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Abstract

E�cient and robust model�based recognition systems need to be able to estimate

reliably and quickly the possible locations of other model features in the image when

a match of several model points to image points is given� Errors in the sensed data

lead to uncertainty in computed pose of the object which in turn lead to uncertainty

in those positions� We present an e�cient and accurate method for estimating

these uncertainty regions� Our basic method deals with an initial match of three

points� With a small additional computational cost it can be used to compute

the uncertainty regions of the projection of many model points using the same

match triplet� The basic method is then extended employing statistical methods

to estimate the uncertainty region when given initial matches of any size� This is

the major practical contribution of the paper because when the number of points

in the match increases the size of the uncertainty region decreases dramatically

which helps to discriminate much better between correct and incorrect matches in

model�based recognition algorithms�
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� Introduction

Model�based object recognition systems usually involve estimating the pose of the object

using a small set of matched features� The hypothesis is then veri�ed by using the pose

to �nd additional matches� These systems perform the operations of pose estimation and

estimation of the location of other features many times during the recognition process�

Therefore e�cient methods for computing them must be developed for these systems

themselves to be e�cient� For example� in the alignment recognition method presented

by Huttenlocher and Ullman 
��� the pose of the object is estimated from a match of triples

of model and image points and used to predict the approximate image location of other

points� If there are mmodel points and n image points� O�m�n�� pose estimations will be

computed and for each posem estimations of the position in the image of other points will

be computed� Therefore it is critical for the performance of this and similar algorithms

to �nd e�cient methods for pose estimation and computation of the uncertainty region

in the image of other model points�

Another important factor which is critical for the performance of recognition algo�

rithms is the quality of the estimate of the uncertainty region� The more exact the

estimate� the lower the chances for the projection of a model point not to be within the

uncertainty region �false negative�� A good estimate of the position of projection of the

model point will result in a smaller uncertainty region� This lowers the chances for a

point in the image to be within the uncertainty region of an incorrect match �false posi�

tive�� which might cause an incorrect match to be considered correct� requiring a costly

veri�cation process� Therefore a method which produces good estimates with small exact

uncertainty regions will improve the e�ciency of recognition algorithms considerably�

Even with an improved method quite a few incorrect matches will be considered

correct due to the relatively large uncertainty regions� To prune out most of these false

positives� image points which lie within the uncertainty region of the projection of other

model points can be added to the match and new uncertainty regions of other points

which are based on the new larger match can be computed� These uncertainty regions

�



are considerably smaller �by a factor of �� on average� reducing the chances for a false

positive� The veri�cation stage will only be left with a handful of cases to check�

In this paper we will consider the �weak�perspective� imaging model� We use this

model because it is simpler than the full perspective model and because it is a good

estimate of the perspective model when the object is relatively far from the camera

relative to its size�

Several methods for estimating the pose of the object from a match of three model

points to image points have been presented 
�� �� �� �� ���� Methods for estimating

the uncertainty regions have also been presented� Several methods estimate the pose

uncertainty region 
�� �� ��� which can then be used to estimate the uncertainty regions

in the image� others estimate directly the uncertainty regions in the image 
�� �� ��� Our

method belongs to the latter�

In 
��� the three uncertainty circles around the three image points in the match are

uniformly sampled and for each combination of sampled points the position of the fourth

point is calculated� The results of these experiments show that the true uncertainty

regions tend to be circular� They also show that a very coarse sampling of only � points

of each circle �i�e� ��� pose computations� is needed to achieve a very good estimate of

the radius of the circle�

In 
��� the uncertainty region is estimated by a linear approximation� When the given

match has more than three points� linear constraints on the uncertainty region are derived

and the uncertainty region is estimated using linear�programming�

In 
��� the pose uncertainty region is estimated for a point triplet� For each additional

point the uncertainty region is reduced using a Kalman �lter� From the resulting pose

uncertainty region it is possible to compute the uncertainty region of a projection of a

point�

Our method for estimating the uncertainty regions is based on the pose estimation

method presented by Alter 
�� which is very e�cient and has an elegant geometric in�

terpretation� The main advantages of our method is that without any additional cost

it is able to produce smaller uncertainty regions which reduce the probability for false
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matches� and has a higher probability for the image point to be within the uncertainty

region� The method is then extended to deal with matches of more than three points ef�

