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Appendix

In this appendix we show that even if we assume a
wrong focal length we can still correctly recover the im-
age position of the epipoles. Let p; = (;, v, f)T and
pi = (24, 4, )T betwo corresponding points inimage
I and I’ respectively. Then, the essential matrix F sat-
isfies p;” E p; = 0, and the epipole v = (v, vy, f)T
satisfies Ev = 0.

Suppose that we wrongly believe that the focal length
is f' # f. Then, the positions of p and p’ with respect
to the center of the camera in the two images are given
by ai = (21,5, /)7 and o} = (v}, /)7 respec-
tively. Tt is straightforward to verify now that q and q’
satisfy a bilinear equation

q,TE q; =0, (1)

where E’ is a 3 x 3 matrix whose components are given
by

E'=| Ey Es»n LB
%E31 %E32 (%)2E33

)

Ei1 FEa J{/ Ei3
I 3

E;; (1 < 1,5 < 3) represent the components of F.
Similar to £, E’ too is of rank two. Denote the three
rows of £ by e, es, and es, since F is of rank two
there exists scalars «, 3, and y not all of which are zeros
such that ce; + Bes + yes = 0. Denote by e, €5,
and e, the three rows of E’ then it can be verified that
o) + el + L-vel, = 0. Finally, with f' the epipole is
estimated at a position v/ = (v,, vy, /)7 since using
(1) we obtain that

E'V = Ev = 0. (2)

Therefore, the recovery of the image position of the
epipole, (v, vy ) is independent of the choice of a focal
length, and so it can be recovered correctly even when
a wrong focal length is assumed.

References

1. R.Basri, E. Rivlin, and I. Shimshoni, “Visual homing: surfing
on the epipoles,” 6th Int. Conf. Computer Vision (ICCV-98),
Bombay: pp. 863-869, 1998.

2. R. Basri and E. Rivlin, Localization and homing using com-
binations of model views. Artificial Intelligence, 78: 327-354,
1995.

3. PA. Beardsley, 1.D. Reid, A. Zisserman, and D.W. Murray,
Active visual navigation using non-metric structure. 6th Int.
Conf. Computer Vision (ICCV-95), Boston: 58-64, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

K.J. Bradshaw, PE. McLauchlan, L.D. Reid, D.W. Murray, Sac-
cade and Pursuit on an Active Head Eye Platform, Image and
Vision Computing, 12(3): 155-163, 1994.

G. Dudek and C. Zhang, Vision-based robot localization with-
out explicit object models. IEEE Int. Conf. on Robotics and
Automation: 76-82, 1996.

B. Espiau, F. Chaumette, and P. Rives. A new approach to
visual servoing in robotics. IEEE Transaction on Robotics and
Automation, 8(3): 313-326,1992.

J.A. Fayman, D. Mosse, and E. Rivlin, Real-Time Active Vi-
sion With Fault-Tolerance, International Conference on Pat-
tern Recognition, 1996.

C. Fennema, A. Hanson, E. Riseman, R. J. Beveridge, and R.
Kumar. Model-directed mobile robot navigation. IEEE Trans.
on Systems, Man and Cybernetics, 20: 1352-1369, 1990.

M. A. Fischler and R. C. Bolles, Random Sample Consen-
sus: A Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography. Communication of the
ACM 24(6): 381-395,1981.

R.I. Hartley. In defense of the eight-point algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(6): 580-593,1997.

K. Hashimoto (Editor). Visual Servoing World Scientific, Sin-
gapore, 1993.

J. Hong, X. Tan, B. Pinette, R. Weiss, and E. M. Riseman.
Image-based homing. IEEE Control Systems: 38-44,1992.
T.S. Huang and C.H. Lee, Motion and Structure from Ortho-
graphic Projections. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2(5): 536-540,1989.

S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on visual
servo control. IEEE Transaction on Robotics and Automation,
12(5): 651-670, 1996.

M.R.M. Jenkin and J.K. Tsotsos, Active stereo vision and cy-
clotorsion, IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR-94), Seattle: 806-811, 1994.

L.L. Kontsevich, Pairwise comparison technique: a simple so-
lution for depth reconstruction. Journal of Optical Society,
10(6): 1129-1135,1993.

E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspek-
tiven mit innerer Orientierung. Sitz.-Ber. Akad. Wiss., Wien,
Math. Naturw. K1., Abt. lla., 122: 1939-1948,1913.

C. H. Lee and T. S. Huang, Finding point correspondences and
determining motion of a rigid object from two weak perspec-
tive views. Computer Vision, Graphics, and Image Processing,
52:309-327, 1990.

T.S. Levitt and D.T. Lawton, Qualitative Navigation, Artificial
Intelligence, 44(3): 305-361, 1990.

H. C. Longuet-Higgins, A computer algorithm for reconstruct-
ing a scene from two projections. Nature, 293: 133-135,1981.
C.B. Madsen and H.I. Christensen, A viewpoint planning strat-
egy for determining true angles on polyhedral objects by cam-
era alignment. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(2): 158-163, 1989.

Y. Matsumoto, 1. Masayuki and H. Inoue, Visual navigation
using view-sequenced route representation. IEEE Int. Conf.
on Robotics and Automation: 8388, 1996.

J.J. Moré, B.S. Garbow, and K.E. Hillstrom, User guide for
MINPACK-1. ANL-80-74, Argonne National Laboratories,
1980.

R. C. Nelson. Visual homing using an associative memory.
DARPA Image Understanding Workshop: 245-262,1989.

B. Nelson and PK. Khosla, Increasing the tracking region of
eye-in-hand system by singularity and joint limit avoidance.
IEEE Int. Conf. on Robotics and Automation: 418-423,1993.



and the target image. Correspondences between points
in the current and target images are used for this pur-
pose. Using the epipolar geometry, most of the pa-
rameters which specify the differences in position and
orientation of the camera between the two images are
recovered. However, since not all of the parameters can
be recovered from two images, we have developed spe-
cific methods to bypass these missing parameters and
resolve ambiguities that exist. We have developed two
homing algorithms for two standard projection mod-
els, weak and full perspective. The path produced by
our algorithms is smooth and is the shortest possible
when only two images are compared. Both simula-
tions and real experiments demonstrate the robustness
of the method and that the algorithms always converge
to the target pose.

One of the advantages of our method is that it is al-
most entirely memoryless, in the sense that at every
step the path to the target position is independent of
the previous path taken by the robot. In fact, almost all
the motion parameters separating the current and target
images are recovered directly from these two images,
except that the change between two subsequent images
is used to resolve ambiguities in these parameters and
to determine the remaining distance to the target. Be-
cause of this property the robot may be able, while
moving toward the target, to perform auxiliary tasks or
to avoid obstacles, without this impairing its ability to
eventually reach the target position.

Our method relies on extracting correspondences be-
tween feature points between the current and target im-
ages and on maintaining these correspondences (or ex-
tracting new correspondences) as the robot approaches
the target. This may be particularly problematic when
the scene contains repetition. The problem of extract-
ing correspondences between images which may be re-
lated by a relatively large transformation cannot be dis-
counted. Moreover, tracking feature points while the
robot is moving (as we did in our experiments) may not
always suffice to maintain correspondences because of
noise and occlusion. While we acknowledge the dif-
ficulty of this problem we still believe that in many
practical situations sufficiently many correspondences
can be extracted and the epipolar constraints can be
recovered (see, e.g., [28] for a recent attempt). Fur-
thermore, we may use the robot to actively verify that
the correspondences found are consistent with its mo-
tion (since when the robot is moving toward the target
the feature points must shift along their epipolar lines).
In addition, other kinds of features, such as line seg-
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ments or algebraic descriptions of curves, can also be
used for this purpose. Finally, when the robot is far
from the target rough correspondences may suffice to
lead the robot close to the target, while very accurate
correspondences may be required only when the robot
makes its final steps toward the target. We intend in
the future to explore potential solutions for the corre-
spondence problem in the context of homing.

