a histogram�

� Discussion and Future Work

We have presented a new approach to �D shape recovery from a �D image using the geo�

metric information contained in the line�drawing and the shading information contained

in the image� The geometric constraints imposed by the line�drawing of a polyhedron are
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Figure ��� Error histograms comparing angles between adjacent faces measured in the
object and measured in the recovered shape for the following objects� �a the object in
Figure ��� �b the object in Figure �	� �c the object in Figure ���

��� Specular Objects

We have also tested our shape recovery algorithm on specular objects� Figure ���a

shows the image of an object painted with glossy white paint� Notice that one of the

faces displays a specularity� The algorithm was able to take advantage of the fact that

one of the faces was specular by calculating directly an estimate for the direction of the

light source when given an estimate for the parameters of the specular face� thus reducing

the number of unknowns and speeding up the shape recovery process� Figure ���b shows

the line�drawing extracted by hand from the edge detection results� Figure ���c shows

two views of the reconstructed object� The arrows in Figure ���c show the direction

from which the image was taken� In order to obtain a quantitative evaluation of our

results we compared the angles between adjacent faces in the original objects and in the

recovered object� The error measured was between ���� and ��� and the average was ���

The distribution of the errors is shown in the histogram in Figure ���d� We consider
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Figure ��� Second image of the styrofoam object� �a the image of the object� �b
rendering of the recovered object� �c iso�intensity lines in the image� �d iso�intensity
lines in the rendered image� �e intensity values of the cross�section depicted by the line
in �a of the image and the rendered image� �f views of the recovered object�
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Figure �	� An image of a styrofoam object� �a the image of the object� �b rendering
of the recovered object� �c iso�intensity lines in the image� �d iso�intensity lines in the
rendered image� �e intensity values of the cross�section depicted by the line in �a of the
image and the rendered image� �f views of the recovered object�
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Figure ��� An L�shaped object� �a the input image� �b rendering of the recovered
object� �c iso�intensity lines in the image� �d iso�intensity lines in the rendered image�
�e intensity values of the cross�section depicted by the line in �a of the image and the
rendered image� �f views of the recovered object�
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Figure ��� Results of the Lambertian model algorithm� �a the input image� �b the
line�drawing� �c �rst stage� �d �nal stage of shape recovery� �e the errors in the angles
between adjacent faces presented in a histogram�
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between adjacent faces in the original objects �which we measured by hand and in the

recovered objects� For the object in Figure �� the maximum error is ���� For the object

in Figure �� the error is between ��� and ���� For the object in Figure �	 the recovered

object is not as close to the original object� and the maximum error is ��� even though

the intensity reconstruction is good �Figure �	�e� The distribution of the errors for

these three objects is shown in the histograms in Figure ���

��



a quantitative evaluation of our results we compared the angles between adjacent faces

in the original object �which we measured by hand and in the recovered object� Figure

���e shows the distribution of the errors by angles�

��� Lambertian Objects with Interre�ections

We have also run the algorithm on a number of objects which have concave edges causing

interre�ections between adjacent faces� To recover the shape of an object we take a subset

of the pixels by uniformly sampling the image� In deciding on the size of the subset there

is a tradeo� between the cost of running the algorithm which is proportional to the size

of the subset� and the accuracy of the shape recovery which improves as the size of the

selected subset grows� When computing Jk�w� l for a certain pixel P � we assume that

the intensity L�P � of every other pixel P � in the image is as was measured in the image�

Figure ���a shows an image of an L�shaped wooden object painted with �at white

paint� Figure ���b shows the intensity reconstruction of the image using the shape and

scene parameters recovered by the optimization algorithm� Figure ���c shows the iso�

intensity lines in the original image� and Figure ���d shows those lines in the rendered

image� In Figure ���e the intensity of a cross�section of the two images is plotted� and

Figure ���f shows two views of the recovered object� The arrows in Figure ���f show

the direction from which the image was taken�

We have also run the algorithm on two images of a styrofoam object �once again

painted with �at white paint which is used for packing computers� The results for the

�rst image �Figure �	 are not quite as good as the results for the second image �Figure

��� even though for both images the results of the intensity reconstruction are good

despite much texture due to the grainy appearance of styrofoam�

In order to obtain a quantitative evaluation of our results we compared the angles