�ciently using a statistical framework� Using larger matches reduce considerably the size

of the uncertainty region and show considerable improvement on previously published

results� This extended method can be used to prune out most of the false positives at a

small computational cost�

The rest of the paper is organized as follows� We review Alter�s pose estimation

method in Section �� We present our method for estimation of the uncertainty regions

using a three point match in Section �� and extend our method to larger sets of matches

in Section �� Finally a number of issues raised by our algorithm and future research

directions are discussed in Section ��

� Geometric Pose Estimation

In this section we will present a brief overview of Alter�s geometric pose estimation

method� For details please refer to 
��� The geometric setting underlying the weak�

perspective three point pose estimation problem is shown in Figure �� The picture shows

the three model points being projected orthographically to the plane that contains m�

and is parallel to the image plane� and then shows them being scaled down by scale factor

s into the image� Let the distances between the model points be R��� R�� and R��� and

the corresponding distances between the image points be d��� d�� and d��� Also let

a��R�� �R�� �R�����R�� �R�� �R����R�� �R�� �R����R�� �R�� �R���

b� d�����R�
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Then the unknown parameters in Figure � are

s�

s
b�

p
b� � ac

a

�h�� h����
�q

�sR���� � d���� �
q
�sR���� � d���

�
���

�H��H���
�

s
�h�� h���

For each image of three points there are two poses which yield that image� ��� yields

two pairs of values for h� and h� which correspond to those two poses�

Given image points i� � �x�� y��� i� � �x�� y��� and i� � �x�� y��� the �D locations of

the model points in camera�centered coordinates are�

m��
�

s
�x�� y�� w�� ���

m��
�

s
�x�� y�� h� � w�� ���

m��
�

s
�x�� y�� h� � w�� ���

� Uncertainty Region Estimation

We now turn to the �rst topic of this paper� estimating the region in the image in which

the projection of a fourth model point m� will be located� We model errors by assuming

that the detected feature point is within � pixels from the location of the true point� The

main problem is to try to estimate the e	ects of the uncertainty in the image locations

of i�� i�� and i� on the estimated location of the fourth point i�� Using a �rst order

approximation� the maximum displacement occurs when the errors of the three points

lie on the circle of radius �� Higher order terms may cause the position of the maximum

displacement to move slightly from the borders of the ��disks� but we will ignore their

e	ect in our approximation since as we tested experimentally their e	ect on the size of

the uncertainty region is minimal� As mentioned above the true uncertainty regions tend

to be circular therefore we will try to �nd a combination of errors in the projections of
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the three model points which will yield the largest displacement in the x coordinate of

m� and use that as our estimate for the radius of the uncertainty region�

In 
�� it is shown that the coordinates of m� can be expressed as a function of the

coordinates ofm��m�� andm� by solving the following vector equation for the �extended

a�ne coordinates�� �	� 
� 
�� of m��

m� � 	�m� �m�� � 
�m��m�� � 
�m��m��� �m� �m�� �m�� ���

Substituting ����� into ��� yields that the image location i� of m� is

i� � �	�x� � x�� � 
�x�� x�� � 
��y� � y��H� � �y� � y��H�� � x��

	�y� � y�� � 
�y� � y�� � 
���x� � x��H� � �x� � x��H�� � y��� ���

We will use this expression for the position of the image location ofm� to estimate the

uncertainty region� Let ��� ��� �� be the error vectors for points i�� i�� i� respectively� We

will compute the �rst order approximation of the size of the uncertainty region� Such an

estimate requires replacing each image coordinate by the measured value plus the error

and substitute any value which depends on image coordinates �H� and H�� by their value

and plus their derivatives with respect to the image coordinates multiplied by the error

in the corresponding coordinate� The derivation will be done in two steps� In the �rst

step we will disregard the changes to H� and H� due to perturbations in the positions

of the image points and add this e	ect in the second stage� Substituting the perturbed

points into ��� and subtracting the unperturbed image position of m� yields�

��� � ��� 	� 
� 
�H� �H��� � �� � �	� 
H�� � �� � �
��
H���

�� � ��
�H� �H��� �� 	� 
� � �� � ��
H�� 	� � �� � �
H�� 
��� ���

for the uncertainty vector in the image�
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Let