It is known that recovering the epipolar lines, partic-
ularly under perspective projection, is often sensitive to
noise in the images. In practical situations it is possible
to determine whether a certain pair of images gives rise
to a problematic solution. In our algorithms the epipo-
lar lines are determined by solving a homogeneous set
of linear equations. The solution to these systems can
be found by considering the lowest singular value of
the system. The second lowest singular value indicates
how stable the solution is. An example for such a prob-
lem arises when the feature points lie on a plane in 3-D.
In this case the two lowest singular values are close to
zero and so there are many different epipolar sets that
are consistent with the equation system (when in fact
the mapping between the two images can be reduced to
a homology). It is important to detect such degenerate
situations and handle them appropriately, see [32] for
recent work on this subject.

Another limitation of the proposed method is that,
to determine the path to the target image, a significant
overlap between the scene in the current and target im-
ages is required (e.g., in order to find sufficiently many
correspondences in the images). Actual navigation and
manipulation tasks may require motion in which such
an overlap is not available. Our intention in the future
is to extend the method to deal with such situations
by storing several images of the environment and use
them to perform more complex behaviors. Also, one
of the main advantages of our method is that it enables
a robot to locate objects that may change their posi-
tion in the environment and to follow moving objects
keeping them in a constant view. In particular, visual
homing can be used to guide a set of robots to move in
afixed structure. The experiments presented in this pa-
per demonstrate the performance of the system in static
environments. Experimentation with moving targets is
part of our planned future research.
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Fig. 15. homing with a perspective projection model: (a) The initial image; (b-f) Intermediate images; (g) Final image; (h) Target image;
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Fig. 16. Experimental results: The top two curves show the dif-
ference in translation and orientation between the pose of the robot
and the target pose at every step. The bottom two curves show the
error in the estimate of the pose. Note that there is no estimate for
the error in the translation in the first image because the translation
is recovered at that point only to within a scale factor.

lines, which were available to us since we knew the
motion of the robot. We performed the tracking in two
stages. In the first stage we hypothesized a match be-
tween the points. For each pair of corresponding points
we then computed the implied distance to the target
(equation 36). We then looked for the distance interval
that obtained support from the largest number of cor-
responding pairs. We took the center of this interval to
predict the distance to the target. In the second stage we
inverted (36) to calculate the position in the new image
of the corresponding point and used this calculation to
improve the obtained match. By performing this two
stage procedure we managed to overcome false corre-
spondences. After computing the correspondences we
returned to the minimization procedure to re-estimate

the rotation and translation displacement to the target.
This procedure was repeated in the subsequent steps
until the robot reached the target.

Figure 16 shows the pose estimates of the robot rel-
ative to the target and the errors in these estimates. As
can be seen the robot manages to proceed to the target
almost along a straight line and to rotate to the desired
orientation along a great circle. Figure 15 shows the
images acquired by the robot along its path to the target
(Fig. 15(a)-(g)) along with the target image (Fig. 15(h)).

5. Conclusions

In this paper we have introduced a novel method for
visual homing. Using this method a robot can be sent
to desired positions and orientations specified by im-
ages taken from these positions. The method requires
the pre-storage of the target image only. It then pro-
ceeds by comparing the target image to images taken
by the robot while it moves, one at atime. Unlike exist-
ing approaches, our method determines the path of the
robot on-line, and so the starting position of the robot is
relatively not constrained. Also, unlike existing meth-
ods, which are largely restricted to planar paths, our
method can send the robot to arbitrary positions and
orientations in 3-D space. Nevertheless, a 3-D model
of the environment is not required. Finally, our method
requires no memory of previous images taken by the
robot.

Our method is based on recovering the epipolar ge-
ometry relating the current image taken by the robot
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Fig. 13. The convergence of the error in the componentsof the pose
as the algorithm progresses. The pose is composed of seven com-
ponents: the three Euclidean coordinates of the viewing direction,
two components of the translation, the scale factor, and the image
rotation. Three examples with different levels of noise are shown:
(a) No noise; (b) Noise level of 0.5%; (c) Noise level of 1%.

2 4 6 & 10 12 1 16 18 2 o

Fig. 14. A simulation of homing under perspective projection. The
solid line represents the distance of the robot from the target position,
and the dashed line represents the angle separating the current orien-
tation from the target orientation. Left: no noise. Right: Gaussian
noise added to the pixel positions at every image.

which allows the robot to overcome deviations from the
path suggested by the algorithm.

Several intermediate images were taken along the
path to the target (see Figs. 10(b-g)). For each image
the remaining difference in the viewing direction, scale,
rotation and translation was estimated, and the robot
was instructed to make a step of size a fraction of the
estimated difference. When the differences between
the current and the target images were sufficiently small
the algorithm terminated. The image taken at the final
step of the robot is shown in (Fig. 10(g)). Notice its
similarity to the target images (Fig. 10(h)).

In a second experiment we tested our method using
the same robot to which we added a linear shift bar,
which enables the entire robot to translate, making it a
six degrees of freedom robot. The different steps of the
experiment are shown in Fig. 11, where (a) shows the
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source image and (b)-(h) the intermediate steps. The
final image is shown in Fig, 12(a), note the similarity
between the final and the target images (shown in (b)).
The joint values of the robot in its final position after
the homing was completed were different, from target
joint values, by less than 1° for the five revolute joints,
and by less than 1cm for the linear shift bar.

4.2.2. Fullperspectivemodel Inthelastexperiment
we tested the method under the perspective projection
model. Again, we used the six degree of freedom robot
arm. Throughout the sequence we extracted feature
points using a variant of the SUSAN corner detec-
tor [31]. This algorithm extracted about 200 corners in
each image. In the source and target images we manu-
ally selected 32 pairs of points. We then recovered the
location of the epipole and the rotation that separates
the source from the target using Hartley’s algorithm
(described in Section 3). To further improve the esti-
mated parameters we used them as a starting point for
a Levenberg-Marquardt non-linear minimization pro-
cedure (we used the MINPACK library [23]). The al-
gorithm searched for the rotation matrix R (satisfying
the non-linear constraints RRT = I and det R = 1)
and translation vector t that best fit the data. We min-
imized the following function. Given a rotation R
and a translation t we first applied the rotation R to
the source image. Now, the source and the target im-
ages should be related by a translation only, thus cor-
responding points should lie along the same epipolar
lines. Consequently, corresponding points should be
collinear with the epipole (t). Therefore, for every pair
of corresponding points we computed the line going
through the epipole which is closest to the points and
took the sum of squared distances between the points
and the respective lines as the functional to be mini-
mized. Since Hartley’s algorithm already found R and
t that are not very far from the correct values this pro-
cedure converged fairly quickly.

After recovering the motion parameters we in-
structed the robot to perform a step toward the target
pose. The magnitude of the rotation of the robot was
set to a fraction of the angular difference between the
source and the target. The magnitude of the translation
was set arbitrarily since it could be recovered only to
within a scale factor.

After performing one step we obtained a new im-
age. To maintain correspondences we tracked the fea-
ture points between consecutive frames. In tracking the
points we sought correspondences only along epipolar
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Fig. 11. Homing with a six degrees of freedom robot: (a) The initial image; (b-h) Intermediate images; Top images: the images seen by the
robot. Bottom: the position of the robot taken from a fixed camera.

Fig. 12. (a) The final image after homing was completed; (b) The target image. Top images: the images seen by the robot. Bottom: the
position of the robot taken from a fixed camera.
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Fig. 10. Homing with a five degree of freedom robot: (a) The initial image; (b-f) Intermediate images; (g) Final image; (h) Target image; Top
images: the images seen by the robot. Bottom: the position of the robot taken from a fixed camera.