�	



�a �b

Figure ��� Results for two combinatorially equivalent line�drawings� �a an incorrect
line�drawing� �b a correct line�drawing�

program� In this case� the corresponding linear programming problem has �� variables

and 	� constraints� with a total running time of ���s� Figure ���b shows a correct version

of the same line�drawing� with a random perturbation of range ���� in vertex position�

Note that this perturbation is not visible in this picture where the longest edge has length

��� The line�drawing is correctly classi�ed by our program with � � ����� The number

of variables and constraints is the same as before� and the running time is ���s�

��� Lambertian Objects

We have tested our shape recovery algorithm on several real images� Figure ���a shows

the image of an object made of �at white paper� Edge detection was run on the image and

a �clean� line�drawing shown in Figure ���b was extracted by hand from the results�

Figure ���c shows the reconstruction obtained using the �rst stage of the algorithm�

Notice that some adjacent faces do not coincide� This is due to removal of constraints

due to superstrictness� Figure ���d shows the �nal result when all constraints have been

taken into account and uncertainty in vertex position is reduced to below �� The arrows

in Figures ���c�d show the direction from which the image was taken� In order to obtain
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Figure ��� �a A line�drawing from ����� Close�ups of the region where the support lines of
e�� e�� e� should intersect� �b Incorrect line�drawing with � � �� �c Correct line�drawing
with � � ������

the nominal values given in ����� and an � � � uncertainty bound� this �correct looking�

line�drawing is classi�ed as incorrect by our program �Figure ���b� The corresponding

linear programming problem has �� variables and 	� constraints� The running time of

the program is ���s� Next� we set the uncertainty bound to � � ������ This time� the

line�drawing is classi�ed as correct by our program� as con�rmed by Figure ���c� where

the double cones corresponding to the three edges have been drawn and are shown to

intersect� The number of variables is the same as before� but there are ��� constraints�

and the running time of the program is 	��s� The di�erence in the number of constraints

comes from the fact that� for � � �� each pair of inequalities corresponding to �����	

can be replaced by a single equality�

Figure ���a is reproduced from ���� It is an incorrect line�drawing� as veri�ed by our
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when such faces appear in the image is easier� When there is no such face the algorithm

is reduced to the algorithm described for the Lambertian model� For this re�ectance

model we use the same two stages of optimization as for the Lambertian model�

� Implementation and Results

We have implemented the approach proposed in Section � to test the correctness of

a line�drawing in the presence of uncertainty using linear programming� In this case�

linear programming is not used for optimization� but rather for deciding whether there

exists a point satisfying these constraints� We present results classifying line�drawings

as legal or illegal for di�erent uncertainty bounds� We also present our implementation

of �D shape recovery from intensity data using the method described in Section �� We

have applied an active set optimization method to the solution space obtained through

performing Gaussian elimination on the linear equality constraints� However� no special

techniques were used exploiting the linearity of the inequalities� This did not degrade the

performance of the algorithm because usually a point was found in the early stages of the

algorithm that satis�ed those constraints� and the main e�ort was put into computing

and minimizing the objective function for points that satis�ed all of the inequalities�

The algorithm has been implemented in C using the simplex algorithm from ���� and the

Levenberg�Marquardt procedure of the MINPACK library ����� Experiments were run

on a SUN SPARC Station�

��� Line�Drawing Analysis

Figure ���a shows a sample line�drawing� reproduced from ����� Of particular interest

are the three edges e�� e�� e� converging toward the center of this truncated pyramid� With
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Figure ��� The general re�ectance model� n is the normal to the surface� s is the light
source direction� s� is the mirror direction� r is the viewing direction and b is the bisector
between s and r� � is the angle between n and b� and � is the angle between r and s��
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Figure ��� Polar plots of the three re�ection components �adapted from ����� �a a
function of the sensor direction for a �xed light source direction� �b a function of the
light source direction for a �xed sensor direction�

are easily distinguished from the others because of the high intensity of light re�ected

from them� For faces without a specular component the re�ectance model reduces to

the Lambertian model� For faces with a specular component we know that the camera

is approximately in the mirror direction of that face� Thus given an estimate for the

geometric parameters of a specular face� the light source direction s can be computed

directly� Therefore when a specular face appears in the image� the number of independent

unknowns is reduced� The number of unknowns is further reduced when there are several

specular faces because that implies that those faces are parallel to each other� So although

this re�ectance model is more complicated then the Lambertian one� recovering the shape
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graphics ��� and has also been used computer vision ���� ���� The relative strengths of

the specular lobe and the specular spike vary with the roughness of the object� As the ob�

ject is rougher the magnitude of the specular lobe gets stronger and the magnitude of the

specular spike decreases� In most instances one of the two specular components is signi��

cant while the other is negligible� In addition to these two components� the re�ectance of

most materials has a di�use lobe which can be approximated by the Lambertian model�

In ����� Nayar et� al� analyzed the above re�ectance models and proposed a simpler

model to approximate them� and make them easier to use in computer vision algorithms�

According to this model� the irradiance in the r direction Eim is written as�

Eim � Kdl�n � s � Ksl

n � r exp��
��

���
 �Kss����

where �as shown in Figure �� � denotes the angle between r and the mirror direction s�

for source direction s re�ected o� the surface whose normal is n� � is the angle between the

bisector of �s and r and n� � denotes the slope roughness of the surface� and Kdl�Ksl and

Kss denote the strengths of the di�use lobe� specular lobe� and specular spike components

respectively� The specular spike and the specular lobe components peak when r � s� as

� and � vanish� As the viewing direction changes the specular spike component decays

rapidly to zero� The decay of the specular lobe component is more gradual and depends

on the roughness of the surface� The rougher the surface� the larger � gets� and the

slower the decay� In Figure ��� polar plots of the three re�ection components are shown

as a function of the sensor direction for a �xed light direction �Figure ���a and as a

function of the light source direction for a �xed sensor direction �Figure ���b�

We have concentrated on relatively smooth objects� In this case most of the specular

component of the re�ected light is concentrated in directions close to the mirror direction�

Faces which have a specular component in their re�ection in the direction of the camera
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where L�P  is the intensity of light radiated from pixel P and nP is the normal to the

surface at P �

When the distance between P and the pixels it can �see� is large compared with the

size of P � ��� can be approximated by�

L�P  � s
�

	
nP � s� �

	

X
P � ��P

F �xP �xP �D L�P �

v � nP �

��	

where xP is the center of pixel P � For the contribution of each pixel to L�P  we decide

which of ��� or ��	 to use by the distance between the pixels� Therefore ��	 is mainly

used for pairs of pixels which lie on both sides of a concave edge� close to it�

For this re�ectance model we have three stages of optimization� using the result of each

stage as the starting position of the next stage� In the �rst stage of the optimization

we disregard interre�ections and the uncertainty in vertex position� For each face fk

we choose the intensity Ik as the minimum intensity value of a pixel of that face� As

interre�ections can only add to the intensity of a pixel the minimum value should be as

close as possible to the light re�ected only due to the light source� In the second stage we

take into account interre�ections� We �nally perform a third optimization stage which

takes into account vertex uncertainty�

	�� Re�ectance Model for Specular Objects

The Lambertian model described above is limited to objects with matte surfaces� To

deal with other types of materials� more complete re�ectance models have been derived�

Beckmann and Spizzichino ��� developed a re�ectance model for rough specular objects�

In this model the specular re�ectance of an object was divided into two components� the

specular lobe� and the specular spike� Torrance and Sparrow ���� developed a simpler

model which captures only the specular lobe component �this model is widely used in
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Figure ��� The contribution of light re�ected from a surface patch dA� around x� to the
irradiance of point x� where r � x � x�� and n and n� are the surface normals at x and
x� respectively�

Here� View�x�x� equals one when x and x� can see each other� and therefore can

illuminate each other� and zero otherwise� Thus the irradiance E�x of the surface

element dA� due to the radiance of the point x� is�

E�x � F �x�x�L�x�dA�� ���

From equations ��� and ���� we obtain�

L�x � Ls�x �
�

	

Z
F �x�x�L�x�dA�� ���

We use ��� to compute the intensity of the light re�ected by the pixels in the image�

Each pixel which is a rectangle in the image whose area is D is actually a parallelogram

in space whose area is D
�v � n where v is the viewing direction� We assume that each
pixel has uniform intensity� Applying ��� at a pixel P we obtain�

L�P  � s
�

	
nP � s� ��v � nP �

D	

Z
x�P

X
P � ��P

L�P �
Z
x

��P �

F �x�x�dA�dA ���
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�rst stage as the starting position of the second stage� The simpli�ed model we use in

the �rst stage disregards the uncertainty in vertex position� This reduces the number of

unknowns considerably� In the case of superstrictness� like Sugihara ����� we delete the

corresponding constraints� In the second stage we take into account all the constraints

and the uncertainty in vertex position�

	�� Lambertian Model With Interre�ections

Radiosity methods are used in computer graphics to compute the interre�ections of visible

light and to render physically�accurate images of objects ��� ���� They have also been

used in computer vision to recover the shape of objects from images with interre�ections