 ���� � 	� 
� 
�H� �H����

 ���	� 
H���

 ���
��
H���

 �� ���
�H� �H��� � � 	 � 
��

 �� ���
H�� 	��

 �
�
��
H�� 
��

Using this notation ��� is reduced to

��� � � � �� �  � � �� �  �� �� �  �� � �� �  �� � �� �  �� �� ���

Under the constraint jj��jj � jj��jj � jj��jj � �� and neglecting for now the fact that

H� and H� are not constants� the �i�s which maximize the x coordinate of ��� are

�i � �
 i

jj ijj �

As j ij � j �i j and  i � �i � �� the y coordinate of the displacement is zero� It is easy to
show that when the �i�s computed above are all rotated by any angle � the displacement

stays the same� yielding a circular uncertainty region� The probability distribution of

the projection of the fourth point is a linear combination of the distribution of the

three circles� When they are distributed uniformly this yields a distribution similar

to a bivariate Gaussian whose mean is the unperturbed projection of the fourth point�

This is due to the fact that a linear combination of uniform distributions converges to a

Gaussian distribution as the number of distributions increases� If the error in the three

image points had a Gaussian distribution then a linear combination of the distributions

would also be a Gaussian �a linear combination of Gaussians is a Gaussian��

When the changes in H� and H� due to perturbations in image coordinates are rela�

tively small� the deviations of the uncertainty region from a circle are minor� The larger

the perturbations of H� and H� the less circular the uncertainty region becomes� This will
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happen when H� and H� are relatively small compared to their derivatives with respect

to the coordinates of the three points� This happens for example when the plane in which

the three points lie is close to parallel to the image plane �H� and H� are very small� or

when the projections of the three points are very close to each other �the derivatives are

very large��

We will now add the e	ects of the changes in i�� i� and i� on H� and H�� Let � denote

the vector of the six coordinates of i�� i� and i�� We can evaluate the derivatives

�Hi

��j
i � � � � � � j � � � � � ��

by computing directly the derivatives of the equations in Section �� or by estimating

them using �nite di	erences at a cost of six additional pose estimations� We use these

derivatives for the following �rst order approximation of H� and H�

Hi�� ���� � Hi��� �
�X

j��

��j
�Hi

��j
� o�����

Substituting the Hi�s in ��� by their �rst order approximation computed above� we get

a �rst order approximation for the x and y coordinates of m�� To the coe�cients of the

j�th component of �� shown in ��� we add
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� 
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��j
and � 
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� �
�

respectively� The coe�cients of �� are now
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However as  i �  �i �� �� the estimate of the uncertainty region is no longer perfectly

circular�

Using ���� we can compute a �rst order approximation of the radius of the uncertainty

region in a way similar to 
��� As � is not in�nitesimal� higher order termsmust be included

in our estimate� We evaluate i� using as the image positions i� � ��� i� � ��� and i� � ���

which according to our �rst order approximation are supposed to produce the maximum

displacement from the position of i� computed using i��i�� and i�� The distance between

the two estimates of i� is used as our estimate for the radius of the uncertainty region�

Our estimation method never overestimates the real radius of the uncertainty region

because it is the result of a perturbation computed for a point triplet which are within

their respective uncertainty regions�

One of the main applications of this method is in alignment algorithms
��� In that

case given a certain match uncertainty� regions for the projections of many model points

have to be computed� Using our method all that needs to be done is to compute the

derivatives of H� and H� once and then substitute into ��� and �
� the di	erent extended

a�ne coordinates �	� 
� 
� of each point and compute the size of the uncertainty region

at the cost of one pose estimation�

��� Experimental Results

In order to test our method we compare its results to the method presented in 
�� and

a method we think will produce close to the true uncertainty region but with a high

computational cost�

In this method we use a nonlinear minimization algorithm 

� which uses the perturbed

points obtained by our method as the starting position for the algorithm� The algorithm

tries to �nd points on the three uncertainty circles which maximize the uncertainty in

the position of the projection of m� in the image� Because in many cases the initial

estimates provided by our method are close to optimal� the number of pose evaluations

that the algorithm needs to perform is relatively low and on average requires only ��

pose evaluations�






In order to test quality of the estimates we have to compare the false positive and

false negative rates of the various methods� This is done by repeating the following

experiment which has been used in 
�� to test their method� Sets of four model points are

randomly generated and projected orthographically to a ����� ���� square image� The
image points are then perturbed uniformly within a circle of radius �ve pixels� Using the