4.2. Real experiments

4.2.1. Weak perspective model To demonstrate our
approach we mounted a CCD camera on a robot arm
(SCORBOT ER-9, from Eshed Robotec Inc.). The arm
was set in a target position and an image was taken
(target, see Fig. 10(h)). The arm was then set in an-
other position, from which part of the target scene was
visible (source, see Fig. 10(a)). The correspondence
between feature points in the source and target images
was provided manually. Then, the algorithm described
in Section 2 was run. We maintained correspondences
between successive frames by tracking the points using
a correlation based tracking algorithm. We searched
for the best match of windows of size 8 x 8 pixels in
a 200 x 200 pixel region. Twenty feature points were

extracted in the first image and tracked throughout the
sequence. We took twenty features so that we can af-
ford losing some of the features along the way (because
of noise and occlusion) without impairing our ability
to recover the epipolar constraints. In computing the
epipolar lines at every step of the algorithm we ap-
plied a least squares fit using at least ten corresponding
points.

Since our robot had only five degrees of freedom it
was not able to reach any desired pose (six degrees of
freedom are needed). The structure of the ER-9 enables
us to set the requested position and consequently it
constrained the orientation or vice versa. Since error
in the viewing direction are likely to produce errors
in the other components, we decided to maintain the
viewing direction and handle the rest of the components
(rotation, translation, and scale) as best as the robot
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behavior reverses if the robot moves away from the
target position (that is, if it translates by (vs, vy, ).

To handle the case of the unknown focal length we
begin by guessing a value for the focal length. After
performing one step we measure the distance of the
epipole from the center of the target image. Depending
on whether the epipole moved toward or away from
the center, and depending on whether our step was in a
positive or negative direction along the line of sight we
should either increase or decrease our estimate of the
focal length. By carefully monitoring our estimate of
the focal length we will gradually reduce the change in
the position of the epipole until it will cease changing
its position. At that point the translational motion of
the robot will converge to the shortest path to the target
position.

4. Experimental results

Next we present results of running our algorithm on
simulated data and in a real world scenario. Both our
simulations and the real experiments demonstrate the
robustness of the method and that the algorithms always
converge to the target pose.

4.1. Simulations

We have tested our homing algorithm under weak per-
spective on a thousand initial poses chosen at random.
The algorithm converged successfully in all cases.

An example is shown in Figure 9. The viewing di-
rection component (Figure 9(a)) moves on a great circle
on the viewing sphere. The translation component is
shown in Figure 9(b). Note that at first there is an error
in the estimate of the translation. As the error in the
other components of the pose gets smaller, the estimate
of the error in the translation improves and in the end
the algorithm converges.

Figure 13 shows the effect of uncertainty in the ver-
tex position measured in the image on the convergence
of the algorithm. Figure 13(a) shows how the error in
all the components of the pose converge to zero when
there is no uncertainty. In Figure 13(b,c) the effect
of uncertainty is shown. The uncertainty only effects
the final stages of the algorithm when the error is very
small. The algorithm converges more slowly until a
solution is found.

r,0 o &
NUROoGRON
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Fig. 9. Simulation results: The error in the viewing direction and
the translation components of the pose: (a) The error in the view-
ing direction starts from (0.43,—0.40,—1.51) and converges to
(0,0, 0); (b) The error in the translation starts from (0.38, —1.00)
and convergesto (0, 0).

We tested the quality of our ability to estimate the
number of steps required for the algorithm to converge.
We bounded the size of each step to be less than a
change of 5° in the viewing direction, 10° in the ro-
tation, 10% of the size of the image in the translation,
and 0.2 in the difference between the scales. We ran
a thousand tests, computed the number of steps that
would be required if the change in pose was known, and
compared it to the number of steps actually performed
by the algorithm. The optimal number of steps were
between 5 and 36 and the average additional amount
of steps required by the algorithm for a given number
of steps for the optimal solution was between 7 to 12
steps. The addition can be attributed to the errors in
the estimate of the distance to the target, the error in
the estimate of the error for the rotation and transla-
tion components, and several additional steps that are
required for the final convergence of the algorithm.

Figure 14 shows an example of applying the perspec-
tive procedure to simulated data in a noise-free and a
noisy environment. As can be seen, in the noise-free
example, the robot moved in the shortest path to the
target while changing its orientation gradually until it
matched the target orientation. Notice that since at the
first step the robot could not yet estimate its distance to
the target its first rotation differed from the rest of the
rotations.



Fig. 8. Geometric interpretation of the cross-ratio: The required
cross-ratio is the one obtained by the centers of projections of the
images and the point in infinity V. It is equal to the cross-ratio
computed for points on line { which is equal to the cross-ratio we
computed above due to the congruence of the shaded triangles (only
one of the three pairs is shown in the figure).

Even though a single corresponding point is suffi-
cient to determine the distance to the target position
we can combine the information obtained from all the
points to obtain a more robust estimate of the distance.
Notice that this computation will amplify noise in the
image when either |2” — 2’| or |z —v,;| are small. Thus,
the values obtained for points which introduce a sig-
nificant change in position between the previous and
current images and which their position in the target
image is further away from the epipole are more reli-
able then points which introduce only a small change
or points which appear close to the epipole in the target
image.

3.4. The case of an unknown focal length

So far we have assumed that the focal length is known.
Below we consider the case that the focal length is the
same for both the current and the target images, but is
unknown. In this case we can still correctly recover
the image position of the epipole, as we show below in
the appendix. However, given the epipole we cannot
fully determine the direction to the target position from
two images. In fact, using the epipole we can deter-
mine only the projection of that direction on the image
plane, and we cannot determine the component of the
direction along the line of sight.
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To handle the problem of unknown focal length we
notice that by translating the robot along the straight
ling to the target position (and assuming no rota-
tion) we maintain the epipole in the target image in
a fixed position. Suppose the robot is positioned at
t = (ts,ty,t.)7 with respect to the target position.
Denote by v = (v, vy, f)T the coordinates of the
epipole in the target image. Moving the robot in the
direction (—v,, —v,,0) will shift the epipole toward
the center of the image. Conversely, moving along the
line of sight in the direction of the target will shift the
epipole to infinity. This behavior reverses if the robot
turns away from the target position.

To see the effect of moving in a wrong direction as
a result of misestimation of the focal length, suppose
we estimate the focal length as f/, while the true focal
length is given by f. The epipole in the target image
satisfies

iy t
Vg = / Uy = ! v 37

Suppose that £, > 0. Since we wrongly esti-
mate the focal length as f’ we move the robot by
(—vg, —vy, —f'). (The analysis below would apply
also to the case that ¢, < 0 when the robot translates
by (—vz, —vy, f').) Thus, at the next step the epipole
in the target image changes to

U;/[; — f(tf_vl')7 UI — f(ty_”y) (38)

tz - f ! v tz - f !
First, we observe that this motion moves the epipole
along the line through the center of the image and the
original epipole, since
! tz - Yz tztx - tr tz T .

vy by —vy ity — [yt vy
The relative position of the new epipole along this line
can be deduced from

Flta—va)
v, 7@_;/ _ (te —vg)ts

vy ftﬁ (t: — f')ts

_ tzt:c_ftz _ tz_f
=t f
Similarly, v;, /vy = (t. — f)/(t. — f'). Therefore, ig-
noring the case that the distance of the robot to the target
position is smaller than the estimated focal length, if
the focal length is underestimated then the epipole will
shift toward the center, while if the focal length is over-
estimated the epipole would diverge to infinity. This

(40)



12 Basri, et al.

Now, since
A
—_ 2
(Z+Atz)2>0 (28)
then
ign(222) = sign(ve — z) (29)
sign 5\ = sign(vy — x).

The consequence of this is that when the robot is trans-
lating in a straight line toward the target position the
points in the images taken by the robot (discarding the
effects of rotation) will move along their epipolar lines
away from the epipole and toward their position in 7.
This motion is shown in Figure 7.