�	� ���� In ���� photometric stereo is used in the initial stages of the algorithm requiring

several images and knowing the light source parameters� On the other hand the albedo

is unknown and does not have to be constant� and the shape of the recovered object does

not have to be polyhedral�

Under the interre�ection model the total irradiance E�x at point x is expressed as

the sum of the irradiance Es�x due to the light source and the irradiance due to all

other points on the surface which can see x� The radiance L at the point x is related to

its irradiance E by�

L�x �
��x

	
E�x ���

where ��x
	 is the bi�directional re�ectance distribution function for a Lambertian

surface� The geometric factor �the form factor which relates the irradiance E�x due to

the radiance of the point x� to the radiance of x�� whose geometry is illustrated in Figure

�� is�

F �x�x� � View�x�x�
�n � �x� � x��n� � �x� x��

jx� � xj� � ���

��



	�� Lambertian Model

Under the Lambertian model we assume that there is a distant point light source whose

direction s and intensity s are unknown and suppose that the observed object has a

constant �but unknown albedo � �see Figure ��� Our method di�ers from classical

shape�from�shading techniques ���� in which these parameters are assumed to be known

�on the other hand those methods do not assume that the object is polyhedral� Pho�

tometric stereo ���� does not require the albedo to be constant or that the object be

polyhedral but requires the direction and intensity of the light sources and more than

one image�

s

n
k

r

Figure ��� The Lambertian re�ectance model� nk is the normal to the surface� s is the
light source direction� and r is the viewing direction�

The kth cue Ik is the intensity measured on the kth face� We compute Jk as�

Jk�w� l �
s�

	
nk � s ���

where nk �
�p

�p�
k
�q�

k
��	
��pk��qk� �T is the normal to face number k� and the scene

parameters l denote the lighting direction s the intensity of the light s� and the albedo

�� In this case we cannot decouple the albedo � from the intensity s of the light source�

therefore we recover their product�

For this re�ectance model we have two stages of optimization� using the result of the

��



reduces the original problem to the unconstrained minimization of�

X
k

�Ik � Jk�w� l� �
X
j

�minf�� Bjwg�� ���

where Bj denotes the jth row of B� From the way the problem is stated� it is clear that

any model Jk which can recover Ik accurately when given the scene parameters w and

l can be used to recover the shape information and the scene parameters� Therefore

models like the ones used in computer graphics to render physically accurate images can

be substituted for Jk in the formalization of the problem�

Because optimization algorithms may fall into local minima a method must be devised

to give the algorithm a starting position as close as possible to the optimal one� The

method we have chosen is to divide the algorithm into two stages� In the �rst one we

run the optimization algorithm using a simpli�ed model �e�g�� disregarding the e�ects

of interre�ections on the image� Such a model will have fewer unknown parameters

than the full model or make it easier to compute Jk�w� l� but it may give less accurate

results� We run the optimization using the simple model with various starting positions�

In the second stage we use the best result of the �rst stage as the starting position for

optimization using the elaborate model� For complex re�ectance models we generalized

this method for more than two stages� where the result of each stage is the starting

position of the next stage�

In order to demonstrate the applicability of our method we have implemented shape

recovery from shading information using three re�ectance models� the pure Lambertian

model� the Lambertian model with interre�ections �	� ���� and a re�ectance model for

smooth specular objects ��� ��� ����

�	



� �D Shape Recovery

	�� Principle

Like Sugihara ����� we formulate �D shape recovery as an optimization problem� Consider

a set of visual cues� such as intensity or texture� Let w denote the unknown geometric

parameters� l denote the other scene parameters �e�g�� light source direction and intensity�

surface albedo� Ik denote the observed value of the kth cue �e�g�� the intensity of face

fk� and Jk�w� l denote the value of this cue that would be observed if the actual scene

parameters were w and l� Recovering w and l amounts to minimizing�

X
k

�Ik � Jk�w� l� ���

under the linear constraints derived in Section ��

�
Aw � ��
Bw � �� ���

This is what Sugihara calls a quadratic error minimization� a term we �nd a bit

misleading since the error term is in general not quadratic in the unknown parameters�

This is unfortunate since quadratic minimization under linear constraints can be solved

exactly�

To solve the constrained minimization problem� we �rst use Gaussian elimination

to delete all linear equalities and determine the values of a corresponding number of

variables as a linear function of the remaining ones� Among the possible choices� we

choose the subset of variables which yields the best numerical stability� This is done by

�nding which n�tuple of standard basis vectors produce a square matrix with the highest

possible condition number when added to matrix A�

We solve our constrained optimization problem using an active set method ����� which

��
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fl
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gk-gl
ne

Figure �� Constraints on the direction of gk � gl imposed by concave �left and convex
�right edges�

��� Remarks

We have shown that� even in the presence of uncertainty� a labelled line�drawing can be

characterized by a set of linear constraints� Let us close this section with a few remarks�

First� one of the variables rk can be set to some arbitrary value since absolute depth

cannot be recovered under orthographic projection� The variables zi can be recovered

from the other variables� Second� ��� and ��� contain strict inequalities� which is

normally a di�culty for linear programming� As remarked by Sugihara ����� all the

constraints are homogeneous� and strict inequalities with a zero constant term can be

replaced by non�strict inequalities with an arbitrary positive constant term� Third� these

constraints only provide a necessary condition for correctness� In particular� the signs of

pk � pl and qk � ql cannot always be determined�

��



vi

vj

fk

flzl

zk

n

t

x

y

z

+
e

e

Figure 	� The geometric constraints imposed by a convex edge�

Combining ��� and ��� yields a linear constraint�

j�gk � gl ��tej � ��gk � gl � �ne tan�� ���

The analysis applies to concave edges by inverting the orientation of gk � gl �Figure

��

When the double cone centered in �ne does not contain the x axis� ��� determines

the sign s � �� of pk � pl� yielding the linear constraint�

jaki � alij � �s�pk � pl� ���

Similarly� when the double cone does not contain the y axis� ��� determines the sign

s of qk � ql� yielding�

jbki � blij � �s�qk � ql� ��	

In general� a convex or concave edge provides at least one of these two constraints for

each of its extremities�

��
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Figure �� Edge constraints� The double arrow indicates that the orientation of gk �gl is
unknown�

This condition is not linear� Next� we show that the sign of �gk � gl � �ne is actually

known� which brings us back to the realm of linear algebra�

We have not used the convexity �or concavity of the edge yet� Suppose e is convex�

let ne be the real direction of its normal� and zl and zk be the points where the line

parallel to the z axis in xi � ne intersects the planes of fl and fk �Figure 	�

Since e is convex� we know that zk � zl� yielding� after some algebraic manipulation�

�gk � gl � ne � �� ���

which determines the side of the double�cone where gk � gl lies �Figure �� This is again

a well known constraint ����� We already know that gk � gl and ne are aligned� so�

�gk � gl � �ne � �� ���

except in the degenerate case where the two vertices are so close to each other as to make

� � 	
��

��



By �� aki� bki satisfy non�linear constraints�� jakij � �jpkj�
jbkij � �jqkj� ���

A similar derivation gives the following constraint for occluding edges�

�pk � pl�xi � �qk � ql�yi � �rk � rl � �aki � ali � �bki � bli � �� ���

The next subsection shows how to use gradient space constraints to eliminate the four

quadratic constraints�

��� Edge Constraints

Consider an edge e with extremities vi� vj� and two adjacent faces fk� fl� Assume that e

is either convex or concave� Writing that vi and vj belong to fk and fl� and eliminating

the unknown depths zi� zj yields�

�gk � gl � te � �� ���

where te is the vector joining the projections of the vertices vi and vj into the image

plane� This is the well known constraint imposed by an edge on the gradients of the

adjacent faces �����

Observe that te is necessarily contained in the double cone joining the uncertainty

regions centered in �xi � ��xi� �yi and �xj � ��xj� �yj �Figure ��

Let �te � �xj � �xi be the axis of this cone� � be its half�angle� and let �ne be the vector

obtained by rotating �te ��
� counterclockwise� Since gk � gl and te are orthogonal� it

follows that gk � gl lies in the double�cone centered on �ne with half�angle �� i�e��

j�gk � gl ��tej � j�gk � gl � �nej tan�� ���

��



The above constraints are linear in the unknowns pi� qi� ri� zj� Sugihara gathered all

such constraints into ��� where A and B are matrices whose coe�cients are functions of

the vertex coordinates xj� yj� and w is obtained by concatenating the unknowns for all