�rst three pairs of model and image points� the uncertainty region for the fourth model

point is estimated� We check to see if the fourth image point is within our uncertainty

region� When the image point is found� we record the size of region in which we have

been looking�

The performance of recognition algorithms which would use our algorithm depend on

the false positive and false negative rates of our method� We therefore let the designer

of the recognition algorithm have a choice between several values of false positive and

false negative rates to choose from� We therefore multiply the results of our estimation

algorithms by a user supplied parameter � and use the result as the estimate� The larger

the value of � the higher the false positive rate and the lower the false negative rate� The

designers of recognition algorithms will be able to choose the value of � which produces

the most e�cient algorithm�

We plotted a graph for the success rate and average uncertainty area for the method

presented in 
��� our method and the minimization method in Figure ��a�� To analyze

this graph we have to check the �price� that has to be paid in the average area of

the uncertainty region for a given success rate and vice versa� From this analysis we

can see that the minimization algorithm performs the best for very low false negative

rates� However due to its higher computation cost it is more important to compare the

performance of our method to the performance of the method presented in 
��� For low

false negative rates �� ������ it outperforms our method but for higher false negative

rates our method performs better producing smaller uncertainty regions�

At �rst glance these results seem puzzling because that even though our method has

an additional step in the algorithm to estimate the e	ect of higher order terms it does

not always outperform 
�� which uses only a �rst order approximation� After carefully
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studying the results we conclude that in some rare cases �� ������ the perturbed point

for which the projection of m� was measured was misleadingly close to the unperturbed

projection due to the e	ect of high�order terms yielding a small estimate of the size of the

uncertainty region� This problem can be easily solved by computing the perturbation on

an additional perturbed set by rotating the error vectors �i by a constant angle � which

as mentioned above should also produce as good an estimate as the previous point where

with high probability the higher order terms will not have a detrimental a	ect on the

estimate of the uncertainty region�

In Figure ��b� we re�plot the results of 
�� and compare them to our method with

one and two sets of perturbed points tested and the size of the uncertainty region taken

as the maximum perturbation of the computed projections� As can be seen from the

graph adding a second set improves the quality of the results yielding the best results

when very low false negative rates are required� However� for higher false negative rates

the method with one perturbed set is best� The only issue left to address is the issue

of computational costs of the various algorithms and from our tests the computational

costs of our algorithms are approximately the same as 
���

One of the strengths of the method presented in 
�� is that it has been extended to

deal with sets of matches of any size using linear programming� In the next section we

will employ statistical analysis to extend our method �and the method presented in 
���

to deal also with larger sets of matches�

� nth�Point Uncertainty Region

It has been shown 
�� �� that recognition algorithms which use a small number of features

to estimate the pose of the object encounter large numbers of false positive matches due

to the uncertainty in the pose which leads to large uncertainty regions in which the wrong

image features may lie� Therefore it is important to derive methods to compute more

exact poses based on more information which yield smaller uncertainty regions�

Before we start describing the algorithm consider the following typical example� Given
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a match of size �� we would like to estimate the uncertainty region of a �fth point� Before

doing so we would like to compute what is the conditional probability distribution func�

tion of the position of this �fth point� whose true position is at ��� �� in the image� given

the measured position of three or four points in the image� In Table � and Figure � we

show these conditional distributions and their means and variances� These distributions

were computed using Alter�s pose estimation algorithm described in Section � without

using our uncertainty computation algorithm� The �fth conditional distribution which

is based on evidence from all four points measured in the image has a better estimate

for the position of the �fth point a smaller variance a higher peak and a smaller spread

than the other four conditional distributions which are based on evidence of only three

points� All distributions look similar to truncated Gaussian distributions� In our algo�

rithm we would like to use the �rst four probability distributions for which can compute

an estimate for their mean and their variance using the technique described in the pre�

vious section to compute an estimate for the mean and variance of the �fth probability

distribution which is based on the cumulative evidence of all four points�

An estimate for the projection of mn which is linear in the image coordinates of the

measured points in the image� can be derived by extending ��� as follows�

mn �
X

��i�j�n

	ij�mj �mi� �
X

��i�j�k�n


ijk�mj �mi�� �mk �mi� �
X

��i�n

�imi�
����

where 	ij� 
ijk� �i are unknown coe�cients� Repeating the derivation preformed in the

previous section will yield an estimator for the projection of mn� As in the previous

section� when the changes in Hi� f� � i � ng are neglected� the distribution of the pro�
jection ofmn which results from this equation is circular symmetric and looks similar to a

truncated Gaussian� When the changes in Hi� f� � i � ng are signi�cant the distribution
may become less circular� In order to ensure that the mean of this distribution is the

projection of mn� the coe�cients 	ij� 
ijk� �i must be chosen such that ���� holds� For

n � � there is a unique set of coe�cients �	� 
� 
� �� for which ���� holds� For n � � there

are in�nitely many such estimates and we would like to use the most e�cient estimator