We turn now to recovering the distance to the target
position. Given a point p = (z,y, f)T € I, suppose
the direction from the current image I’ to the target
positionis given by t = (t,,%,,%.)7, and that between
the previous image I’ and the current image the robot
performed a step at in that direction. Denote by n the
remaining number of steps of size at separating the
current position from the target (so that n = 1/a). In
the target image

X .
r="—. 30
v A (30)
In the current image
, J(X +ty) .
g = 12 Tl 31
v 7+, 3D

and in the previous image

X+(1 ty )
g = L E (L +0)t) (32)
Z+ (14 a)t,
are the respective coordinates of the point.
The z coordinate of a point in the target, current, and

previous images are

LI (Xt
7  Z 4t
w_ fX+ (1 +a)ts) :
2 = 33
* Z+ (14 a)t, (33)
respectively.

Replacing X in the last two equationsby X = 27/ f
and rearranging we obtain the two followingequations:

(7 +1t,)=Zx+ fty
2 (Z4+(1+a)t,)=Ze+ (1+a)fts.
These are two linear equations in o and 7, and so

_ (z' —z) (2"t — ftz) )
e (2" — &')(zt, — ftg) (35)

(34)

———— —————
v p

Fig. 7. The motion of a point along an epipolar line due to trans-

lation in a single direction. v is the epipole. p is the position of

the point at the target image. During a translation toward the target

position the point will move away from v and toward p.

Dividing the numerator and the denominator by ¢, we
obtain that
(2 = 2)(2" — v)

n= . (36)

@ =)z =)

The same computation can be applied to the y co-
ordinate of the point. In fact, we can obtain a better
recovery of n if we replace the coordinates by the po-
sition of the point along the epipolar line in the three
images. (Thus, n is obtained as a cross-ratio along this
line.)

Although we have just shown the above property we
would also like to give a geometric interpretation. Con-
sider Figure 8. Given three images whose centers of
projection 0,0’ and O” lie along a straight line leading
to apointat infinity V... When we know the cross-ratio
of these four points, and as we know the distance from
O’ t0 0", we can compute the distance between O’ and
O. However, for a 3D point P all we have is a cross-
ratio computed from distances between the projection
of P to the various images and the epipole v (the in-
tersection of the image plane with line connecting the
centers of projection of the images). To show that this
indeed is the same cross-ratio, consider the line { that
lies in the plane through O,0’, P, is parallel to the im-
age planes of the images and whose distance from P is
f (the focal length). Clearly, the cross-ratio obtained
for the points on [ (r,r’,r” r,) is the same as the cross-
ratio between the image centers. On the other hand,
this cross ratio is also equal to the cross ratio between
the projections of P in the three images. This can be
readily shown by noticing that the shaded triangles in
the figure are congruent. Consequently, the cross ra-
tio in (36) expresses the number of steps to the target.
It is obvious from the figure also that the cross-ratio
obtained is invariant to the choice of P.

The absolute value of n obtained in this computa-
tion represents the number of steps separating the robot
from the target position. A positive value of n will in-
dicate that the robot is heading toward the target posi-
tion, while a negative value of n will indicate that the
robot is moving away from the target position. Thus,
by looking at any single point we may recover both the
distance and direction to the target position.



t represents the magnitude of translation along the opti-
cal axis (so [t| = ||(tz, ty, t-)|]), and its sign is positive
if the current position is in front of the target position,
and negative if the current position is behind the target
position. We can therefore resolve the ambiguity in
the direction by recovering the sign of . To do so we
divide the coordinates of the points in the target image
with their corresponding points in the current image,
namely,

x Y 7+t t )
— === ——=14+—=. 2
sl Z +5 (20)
This implies that
x i
t:Z(;—l). (21)

Unfortunately, the magnitude of 7 is unknown. Thus,
we cannot fully recover ¢ from two images. However,
its sign can be determined since

sign(t) = sign(7) sign(% —1). (2

Notice that since we have applied a rotation to the tar-
get image 7 is no longer guaranteed to be positive.
However, we can determine its sign since we know the
rotation R, and so we can determine for every image
point whether it moved to behind the camera as a result
of this rotation. Finally, the sign of /2’ — 1 can be
inferred directly from the data, thus the sign of ¢ can be
recovered. Since it is sufficient to look at a single pair
of corresponding points to resolve the ambiguity in the
translation we may compute the sign of ¢ for every pair
of corresponding points and take a majority to obtain a
more robust estimate of the actual direction.

3.3.  Recovering the distance to the target

To estimate the distance to the target position we let the
robot move one step and take a second image. We then
use the changes in the position of feature points due to
this motion to recover the distance.

Using the current and target images we have com-
pletely recovered the rotation matrix relating the two
images. Since a rotation of the camera is not affected
by depth we may apply this rotation to the current im-
age to obtain an image that is related to the target image
by a pure translation. Below we refer by I’ and " to
the current and previous images taken by the robot after
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rotation is compensated for so that the image planes in
I, I’,and I" are all parallel.

We begin by observing that any two images related
purely by a translation give rise to the same epipolar
lines. Given an image I and a second image I’ which
is obtained by a translation by t = (t,,%,,¢,)7, no-
tice first that the two images have their epipoles in the
same position. This is because the homogeneous co-
ordinates of the epipole in I’ are identical to t, while
the homogeneous coordinates of the epipole in [ are
identical to —t. Consider now a point (z,y, f)7 € I,

X 1Y
S =1L 23
T=, y="7 (23)
and its corresponding point (', ', f)T € I,
o J( X +1t) xZ+4 ft,
Z+t,  Z4t, ]
Y +1¢ A 2
4+, 4+,

Denote the epipole by (vy,vy) = (fta/tz, fty/tz),
then both (z, y) and (z', ') lie on the same line through
(vz, vy), since

' rZ+fte _ flo
T — Vs 73t t.

. yZ4ft Tt
? v yZEfty _ fty
Y Y Z+t, t,

(27 fto)t. — fto(Z +1.)
(yZ + fty)tz - fty(Z+tz)
fte
xt, — fig L= r— Vg
= T f = ft; -7 Y (25)
yl: = fty  y—Lf2 Y-y

Our second observation is that a continuous transla-
tion of the camera along the same direction results in a
monotonic translation of points along their respective
epipolar lines. Suppose now that an image 7, is ob-
tained from I by a translation At = (M, My, At )7,
Then, a point (z,y, f)T € I corresponds to a point
(:L‘A, Yx, f)T € I, with
xZ + fAt, Yz + [y

S VA R VI

Taking the derivative of z with with respect to A we
obtain

dr) d <$Z+/\tl-)

(26)

)y =

dh dA\ 7+ )M,
(24 M) (22 + M)
- (Z + \t,)2

(e —t.2)Z (v —x)7
B AR AS VR CL
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where
0 —t, ty
T=11t¢ 0 —t,
~ty tp 0

Since Eq. (13) is homogeneous we may replace the
components of 7' by the recovered components of v and
multiply 7" by a constant to enforce that || F||rrobenius =
|| 7'||Frobenius- Thus, the rotation parameters are the only
remaining unknowns in this equation. Since the rank of
T is at most two we cannot invert it to solve for the rota-
tion parameters. Nevertheless, since R is orthonormal
we may replace Eq. (16) by

E' = RT' an

with T’ = [tl,tg,tl X t2] and ' = [el,eg,el X eg],
where t1, t2 may be any two column vectors of 7', and
e, e are the two respective columns of £. As long
that t # 0 it is possible to choose the columns such
that 7’ will be non-singular. Consequently, given v
all the nine components of R can be recovered. Note
that in the presence of noise this procedure does not
guarantee that the recovered matrix R would in fact
represent a rotation. In other words, R may not satisfy
the constraints RR” = I and det(R) = 1. To enforce
these constraints in our experiments we used the re-
covered rotation and translation as a starting point for
a Levenberg-Marquardt non-linear minimization pro-
cedure (see Section 4).