faces and vertices� He proved that a necessary and su�cient condition for a line�drawing

to correctly represent the projection of a polyhedron is that these equations admit a

solution�

In the next section� we will derive similar constraints in the case where the x� y

coordinates of the vertices are not known exactly�

� Constraints under Uncertainty

We �rst examine the constraints imposed by incident vertices and faces� and then derive

gradient space constraints associated with convex and concave edges�

��� Vertex Constraints

Writing that a vertex vi lies on two faces fk and fl and eliminating the unknown depth

zi yields�

�pk � plxi � �qk � qlyi � �rk � rl � �� ��

which can be rewritten as�

�pk � pl�xi � �qk � ql�yi � �rk � rl � �pk � pl�i � �qk � qli � �� �	

The quadratic terms can be eliminated by introducing the new variables aki �

pk�i� bki � qki�

�pk � pl�xi � �qk � ql�yi � �rk � rl � �aki � ali � �bki � bli � �� ��

��



z � pix� qiy� ri and the coordinates of vj be �xj� yj� zj� we have the following equality

constraints� ���
��
z� � p�x� � q�y� � r��
z� � p�x� � q�y� � r��
z� � p�x� � q�y� � r��

��

�a

f1 f2

v1

v2

e1

�b

f3f4
v3 v4

v5

e2

Figure �� Line�drawings and constraints�

Since e� is concave� v� must lie above the plane of f�� yielding the inequality constraint�

z� � p�x� � q�y� � r�� ��

Consider now the line�drawing in Figure ��b� Face f� occludes f
 along e�� Let

v
 and v� be two consecutive vertices along e�� and v� be their mid�point� we have the

following inequalities� ���
��
z
 � p
x
 � q
y
 � r
�
z� � p
x� � q
y� � r
�
z� � p
x� � q
y� � r
�

��

Equality is allowed in the �rst two inequalities� but not in the third one� This is

because the occluding edge e� can touch f
 at some point� but not at every point �oth�

erwise it would be a concave edge ����� Three equality constraints should be added�

corresponding to the fact that v
� v�� v� belong to f��

��



� Approach

��� Notation

We consider a labelled line�drawing� represented by a set of faces� vertices� labelled edges�

and their incidence relations� Orthographic projection is assumed� The image is in the

x� y plane� and the projection direction is along the z axis�

A face f is represented by its equation�

z � px� qy � r� ��

and the gradient vector �p� q is denoted by g�

A vertex v is represented by its image position �x� y and its �unknown depth z� In

the presence of uncertainty� the actual position �x� y is not known exactly� Instead� it

is related to the measured image position ��x� �y through a perturbation ��� � with the

constraints� �
x � �x� �� j�j � ��
y � �y � � jj � ��

��

In other words� the actual position is within some small rectangle of side �� from the

measured position�

An edge e is represented by its endpoints vi� vj and its adjacent faces fk� fl� It is

oriented from vi to vj� and fk �resp� fl lies on its right �resp� its left�

��� Sugihara
s Fundamental Equations

Assume for the moment that the image coordinates of the vertices are known perfectly�

Consider the line�drawing in Figure ��a� Faces f� and f� meet along concave edge e��

Vertex v� lies on e�� and thus on f�� f�� while v� lies on f� only� Let the equation of fi be

��



The above applications have shown that the Lambertian model does reasonably well

in describing pure di�use re�ection� There are many cases however where this model

is not adequate� Forsyth and Zisserman �	� study the e�ects of interre�ections between

Lambertian surfaces on the intensity of light re�ected from them� Nayar et� al� ����

present a shape�from�shading algorithm which speci�cally deals with interre�ections�

One of the important factors which determines the re�ectance is the roughness of the

surface� Nayar and Oren ���� present a re�ectance model for rough matte surfaces� For

very smooth �mirror�like specular surfaces� most of the re�ected light is concentrated

in the specular direction� Beckmann and Spizzichino ��� and Torrance and Sparrow ����

present re�ectance models which deal with rough specular surfaces� Nayar et� al� ����

compare the two models and present a general model which simpli�es these models and

combines themwith the Lambertian re�ectance model� These re�ectance models are used

in several graphics and shape�from�shading algorithms� Cook and Torrance ��� present a

modi�ed version of the Torrance�Sparrow model for rendering images of objects� Healey

and Binford ���� use the Torrance�Sparrow model to determine local shape from specular