�i�e�� the one with the smallest variance�� Finding that estimate is computationally very
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expensive� We will therefore use the weighted average of equations of the type ��� ���

point estimates� which produces the minimal variance� We hope that the variance of this

estimator will not be far from the minimal variance� For every weighted average ���� will

hold� All that is required is to �nd the weights which minimize the variance� Using the

same weights� the estimate of the projection of mn is computed as the weighted average

of the ��point estimates�

Consider the example of a � point match shown in Figure �� For each of the four

matches of size three we can compute the uncertainty region� Note that the size of the

uncertainty regions vary considerably �therefore using a constant size uncertainty region

for an estimate of a three point match would produce a very poor estimate�� For each of

the four estimates we have the estimate of the position of the projection of the �fth point

�denoted by a dot� and the radius of the uncertainty region which is inversely correlated

with the certainty of the estimate� We would like to combine these four estimates into a

single estimate of the uncertainty region giving a bigger weight to estimates with smaller

uncertainty regions�

Formally speaking� given a match of size n there are
�
n

�

�
di	erent matches of size

three� For each one of them we can use our method �or the method presented in 
��� to

estimate the position of the n � ��th point and estimate the radius of the uncertainty

region� Putting this into a statistical context� we have
�
n

�

�
random variables whose mean

is the position of the n���th point and whose variance is approximately proportional to

the area of the uncertainty region for which we have an estimate�

For each one of these random variables we have a single measurement computed from

the measurements of its corresponding three points� The maximum likelihood estimate

of the mean of the variable is that value and we assume that the variance we estimated

for these perturbed measurements is very close to the variance of the unperturbed mea�

surements had we been able to measure them�

Our goal is to combine all these estimates into a single estimate with the smallest

possible variance �i�e� smallest uncertainty region��

A theorem in statistics 
�� states the following�
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Let X�� � � � �Xm denote random variables that have means ��� � � � � �m and variances

��
�
� � � � � ��m� Let �ij� i �� j� denote the correlation coe�cient of Xi and Xj and let

K�� � � � �Km denote real constants� The mean and the variance of the linear function

Y �
mX
i��

KiXi�

are respectively

�Y �
mX
i��

Ki�i�

and

��Y �
mX
i��

K�

i �
�

i � �
X
i�j

X
KiKj�ij�i�j� ����

Our goal is to �nd the values for K�� � � � �Km yielding a linear combination of the m

variables which have the minimal variance� In our case all our variables have the same

unknown mean �the projection of the n � � model point� for which we have estimates�

For Y to have the same mean
Pm

i��Ki must equal to �� When X�� � � � �Xm are mutually

stochastically independent the minimal variance for Y is achieved when

Ki �
�

��i

�Pm
i��

�

��
j

�

which as can be seen the weight of each variable is inversely proportional to its variance�

However� as the match triples are usually not disjoint the Xi�s are not independent�

therefore these values for the Ki�s will not be optimal�

In order to analyze the problem of �nding the optimal weightsK consider the following

observations�

� Each of the
�
n

�

�
estimation regions Xi is approximately a linear combination of six

coordinates where each of them has a variance of ���� and each pair of them have

a correlation coe�cient �ij zero�

� The uncertainty region of each Xi is a linear combination of three approximately

circular uncertainty regions producing an approximately circular uncertainty re�

gion�
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� A linear combination of the Xi�s when reordered by the projections of each model

point is approximately a linear combination of n circles �each due to one projected

model point in the image� and is therefore also close to circular� Therefore we can

limit ourselves to �nding weights K that minimize the extent of the x coordinate

of the uncertainty region�

Using our linear approximation of the x coordinate of the image position of the n���th

point from a match of three points developed in Section � we can estimate the variance

of the i�th estimate using ����� We shall denote by �� the unknown image projection of

the n model points and by �� their perturbations� The sought after x coordinate of the

projection of the n� ��th point will be denoted by �x� For the i�th estimate let Mi be a

vector of coe�cients of the coordinates �� all but six of which are zero� such that if Xi is

the i�th estimate

Xi��� � Xi��� ���� �Mi���� �Mi�� � �x �Mi���

The only problem with this model is that the Xi�s are not exactly linear functions of

the coe�cients � and thus our model for the variance of the linear combination of the