The recovery of the motion parameters is not free of
ambiguities. Since F can be recovered only up to a
scale factor its sign cannot be determined. Similarly,
since T' can be recovered only up to a scale factor its
sign also cannot be determined. Thus, by changing the
signs for £/ and 7" we can obtain two different equa-
tions for R. These equations yield two solutions which
are related by a 180° rotation. [35] showed that one
of these two solutions can be eliminated by enforcing
the constraint that all the depth values in the two im-
ages must be positive. The remaining ambiguity for
the translation could in principle prevent us from de-
termining whether the positive or negative direction of
the epipole points to the target position. However, in
Section 3.2 below we show how this ambiguity can be
resolved.

After we recover the motion parameters we direct
the robot to move a small step in the direction of the
target. In addition, given the rotation matrix R we cal-
culate the axis and angle of rotation that separates the
current orientation of the robot from the target orienta-

tion and rotate the robot arm about this axis by a small
angle. After performing this step the robot takes a sec-
ond image. Using this image we recover the distance
to the target position and use this distance to perform
a smooth motion,

3.2.  Resolving the ambiguity in the direction to the
target

We have seen so far how given the current and target
image the translation required to take the robot to the
target position is indicated by the position of the epipole
in the current image. However, using the epipole the
direction to the target can be recovered only up to a
twofold ambiguity, namely, we know the line which
includes the two camera positions, but we do not know
whether we should proceed forward or backward along
this line to reach the target position. Below we show
how by further manipulating the two images we can
resolve this ambiguity.

Using the current and target images we have com-
pletely recovered the rotation matrix relating the two
images. Since arotation of the camerais not affected by
depth we may apply this rotation to the current image
to obtain an image that is related to the target image by
a pure translation. After applying this rotation the two
image planes are parallel to each other and the epipoles
in the two images fall exactly in the same position. De-
note this position by (v, vy, )7 . We may now further
rotate the two image planes so as to bring both epipoles
to the position (0,0, f)7. Denote this rotation by Rj.
Notice that there are many different rotations that can
bring the epipoles to (0, 0, f)7, all of which are related
by a rotation about (0, 0, f)7. For our purpose it will
not matter which of these rotations is selected.

After applying Ry to the two images we now have
the two image planes parallel to each other and orthog-
onal to the translation vector. The translation between
the two images, therefore, is entirely along the optical
axis. Denote the rotated target image by 7/ and the ro-
tated current image by I’. Relative to the rotated target
image denote an object point by P = (X,Y, 7). Tts
coordinates in / are given by

= f7X y= %/ (18)
and its corresponding point (z',y/, f)T € I,

o fX ,_ 1Y

YT v =

=it (19)



3.1.  Homing with a known focal length

Again, we wish to move a robot to an unknown target
position and orientation .S, which is given in the form
of an image / of the scene taken from that position.
At any given point in time the robot is allowed to take
an image I’ of the scene and use it to determine its
next move. Denote the current unknown position of
the robot by S’, our goal then is to lead the robot to
S. Below we assume that the same camera is used for
both the target image and images taken by the robot
during its motion, and that the internal parameters of
the cameraare all known. The external parameters, that
is, the relative position and orientation of the camera
in these pictures is unknown in advance.

To determine the motion of the robot we would like
to recover the relative position and orientation of the
robot S’ relative to the target pose S. Given a target
image I taken from S and given a second image I’
taken from S’, by finding sufficiently many correspon-
dences in the two images we can recover five of the six
parameters relating the two poses. These are the three
translation parameters, which are known only up to a
scaling factor, along with the three rotation parameters.
From the recovered translation parameters we can de-
duce the direction to the target position, and from the
rotation parameters we can compensate for any differ-
ences in roll, pan and tilt of the camera. However,
because the translation parameters are known only to
within a scaling factor the direction to the target po-
sition is determined only up to a twofold ambiguity.
Namely, we cannot yet determine whether to reach the
target position we need to proceed forward or back-
ward along the recovered direction. In addition, we
cannot recover from these parameters the distance to
the target position. Below we review how to recover
the five parameters and then show how we can resolve
the ambiguity in the direction to the target from two
images. Later we show how to recover the distance
to the target by considering the changes in the images
taken by the robot while it moves.

Given correspondences between feature points in
the target and current images, we estimate the motion
parameters using the algorithm described in [10, 35],
which is based on the linear algorithm proposed in [20,
33]. This algorithm requires at least eight correspon-
dences in the two images. Other, non-linear approaches
can be used if fewer correspondences are available [17].

Visual Homing: Surfing on the Epipoles 9

Assume WLOG that S is theidentity pose. Let P; =
(X;,Y:,7;)T, 1 < i < n be a set of n object points.
Under perspective projection the image at the target
pose is given by

fX; 1Y
T =, i = :
7 i =

ar)

Suppose in the current image the object appears ro-
tated by R and translated by t = (,,%,,t.)7. (This
is equivalent to first translating the camera by —t and
then rotating it around its center by R”). Then, the
image at the current pose is given by

X Y/ :
%z%ﬁn wzéﬁ, (12)

where P, = (X!, Y/, Z)T = R(P; — t). Denote
the image points in 7 by p; = (z;, v, f)7 andin I’
by pi = (z, 4, f)T (we here adopt a homogeneous
notation for the points), it can be readily shown that a

3 x 3 matrix E relates these points in a bilinear form
p;" Epi=0. (13)

E is called the essential matrix, and its components
are functions of the motion parameters. To compute
the motion parameters we first recover £. Eq. (13)
is homogeneous and linear in the components of F.
Consequently, the components of F can be recovered
up to a scale factor using eight pairs of corresponding
points.

The epipole, v € I, is the projection of the current
position in the target image, and so its homogeneous
coordinates are identical to those of the current posi-
tion,namely, tot = (t,,%,,%.)” . Since the application
of F toapoint p € I can be shown to satisfy

Ep = R(t x p), 14
then v satisfies the equation
Ev =0, (15)

and so it is determined by the kernel of £. By solving
Eq. (15) we determine the translation parameters up to
a scale factor. Consequently, the direction to the target
position can be recovered (up to a twofold ambiguity),
but the distance to the target position remains unknown.

Once the epipole, v, is recovered we proceed to de-
termining the rotation parameters. Due to Eq. (14) E
can be written as

E = RT, (16)
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Fig. 6. The quality of our estimate of the angular difference between
the current and the target viewing directions. The left horizontal co-
ordinates represent the distance in orientation to the target (running
between 0° and 180°). The right coordinates represent the error in
our estimate (running between —30° and 30°), and the vertical co-
ordinates represent the probability of obtaining such an error. Notice
that the error diminishes as the distance to either the target or mirror
viewing directions becomes small.

(73) and away from the mirror image (7},). We then
checked the likelihood of Eq. 9 for every choice of 6
(1° < 6 < 360°) and chose the angle that maximized
this expression.

Simulation results showing the quality of our esti-
mate are shown in Figure 6. Note that around the tar-
get and mirror viewing angles, 6; and 6,,,, (in the figure
6: = 0° and #,,, = 180°) the estimate is very good, and
it deteriorates somewhat as we get away from the tar-
get viewing direction. Using this ML-estimator our
estimate improves as we approach the target viewing
direction.

‘We have shown how to estimate all the missing com-
ponents of the pose. After estimating the pose we de-
cide on the desired number of steps n that the robot
should perform to reach the target position and orien-
tation. This number would depend on the maximum
size of step allowed in each of the components. Af-
ter determining n we advance the robot at every step
1/n of the distance in every component between the
poses of the current and target images. Ateach step we
update our estimates of the components of the separa-
tion in the pose between the current and target images,
and consequently we also update the desired number
of steps to the target position.