re�ections� and Tagare and deFigueiredo ���� use it to recover the shape and re�ectance

of surfaces�

In our case we are not able to use the shape�from�shading methods described above

because the smoothness assumption is violated at the edges of the object� and the shading

over faces of the object is constant which does not enable us to recover the surface

orientation� We therefore develop special shape recovery techniques for polyhedral objects

which use the line�drawing and the shading information�

�



shading is needed to recover the �D shape� The problem of recovering shape from shading

has been extensively studied ���� ��� ��� �	�� Most approaches assume a Lambertian

re�ectance which models matte surfaces� According to that model the intensity of light

re�ected from a surface is proportional to the cosine of the angle between the direction of

the light source and the normal to the surface and does not depend on the viewer position�

Assuming that the surface of object is Lambertian� the main problem is that the shading

information at a point in the image provides only one constraint on surface orientation�

while surface orientation has two degrees of freedom� The shape can be recovered by

adding the assumption that the object is smooth and therefore the orientation of the

surface is continuous� Several methods have been proposed to solve this problem� The

traditional method for solving problems mathematically similar to this one depends on

growing characteristic strips ����� In ����� Ikeuchi and Horn present a relaxation method

on a grid� In ����� Woodham presents the photometric stereo method which uses several

images taken with di�erent lighting directions� The constraints obtained from each image

are combined to yield the surface orientation�

�a

+

�b

Figure �� An in�nite number of shapes which yield the same line�drawing� �a a line�
drawing� �b two of the in�nite number of shapes which yield this line�drawing�

	



a problem with his method is that condition �� is too strict� minute perturbations of

vertex positions can make a line�drawing incorrect� For example� the labelled line�drawing

in Figure ��a appears to correctly represent a truncated pyramid seen from above and

�oating in space� Closer inspection reveals that� due to error in vertex position� the three

edges that �once extended should intersect at the pyramid
s apex actually do not meet

�Figure ��b�

This �superstrictness� problem is in fact common to most quantitative approaches

to line�drawing analysis� including those based on gradient space ���� To avoid it� Sugi�

hara proposed to detect and delete the constraints that lead to superstrictness by using

the purely combinatorial notion of position�free incidence structures ����� This� unfor�

tunately� leads to a new di�culty� The remaining conditions may not be strict enough�

and incorrect line�drawings such as the one in Figure ��c may be classi�ed as correct�

In addition� the missing constraints introduce gaps in the recovered surfaces �����

In this paper we will avoid superstrictness by explicitly accounting for uncertainty in

vertex position� Unlike Sugihara� we do not eliminate constraints that lead to a super�

strict set of equations� Instead� we explicitly introduce uncertainty in these constraints�

A linear form is obtained by examining the constraints imposed by edges in gradient

space ��� ��� ��� ��� ���� yielding a system of equalities and inequalities similar to ��� A

necessary condition for a line�drawing to be the correct projection of a polyhedron is that

this system admits a solution� It can be tested� as before� through linear programming�

��� Shape From Shading and Re�ectance Models

As mentioned earlier� the line�drawing itself does not contain enough information for �D

shape recovery� and for each legal line�drawing there are an in�nite number of shapes

which could yield that line�drawing �Figure �� Therefore more information such as

�



projection of some polyhedron if and only if the linear constraints

�
Aw � ��
Bw � �� ��

admit a solution� These are the fundamental equations associated with the line�drawing�

The matrices A and B are derived from the positions of the vertices� the incidence

relations between vertices� edges� and faces� and the edge labels� The vector w denotes

the unknown face parameters of the observed polygon�

Thus� linear programming can be used to determine whether a line�drawing is �cor�

rect�� i�e�� whether there exists some polyhedron projecting onto it ����� Due to the loss

of depth information in the imaging process� a correct line�drawing admits an in�nite

number of interpretations� In other words� if there exists a solution w to ��� then there

exists an in�nite number of distinct solutions� However� when additional cues such as

intensity or texture are available� it is possible to select a unique �D interpretation w

through non�linear optimization under the linear constraints �� �����

+

++

+

+
+

+

+

+
+

+
+

(a) (b) (c)

Figure �� �a A �correct looking� labelled line�drawing� �b Superstrictness� �c An
incorrect line�drawing�

Sugihara
s approach is rigorous and elegant� It has been called �the �nal breakthrough

in quantitative �line�drawing analysis� ����� However� as remarked by Sugihara himself�

�



The main problem that arises with line�drawing labelling is that even line�drawings

that have consistent labellings are not guaranteed to be a picture of a real polyhedron�

For example� Figure ��a shows a line�drawing with a consistent labelling� but admits

no correct interpretations with planar faces �Figure ��b� because any edges between

two planar faces must be collinear� which is not the case for faces A and B in the

�gure� Quantitative approaches using vertex position information are used to address

this problem� Each face appearing in the image is parameterized by z � px � qy � r�

where the pair �p� q is the gradient of the face� a point in gradient space� The legality

of the line�drawing is shown by proving that a set of consistent parameters can be found

for all the faces in the image� These methods use equality and inequality constraints on

the gradient space� known as gradient space constraints� Mackworth ����� Hu�man �����

Kanade ���� ���� and Draper ��� use these constraints to determine whether a line�drawing

could be a picture of a polyhedral object�

�a

A

B

�b

Figure �� A line�drawing with a consistent labelling that only non�polyhedral objects
yield� �a a line�drawing with a consistent labelling� �b a non�polyhedral object which
yields this line�drawing�

In ���� ���� Sugihara proved that a labelled line�drawing correctly represents the
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Figure �� Labelling of a line�drawing of a cube�

edge in the line�drawing as convex �� label� concave ��� or occluding �� or �� For
occluding edges� the occluding face lies on the right when one looks in the direction of

the arrow label� For example� Figure � shows the labelled line�drawing of a cube �oating

in space� The outer edges are occluding ones� while the inner ones are convex� Several

algorithms have been proposed to solve this problem� For example Hu�man ���� and

Clowes ��� study objects with trihedral junctions �Figure �� and show that only a small

number of the possible labellings for each type of junction actually occurs in polyhedral

objects� In ����� Waltz presents a constraint propagation algorithm which exploits these

constraints to e�ciently �nd all the consistent labellings of a line�drawing�

(a) (b) (c) (d)

Figure �� Types of trihedral junctions� �a T junction� �b arrow junction� �c fork
junction �d L junction�

�



� Introduction

We address the problem of deciding whether a labelled line�drawing ��� �� �� ��� ��� ���

represents a picture of some polyhedron� and� in this case� reconstructing a polyhedron

that projects onto the line�drawing ��� ��� ��� ��� ��� ��� ��� using shading information�

We propose an approach that combines Sugihara
s algebraic characterization of line�

drawings of polyhedra ��	� ��� ��� with gradient space constraints ��� ��� ��� ��� ����

shape�from�shading techniques �	� ���� and radiosity methods ��� ���� Its novelty is that

it explicitly takes into account uncertainty in vertex position and phenomena such as

interre�ections� Its main advantages are its e�ciency in using linear programming to

reject incorrect scene interpretations and its ability to perform shape recovery using real

images of objects with complex re�ectance properties ��� 	� ��� ��� ����

The rest of the paper is organized as follows� Section � discusses the state of the art

in line�drawing analysis and �D shape recovery� We introduce our approach in Section ��

We present an algorithm for line�drawing analysis which takes into account uncertainty

in vertex position in Section �� and present our �D shape recovery algorithm in Section

�� Implementation and results are presented in Section �� Finally� a number of issues

raised by our algorithm and its implementation are discussed in Section ��

� Literature Review

��� Line�Drawing Analysis

The problem of labelling a line�drawing and deciding whether a labelled line�drawing

represents a correct picture of some polyhedron has been studied extensively ��� �� �� ����

Given a line�drawing of a polyhedron� the labelling problem is to correctly label each

�



Recovering The Shape of Polyhedra Using

Line	Drawing Analysis and Complex Re
ectance

Models

Ilan Shimshoni and Jean Ponce

Abstract

Following Sugihara ����� we represent the geometric constraints imposed by the line�

drawing of a polyhedron as a set of linear equalities and inequalities� Unlike him� we

explicitly take into account the uncertainty in vertex position� This allows us to circum�

vent the superstrictness of the constraints without deleting any of them� For a given

error bound� deciding whether a line�drawing is the correct projection of a polyhedron is

reduced to linear programming� and �D shape recovery is reduced to optimization under

linear constraints� Our method can be used for recovering the shape of any polyhedral

object whose re�ectance can be modelled accurately� We have implemented it for the

following re�ectance models� the Lambertian model� a the Lambertian model with in�

terre�ections� and a re�ectance model for specular objects� We present results obtained

using real images�
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