Xi�s is not exact either� We have computed for each of the Xi�s the contribution of the

high order terms to the radius of the uncertainty region in the �nal stage of our three

point match algorithm� We therefore model the contribution of these high order term

to the variance by an additional variable for each Xi which we will denote by ui and

whose variance is ��ui� As we have performed only a �rst order analysis we are not able

to determine the correlation coe�cients between these variables and the other variables

participating in the analysis �the coordinates of the measured points in the image and

the other ui�s��

The variance of the sum of weighted independent variables is found from the �rst term

of ���� to be the sum of the squares of the weights times the variance of each variable�

Using the notation described above and adding in the variance of the new variable� we

get

��



��Xi
�

�nX
l��

�
�

�
Mi�l�

� � ��ui �
��

�
jMij� � ��ui� ����

Similarly given two such variables Xi and Xj � Cov�Xi�Xj� � �ij�i�j can be found

from ���� to be the sum of the products of the weights multiplied by the variance� or

using our notation

Cov�Xi�Xj� �
�

�
���Xi�Xj

� ��Xi
� ��Xj

�

� �

�
�
��

�
jMi �Mj j� � ��ui � ��uj � �

��

�
jMij� � ��ui� � �

��

�
jMjj� � ��uj�� ����

�
�nX
l��

�
�

�
Mi�l��

�

�
Mj�l� �

��

�
Mi �Mj�

Generalizing this analysis for the weighted linear combination of the Xi�s yields

Y �
mX
i��

KiXi �
mX
i��

KiXi���� �
mX
i��

KiMi���

Writing this in matrix form where the matrix M � �M� � � �Mm� and �x � Xi��� yields

Y � �x �MK�� �
mX
i��

Kiui�

where MK is the vector of coe�cients of the coordinates �� We then plug ���� and ����

into ���� yielding

��Y �
mX
i��

��

�
jMiKij� � �

X
i�j

X ��

�
KiKjMi �Mj �

mX
i��

K�

i �
�

ui��
��

�
jMKj� �

mX
i��

K�

i �
�

ui�
����

The ui�s can be easily added into the matrix M by adding an additional m variables

where each ui appears only in its corresponding Mi� We now have to �nd a K that

minimizes ���� under the linear constraint
Pm

i��Ki � �� K� is eliminated from ���� by

substituting it with � �Pm
i��Ki yielding

��Y �
��

�

����������M� �M�� � � � �Mm �M���

�
BB�
K�

���
Km

�
CCA � ��M��

��������

�

� ����

��



We shall denote by

A � ��M� �M�� � � � �Mm �M��� by x �

�
BB�
K�

���
Km

�
CCA and by b � ��M��

Thus ���� can be written in the new notation as

min
x

��

�
�Ax� b���

which is the formulation of a standard linear least squares problem which is solved

exactly using standard numerical methods 

�� Initially it might seem that the Ki�s are

not bounded� They could have arbitrarily large negative or positive values �as long as

their sum equals �� which would magnify the small error in our linear model of the Xi�s

and increase ��Y � But as we have modeled the contribution to the variance of the high

order terms by the ui�s the solution we get deals with this problem also� This can be

seen by examining ���� and seeing that the �ui�s act as a penalties against large negative

or positive Ki�s� When the ui�s are not incorporated into the model �even though their

variance is very small� the problem of the unbounded Ki�s is very signi�cant yielding

considerably worse results�

Note that although we demonstrated this method on image points whose original

uncertainty is uniformly distributed� the same results are obtained for other spherically

symmetric distributions such as the Gaussian distribution� All that has to be changed

is the term ��

�
which has to be substituted with the variance of the new distribution and

in the estimate of the variance of each of the Xi�s� The technique can also be used when

other techniques are used to estimate the linear approximation of a point from a � point