It is important to point out that when the viewing di-
rection of the current image is near the target viewing
direction all the apparent angles are approaching their
values in the target image, and consequently the num-

ber of improving angles cannot be used to estimate the
distance to the target any longer. When this happens
we switch to a Newton-Raphson minimization tech-
nique which converges to the target viewing direction
by looking for the viewing direction which will mini-
mize the distance between corresponding points in the
current and the target images.

To determine the final steps to the target we perform
the following steps. For every pose parameter v we
define a measure f(v) that vanishes when we reach
the target position. For the scale s we define f;(s) =
(s — 1), for the viewing direction we use the difference
in the apparent angles in the images, which is invariant
to all other parameters, and for translation parallel to
the epipolar lines we use the difference in the position
of the centroids of the points in that direction. For the
rest of the parameters (rotation in the image plane and
translation orthogonal to the epipolar lines) we simply
use the value of the parameters as the measure (that is,
f(v) = v). For each one of these parameters we use
the following technique. Denote by v; the value of the
parameter at the i’th step and by f(v;) the value of the
function measured at that step. We will approximate
the derivative of f at v; by

Jvi) = f(vim)

v — it

f'(vi) ~ (10)

Using this approximation we will determine the next
step so as to bring f to zero assuming it is a linear
function of ». Thus, we will choose v;y1 = v; —
f(i)/f'(v;). The new values of the parameters are
combined into a new pose, and they determine the next
step of the robot. Note that in this formulation the
parameters are completely decoupled and so they can
be estimated independently. The only exception is the
translation along the epipolar lines, which depends on
the change in viewing direction.

3. Full Perspective Homing

In this section we consider the problem of homing
under perspective projection. Below we describe our
method for homing when the focal length of the cam-
era is known. For this case we show how the motion
parameters can be recovered, and develop methods to
resolve the ambiguity in the direction and recover the
distance to the target position. We then extend this for-
mulation to the case that the focal length is unknown.
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Fig. 5. By checking if the apparent angles are getting closer or
further away from their values in the target or their complements in
the mirror images, the correct direction on the viewing sphere can
be determined. The plot shows the percent of angles (and standard
deviations) which point in the correct direction for a given viewing
direction on the great circle using the target and the mirror angles.

Active exploration of apparent angles was used
in [36, 21], who looked to recover the 3-D angle by
aligning the line of sight perpendicularly with respect
to a given angle. The image taken in that pose was
then used for object recognition in [36]. Our method,
in contrast, sends the robot to a position from which
the apparent angles will be identical to those appear-
ing in the target image. The actual 3-D angles are not
recovered explicitly in this process.

2.3. Estimating the Number of Steps to the Target

In the previous sections we have shown how we can
estimate the motion parameters which separate the cur-
rent pose of the robot from the target pose. The rotation
of the image has been recovered completely. For the
translation components in the image plane we have an
estimate. However the rest of the parameters, the trans-
lation in depth (indicated by a scale change) and the
change in the viewing direction were estimated only as
adirection, while their magnitude, the distance in depth
between the two images and the angular separation be-
tween the viewing directions were not determined. In
the rest of this section we show how we can estimate the
missing distances to the target pose. Estimating these
missing distances will enable the robot to perform a
smooth motion to the target by combining at every step
a similar fraction of each of the motion components.
We begin by deriving the component of translation
along the optical axis from the scale changes. Suppose
the scale between the current and the target image is
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given by s, and suppose that at the following step the
scale becomes s’. Denote by Z, and 7|, the average
distances between the camera and the scene in the target
and current images respectively, and denote by « the
reduction in this distance between the current and the
following image. The scale components in the current
and next image are given by

Z} 7, —«a .
s=—, and s = . 7

7 7 Q)
Assuming « is known (this is the forward motion of
the robot) then we obtain two linear equations in two
unknowns, Z, and Z{. Consequently, the number of
steps required to reach to the distance 7 is

7z, - Zo S/ .

=2 = . ®)

0% s§— S5

n

Notice that « disappeared from the final term, so we
do not actually need to know the step size of the robot.
Next, we estimate the angular separation between the
current and target viewing directions. One way to esti-
mate this angle is by comparing the inter-frame motion
of the camera between the current and previous images
and between the current and target images. Below we
introduce a different method that determines the angle
based on the percentage of angles which point to the
correct direction. We make the assumption that the
percentage of correct directions is distributed normally
with means and standard deviations as plotted in Fig-
ure 5. We compute a Maximum Likelihood estimator
of the angle by maximizing the following expression

Ty — 1 (8))2 T — tim (8))2
max ,
6 o (6)V2m om (0)V2m

©)
where T; and T, are the percent of angles whose values
are moving toward the value of the angle of the target
and mirror images respectively. This expression for the
ML-estimator assumes that the two measurements, 7;
and T,,, are independent. In practice, this assumption
is inaccurate, but provides a reasonable approximation
of a more complex ML-estimator. To maximize this
expression we sampled the circle of viewing angles at
aresolution of 1°. For each of the 360 angles we com-
puted the mean and standard deviation of angles that
point in the correct direction from the random sample
described in Section 2.2 (Figure 5). Then, at every step
of the robot we computed the number of angles that
point in the correct direction toward the target image
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Fig. 4. “Good” (thick lines) and “bad” (thin lines) sections with
respect to the desired angle at the target (left) and mirror (right)
images obtained while moving along a great circle on the viewing
sphere.

rotating in the wrong direction will always decrease
#(0). The apparent angle, therefore, approaches its
value in the target image if and only if the robot is ro-
tating in the correct direction. A similar situation is
obtained when 6; = 0,,,;,,. In most cases, however, the
apparent angle at the target image will fall somewhere
between the minimum and the maximum. In this case
identifying the correct direction is more complicated.

First, there exists a second viewing direction on the
great circle which gives rise to the same apparent an-
gle as in the target image. We call this direction a
false target. Fortunately, it is not difficult to distin-
guish between the target and the false target because
every angle in the scene gives rise to a different false
target. Secondly, there exist “good” and “bad” sec-
tions on the great circle, where a section is considered
“good” if when rotating in the correct direction along
this section the apparent angle approaches its value in
the target image.

Figure 4(a) shows an example of ¢(6). The thick
segments denote the “good” sections of the great cir-
cle, and the thin segments denote the “bad” sections
of the great circle. It can be seen that a “good” sec-
tion exists around the target viewing direction, and as

we get further away from the target “bad” sections ap-
pear. Consequently, suppose we consider the apparent
angles in the current image, count how many of them
approach the target, and use majority to decide on the
correct direction then we are likely to make a correct
choice near the target viewing direction. Our chances
to be correct, however, deteriorate as we get away from
the target.

We therefore define a similar measure for the mirror
image. Again, the great circle can be divided to “good”
and “bad” sections, where now “good” sections are
sections in which walking in the wrong direction will
make the apparent angle approach the mirror image
(Fig. 4(b)). This measure is likely to point to the correct
direction in the neighborhood of the mirror image.

Since each of the two measures, the similarity to the
target and mirror images, are reliable in different parts
of the great circle we would like to use each of them
at the appropriate range of viewing directions. We do
so by checking which of the two measures achieves a
larger consensus. The rationale behind this procedure
is that for every angle in the scene each of the measures
covers more than half of the great circle.

To check the quality of our decision procedure we
tested the procedure on a 1000 great circles chosen
at random. For each circle 1000 point triplets were
chosen at random. We plotted in Figure 5 the aver-
age percentages /i;(0) and pi, (7) of target and mirror
angles respectively which point to the correct direc-
tion. In order to show the standard deviation of those
functions o(0) and o, (6), we plotted p(6) + o ().
In these plots #; = 0° and 6,, = 180°. Note that
around 6;, p. () is close to 1 and o (6) is very small,
while i, (0) is close to 0.5 and o, (6) is relatively
large. This situation is reversed around f,,,. What is
more important is that for every 6 along the great circle
max(u (), um (#)) > 0.5. Therefore, the decision as
to which way to go is determined by finding which di-
rection is supported by more angles by one of the two
similarity measures.

In order to guarantee convergence, we flip the direc-
tion of rotation only when the number of angles which
support changing the direction is higher then the num-
ber of angles which caused the previous change. This
guarantees that in the very rare case when the major-
ity of angles do not support the correct decision, after
several direction changes, the correct direction will be
found, and the viewing direction component of the pose
will not be trapped in a local minimum.
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Fig. 1. Twoimages of a scene. Ten pairs of corresponding points have been extracted and the points (denoted by the circles) and their respective

epipolar lines have been overlaid over the original images.

Fig.2. 'Twoimage planes are illustrated on the viewing sphere. The
shortest path between the two viewing directions is via the great circle
on which they both lie. When trying to compute the transformation
between the two viewing directions all that can be recovered is the
equation of the great circle on which the two viewing directions lie
but not where on the great circle is the other viewing direction.

along the great circle we will evaluate the similarity be-
tween the images and see whether they become more or
less similar. Using this information we will be able to
determine if the robot is changing its viewing direction
along the shortest path to the target viewing direction,
or if it is rotating in the other direction, in which case
we can correct its rotation.

The similarity measure that we introduce should vary
with a change in the viewing direction, but be invariant
to scale changes, translation, and image rotation.

The simplest measure that satisfies these criteria is
a measure based on ratios between distances between
pairs of points. There is one problem with this measure
however. The ratios computed for the mirror image
of the target are identical to those of the target. Thus
when moving in the long path of the viewing sphere we
will be attracted to the mirror direction of the target.
This implies that a measure based on ratios between
distances will be limited to viewing directions that are
close to the viewing direction of the target.

100

50

250 |

Visible Angle
o

0 50 100 150 200 250 300 350
Angle on Great Circle

Fig. 3. Three examples showing the effect of changing the viewing
direction along a great circle on projected angles.

A better measure of similarity would be a measure
that is based on the apparent angles formed by triplets
of points in the current and target images.

Figure 3 shows several examples of how apparent an-
gles change as the viewing direction moves on a great
circle. Given an angle ® in the scene and a great cir-
cle on the viewing sphere we denote the apparent an-
gle as a function of the angle on the great circle 6 by
#(0). ¢(#) has the following characteristics: it is a
periodic function whose period is 27. Furthermore,
o(8) = —¢(0 + ). Also, ¢(#) has a single maximum
at some angle, 6,,,., and a single minimum, obtained
at 0,,in = Omas + . Finally, each angle between the
maximum and minimum appears exactly twice in the
function.

Our measure of similarity is based on testing whether
the apparent angles seen in the images taken by the
robot are approaching the corresponding angles in the
target image.

Denote by 6, and 6,,, the angles on the great circle
corresponding to the target and mirror viewing direc-
tions respectively. If 8, = 6,4, then it is straightfor-
ward to identify the correct direction, since rotating in
the correct direction will always increase ¢(6), while
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A point p; = (z;, y;) in the first image, 7, defines
a line in the other image, I’, where its corresponding
point must lie. The equation for this line is given by
Az} + By, + K = 0, where K = Cz; + Dy; + E.
This derivation was introduced in [13, 16, 18, 29].

An example of the epipolar lines found for a pair of
images can be seen in Figure 1.

Given the current and target images the unknown co-
efficients (A, B, C, D, and F) in equation (5) can be
found using at least four pairs of corresponding points.
Notice that (5) is homogeneous in these unknowns,
and so a solution can be obtained only up to an ar-
bitrary factor k. In our experiments we use more than
four correspondences to obtain a more accurate solu-
tion using linear least squares fit. In addition, robust
estimation techniques are used to discard false corre-
spondences [9].

To guide the robot to the target image I given the
current image I’ we need to compensate for the motion
parameters that separate the two images. Thus, we
would like to use the epipolar relation to recover the
scale, translation, and rotation parameters that relate
the two images. The change in scale between the two
images can be obtained by:

C?+ D*  s*k*(r3, +r3y)  s7k*(1 —rdy) 9
BT Rt R
(6)

To eliminate scale differences the camera should be
moved either forward (when s > 1) or backward (when
s < 1) in order to bring the scale factor to 1. The
translation component orthogonal to the epipolar lines
is given by —FE/«/A? + B?. The translation compo-
nent parallel to the epipolar lines cannot be determined
from this equation, but is estimated using one pair of
corresponding points. For stability reasons we use the
centroid of all the feature points in the two images. This
estimate improves as the error in the viewing direction
diminishes.

For the rotation components it can be easily shown
that every rotation in space can be decomposed into a
product of two rotations, a rotation around some axis
that lies in the image plane followed by a rotation of
the image around the optical axis. The former rota-
tion corresponds to a change of the viewing direction.
The image rotation can be compensated for by rotating
the epipolar lines in the current image until they be-
come parallel to the epipolar lines in the target image.
Differences in the viewing direction, however, cannot

=S .

be resolved from two images. This is the reason why
structure from motion algorithms that assume an or-
thographic projection require at least three images to
recover all the motion parameters [13, 34].

Although two images are insufficient to resolve the
differences in viewing direction completely, the axis of
rotation required to bring the robot to the target pose
can still be recovered from the images leaving the angle
of rotation the only unrecoverable parameter. Knowing
the axis of rotation will allow us to gradually rotate the
robot until its viewing direction will coincide with the
target viewing direction,

The missing angle of rotation only prevents us from
knowing in advance how much rotation should be ap-
plied to the robot in this process.

In addition, the direction of rotation is subject to
a twofold ambiguity; namely, we cannot determine
whether rotating to the right or to the left will lead
us faster to the target orientation. [3] showed that
the axis of rotation is orthogonal to the epipolar lines.
In [30] we show also that rotating along the epipo-
lar lines corresponds to changing the viewing direction
along a great circle in the viewing sphere which passes
through the viewing directions of the target and current
images. Therefore, by rotating the camera parallel to
the direction of the epipolar lines we can compensate
for the differences in the viewing direction. This is
illustrated in Figure 2, Motion along epipolar planes
was used also in [37] to actively distinguish between
the occluding contour and surface markings of objects.

2.2, Resolving the ambiguity

The epipolar constraints in the current and target im-
ages provide us with all the motion parameters except
the angle of rotation required to align the viewing di-
rection of the robot with the target viewing direction.
However, there is one more ambiguity to be resolved.
Knowing the axis of rotation in the plane determines
the great circle on the viewing sphere which passes
through both the current and target viewing directions.
Rotating in parallel to the epipolar lines corresponds to
moving along this great circle.

However, we have not determined which direction
on the circle is the shorter of the two directions con-
necting the current and target viewing directions.

To resolve this ambiguity we introduce a similarity
measure that can be applied to the current and target im-
ages. While the robot is changing its viewing direction



images, several target images along the way can be
used where there is sufficient overlap between each pair
of consecutive images. Using the epipolar geometry,
most of the parameters which specify the differences
in position and orientation of the camera between the
two images are recovered. However, since not all the
parameters can be recovered from two images, we de-
velop specific methods to bypass these missing param-
eters and resolve ambiguities when such exist. Once
the parameters are recovered our algorithms produce
motion commands which direct the robot toward the
target. These commands are then translated to motor
commands using a standard inverse kinematics proce-
dure. Our algorithms in general lead the robot to the
target along a straight line and change its viewing di-
rection along a great circle. We present simulations
and real experiments that demonstrate the robustness
of the method and that the path produced by the algo-
rithm always converges at the target pose.