to combine several such estimates�

The value obtained for �Y and the vector K are returned by the algorithm� The

center of the uncertainty region is computed by the K�weighted linear combination of

the centers of the
�
n

�

�
uncertainty regions� The user can choose the value of a parameter

� which is the radius of the uncertainty region in standard deviations�

��



The results for match sizes four��ve� and six are traced in Figures ��� and � respec�

tively for several values of �� We also plot the percent of projected points within the

uncertainty region as a function of �� From these plots its clear that choosing value �

between ��� and ��� will yield a �� false negative rate which is compatible with what

can be expected for a quasi�Gaussian distribution� We plot the results presented in 
��

and our results� In the results presented in 
��� the uncertainty regions are bounded by

rectangles� Using the same method but by bounding them with polygons with more than

four sides� a more accurate estimate could be achieved� but would require additional runs

of a linear program� To demonstrate the quality of our results consider the following ex�

ample� In order for 
�� of the uncertainty regions to contain the image of the model

point for a match of size four� the method presented in 
�� requires that the average area

of the uncertainty region be ���� pixels� where our method requires an average area of

only ��� pixels� Our method never requires an average area of ���� pixels� because it

reaches ���� success rate for an average area of ��� pixels�

It is hard to compare our method to 
�� which does not compute projection uncer�

tainty regions but pose uncertainty regions� Another di	erence between the methods

is that their method is incremental in the size of the match where as ours looks at all

combinations of matches of size three and therefore will use �implicitly� combinations

which produce small uncertainty regions� It has not been shown that the incremental

method will produce the same quality of results irrespective of the order of the match and

therefore when an initial match of size three is given which produces a large uncertainty

region it will probably produce worse results then if the initial match produced a small

uncertainty region� The method presented in 
�� also has this characteristic�

In Figure � we plot the size of the uncertainty region as a function of the size of the

match for several values of the success rate� This graph which is plotted on a logarithmic

scale demonstrates how dramatically the size of the uncertainty region shrinks as the size

of the match increases�

Finally we have tested our system on an image of a real object whose corners we have

measured by hand� In Figure 
� the uncertainty regions are overlayed over the image�

��



We assume that � � ��� pixels and chose � � ���� At �rst we computed the uncertainty

regions of all the points using a match of size three� We then added additional points to

our match and computed the uncertainty regions for the remaining points� We continue

this process until all the points measured in the image are part of the match� The �gure

demonstrates how the uncertainty decreases signi�cantly when the size of the match

increases�

� Discussion and Future Work

We have presented an e�cient method for estimating the uncertainty region of the pro�

jection of a model point in the image when a match of three other model points is given�

We then incorporated our method into a general statistical framework to deal with the

case when more points are matched� Our method estimates the uncertainty regions bet�

ter than previously published methods by �nding the optimal linear combination of three

point estimates which produces a very good estimate for the position of the projected

model point� and a very small variance� An interesting question to pursue is whether

to produce a good estimate all three point combination uncertainty regions have to be

estimated or a subset of these combinations will su�ce�

Future work will be dedicated to using this method in recognition systems� The false

negative and false positive rates of our method can be chosen by the user of our method

by choosing the value of �� Therefore� further analysis has to be performed to �nd what

combination of them and which variant of the method will make the recognition system

most e�cient� Another important question to be considered is how to extend a three

point basis by adding to it additional model and image points yielding an e�cient method

to prune the largest amount of false positive matches at the smallest computational cost�
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Figure �� Model points m�� m�� and m� undergoing orthographic projection plus scale
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Figure �� Plots where three points are given and the position of the fourth point is
estimated� The graphs show the percentage of the times that the fourth point�s image
shows up in the predicted error region and the average area of the uncertainty region�
The �s on the graph denote the value for � � �� �a� Comparing our method with
one perturbed set to the minimization method and the method presented in 
��� �b�
Comparing our method with one and two perturbed sets to the method presented in 
���
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Figure �� The �ve conditional probability distributions for the position of the �fth point
based on di	erent evidence� �a� �������� �b� �������� �c� �������� �d� �������� �e� ����������
Note that the �fth distribution has a better estimate of the center� a higher peak and a
smaller spread then the other four distributions�
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Figure �� Given a four point match the four uncertainty regions of the four point triples
�marked by ����� the estimated uncertainty region �� standard deviation� ���� the true
uncertainty region of the �fth point due to measurement errors ���� and the position of
the measured �fth point in the image marked by a ��
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Figure �� �a� A plot where four points are given and the position of the �fth point is
estimated� The graph shows the percentage of times that the �fth point�s image shows
up in the predicted error region and the average area of the uncertainty region� �b� The
value of � �the number of standard deviations� plotted against the percent of projected
points which lie within the uncertainty region�
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Figure �� �a� A plot where �ve points are given and the position of the sixth point is
estimated� The graph shows the percentage of times that the sixth point�s image shows
up in the predicted error region and the average area of the uncertainty region� �b� The
value of � �the number of standard deviations� plotted against the percent of projected
points which lie within the uncertainty region�
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Figure �� �a� A plot where six points are given and the position of the seventh point
is estimated� The graph shows the percentage of times that the seventh point�s image
shows up in the predicted error region and the average area of the uncertainty region�
�b� The value of � �the number of standard deviations� plotted against the percent of
projected points which lie within the uncertainty region�
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Figure �� For a given probability for the point in the image to be in the uncertainty region�
the average area of the uncertainty region is shown in logarithmic scale for di	erent sizes
of sets of matched points�

Figure 
� Uncertainty regions shrink as more points are added to the match� The larger
circles are computed when only three points are matched� As more points are added the
uncertainty regions shrink but still contain the measured point�
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Points used Estimated Position �x �y �x�y
����� ���������� ��������� ������ ������ ����e��
����� � �������� ������
�� ������ ������ ����e��
����� � �������� �����

� ������ ������ ����e��
����� ���������� �������� ������ ������ ��
�e��
������� ���������� �������� ������ ������ ����e��

Table �� For each match of size three or four� the conditional probability distribution of
the position of �fth point �whose true position is ��� ��� is computed� The table shows
the evidence from which points participated in the computation of the distribution� the
estimated position of the �fth point� the standard deviations in the x and y direction and
their product which is proportional to the area of the uncertainty region� Note that the
�fth distribution has a better estimate for the position of the �fth point and a smaller
variance than the other distributions based on three points�
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Figure Legends

�� Model points m�� m�� and m� undergoing orthographic projection plus scale to

produce image points i�� i� and i� �adapted from 
����

�� Plots where three points are given and the position of the fourth point is estimated�

The graphs show the percentage of the times that the fourth point�s image shows

up in the predicted error region and the average area of the uncertainty region� The

�s on the graph denote the value for � � �� �a� Comparing our method with one

perturbed set to the minimization method and the method presented in 
��� �b�

Comparing our method with one and two perturbed sets to the method presented

in 
���

�� The �ve conditional probability distributions for the position of the �fth point based

on di	erent evidence� �a� �������� �b� �������� �c� �������� �d� �������� �e� ����������

Note that the �fth distribution has a better estimate of the center� a higher peak

and a smaller spread then the other four distributions�

�� Given a four point match the four uncertainty regions of the four point triples

�marked by ����� the estimated uncertainty region �� standard deviation� ���� the

true uncertainty region of the �fth point due to measurement errors ���� and the

position of the measured �fth point in the image marked by a ��

�� �a� A plot where four points are given and the position of the �fth point is estimated�

The graph shows the percentage of times that the �fth point�s image shows up in the

predicted error region and the average area of the uncertainty region� �b� The value

of � �the number of standard deviations� plotted against the percent of projected

points which lie within the uncertainty region�

�� �a� A plot where �ve points are given and the position of the sixth point is estimated�

The graph shows the percentage of times that the sixth point�s image shows up in

the predicted error region and the average area of the uncertainty region� �b�
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The value of � �the number of standard deviations� plotted against the percent of

projected points which lie within the uncertainty region�

�� �a� A plot where six points are given and the position of the seventh point is

estimated� The graph shows the percentage of times that the seventh point�s image

shows up in the predicted error region and the average area of the uncertainty

region� �b� The value of � �the number of standard deviations� plotted against the

percent of projected points which lie within the uncertainty region�

�� For a given probability for the point in the image to be in the uncertainty region�

the average area of the uncertainty region is shown in logarithmic scale for di	erent

sizes of sets of matched points�


� Uncertainty regions shrink as more points are added to the match� The larger

circles are computed when only three points are matched� As more points are

added the uncertainty regions shrink but still contain the measured point�
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