The paper contains the following sections. In Sec-
tion 2 we introduce a method for homing when the
weak-perspective projection is assumed. It is known
from [34, 13] that two images determine the epipolar
geometry, but are insufficient to recover all the mo-
tion parameters. By recovering the epipolar geometry
of the current and target images we can determine the
translation in depth and the rotation in the image plane.
The change in viewpoint and the translation along the
epipolar line cannot be determined. Nevertheless, by
rotating the robot parallel to the epipolar lines we can
change the viewpoint in the desired direction. This mo-
tion, however, is subject to a twofold ambiguity, which
is resolved by monitoring the change in the apparent
angles in consecutive images taken by the robot.

Section 3 introduces the method under full perspec-
tive. Here, the translation parameters can be recovered
only up to a scale factor, providing the direction to the
target position, whereas the rotation parameters can
be recovered completely. By letting the robot make a
step toward the target we recover the missing param-
eter. Also, we consider the case that the focal length
of the camera is unknown. In this case the compo-
nent of translation parallel to the optical axis cannot be
recovered. To overcome this we instruct the robot to
correct its motion so as to maintain the epipole fixed.
This results in a motion in the desired direction. We
present the results of simulations and real experiments
in Section 4. Finally, a number of issues raised by our
algorithm and future research directions are discussed
in Section 5.
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2, Homing Under Weak-Perspective

We begin by introducing an algorithm for homing under
the weak-perspective projection model. This model
is accurate when the viewed object is small relative
to its distance from the camera. The more accurate
perspective model is handled in Section 3,

2.1. Derivation

Our objective is to move the robot to an unknown target
position and orientation S, which is given in the form
of an image 7 of the scene taken from that position. At
any given step of the algorithm the robot is allowed to
take an image I’ of the scene and use it to determine
its next move. Denote the current unknown position of
the robot by .S’, our goal then is to lead the robot to S.

WLOG we can assume that the pose S is the identity
pose. LetP; = (X;,Y;, Z;)T,1 <i<n,beasetof n
object points. Under weak-perspective projection, the
image at the target pose is given by

rp=X;, y=Y:. (M

A point p} = (2},3/)T in the current image I’ is

given by
p; = [sRP](1,2) + t, 2

where R is a 3 x 3 rotation matrix, s is some positive
scale factor, t € R? is the translation in the image, and
[.](1,2) denotes the projection to the first and second
coordinates of a vector.

More explicitly, the position of a point p} in I’ is
given according to (2) by

z; = sr11X; + sr12Y; + sr13Z; + tg, 3)

Vi = sro1Xi + sr22Y; + srasZ; + by,

where r;; are the components of R and t = (¢5,1,).
Eliminating the space coordinates and using the or-

thonormality of R we obtain the equation

/ /
To3X; — T13Y; + ST32%; — ST31Y;i+

4
(tyriz — tpra3) =0, @)

which is a linear relationship of the form
Az + By; + Cz; + Dy; + E=0. ®)

This equation defines the epipolar relationship between
corresponding points in the two images.
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itself near an object which may appear at different po-
sitions at different times. Secondly, due to occasional
errors in measuring the actual motion of the robot, the
robot may be unable to put itself sufficiently accurately
in the desired position.

In this paper we propose a different approach to the
problem of guiding a robot to desired positions and ori-
entations. In our method the target pose is specified by
an image taken from that pose (the target image). The
task given to the robot is to move to a position where
an image taken by a camera mounted on the robot will
be identical to the target image. During the execution
of this task the robot is allowed to take pictures of the
environment, compare them with the target image, and
use the result of this comparison to determine its sub-
sequent steps. We refer to the use of images to guide
a robot to desired positions and orientations by visual
homing.

Visual homing offers several advantages over the
conventional approach of specifying the coordinates
and orientation explicitly. First, accurate advance mea-
surement of the environment is not required. Secondly,
the method is robust; by aligning the viewed image
with the target image the robot can correct motion er-
rors should such errors arise. Finally, the method is
flexible; it allows the robot to position itself relative to
given objects even if these objects may change their
position in the environment. Likewise, it allows the
robot to reach the same position with respect to dif-
ferent instances of the same object. Applications to
visual homing exist in almost every domain of robot
navigation and manipulation. Visual homing offers a
way to produce repeating behaviors by relying on vi-
sual memory. In addition, it offers a convenient and
natural relay for human-robot interface.

Visual homing is the subject of a handful of studies.
[24, 39, 22, 38] proposed methods for homing in which
the path of the robot is predetermined. Images of the
scene taken in stations along this path are used to pro-
duce signatures which are stored in the system memory
along with vectors directing the robot from one station
to the next until the target location is reached. The
main disadvantage of this approach is that it requires
the pre-storage of the entire path that the robot should
take. This is particularly problematic if the starting
position of the robot may vary. Methods for “on-line”
homing were introduced in [12, 5]. Hong et al. [12]
send a robot to a desired position by comparing a tar-
get image to images acquired by the robot. Unlike our

method, however, they use 360° panoramic views of the
scene. Furthermore, in their method the robot can only
move ina 2-D plane. This simplifies their method con-
siderably since only three parameters of motion need
to be recovered. Finally, the motion determined by the
method is rather heuristic. In contrast to their method,
our method uses images obtained by a normal camera,
it allows the robot to translate and rotate in 3-D space,
it can handle large perspective distortions, and it finds
the shortest path to the target. Dudek and Zhang [5]
proposed alocalization method that can be used also for
homing. They used backpropagation to train a multi-
layer neural network on a dense set of images of the
environment. The network can then infer the posi-
tion of the robot by interpolating between the stored
images. The method is applied to infer position in 2-
D only. Another method for navigation in 2-D based
on identifying landmarks was presented in [19]. Other
methods for homing require the storage of a 3-D model
of the environment in addition to the target image [2, 8].
Also of relevance is work on image-based visual ser-
voing (see reviews in [14, 11]). This work focused
mostly on guiding a robot to desired positions when a
3-D model of the environment is provided and when
the robot is equipped with multiple cameras [6, 27].
Also, there has been work on active tracking of ob-
jects [4, 7, 15, 25, 26] and active object recognition
and shape recovery [36, 21].

Below we introduce a new method for visual hom-
ing. In our method the target pose is specified by a
single image taken from that pose which is given to the
robot as an input. A 3-D model of the environment is
not required. The method then proceeds by comparing
the target image to images taken by the robot, one at a
time. The method requires no memory of previous im-
ages taken by the robot. Also, unlike existing methods
(e.g., [12, 5]) it requires no special camera, and it does
not require the robot to look to its side in a forward
motion. We present two homing algorithms for two
standard projection models, weak and full perspective.
The algorithms are based on recovering the epipolar
geometry relating the current image taken by the robot
and the target image. Correspondences between points
in the current and target images are used for this pur-
pose. (The problem of finding correspondences be-
tween feature points, however, is not addressed in this
paper.) The robot’s starting position, therefore, is con-
strained only to positions in which the initial and target
positions contain sufficiently many correspondences.
When there is not enough overlap between the two
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Abstract. We introduce a novel method for visual homing. Using this method a robot can be sent to desired
positions and orientations in 3-D space specified by single images taken from these positions. Our method is based
on recovering the epipolar geometry relating the current image taken by the robot and the target image. Using the
epipolar geometry, most of the parameters which specify the differences in position and orientation of the camera
between the two images are recovered. However, since not all of the parameters can be recovered from two images,
we have developed specific methods to bypass these missing parameters and resolve the ambiguities that exist. We
present two homing algorithms for two standard projection models, weak and full perspective.

Our method determines the path of the robot on-line, the starting position of the robot is relatively not constrained,
and a 3-D model of the environment is not required. The method is almost entirely memoryless, in the sense that
at every step the path to the target position is determined independently of the previous path taken by the robot.
Because of this property the robot may be able, while moving toward the target, to perform auxiliary tasks or to avoid
obstacles, without this impairing its ability to eventually reach the target position. We have performed simulations
and real experiments which demonstrate the robustness of the method and that the algorithms always converge to
the target pose.
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