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Abstract

Feature space analysis is the main module in many computer vision
tasks. The most popular technique, k-means clustering, however, has
two inherent limitations: the clusters are constrained to be spherically
symmetric and their number has to be known a priori. In nonparametric
clustering methods, like the one based on mean shift, these limitations
are eliminated but the amount of computation becomes prohibitively
large as the dimension of the space increases. We exploit a recently
proposed approximation technique, locality-sensitive hashing (LSH),
to reduce the computational complexity of adaptive mean shift. In our
implementation of LSH the optimal parameters of the data structure
are determined by a pilot learning procedure, and the partitions are
data driven. The algorithm is tested on two applications. In the first,
the performance of mode and k-means-based textons are compared in
a texture classification study. In the second, multispectral images are
segmented. Again, our method is compared to k-means clustering.

1.1 Introduction

Representation of visual information through feature space analysis has
received renewed interest in recent years, motivated by content-based
image retrieval applications. The increase in the available computa-
tional power allows today the handling of feature spaces which are
high-dimensional and contain millions of data points.

The structure of high-dimensional spaces, however, defies our three-
dimensional(3D) geometric intuition. Such spaces are extremely sparse
with the data points far away from each other [17, subsection 4.5.1].
Thus, when inferring about the local structure of the space when only



ii Adaptive Mean Shift Based Clustering in High Dimensions

a small number of data points may be available can yield erroneous
results. The phenomenon is known in the statistical literature as the
“curse of dimensionality”, and its effect increases exponentially with
the dimension. The curse of dimensionality can be avoided only by im-
posing a fully parametric model over the data [6, p.203], an approach
which is not feasible for a high-dimensional feature space with a com-
plex structure.

The goal of feature space analysis is to reduce the data to a few
significant features through a procedure known under many different
names, clustering, unsupervised learning, or vector quantization. Most
often different variants of k-means clustering are employed, in which
the feature space is represented as a mixture of normal distributions [6,
subsection 10.4.3]. The number of mixture components k is usually set
by the user.

The popularity of the k-means algorithm is due to its low computa-
tional complexity of O(nkNd), where n is the number of data points,
d the dimension of the space, and N the number of iterations which is
always small relative to n. However, since it imposes a rigid delineation
over the feature space and requires a reasonable guess for the number
of clusters present, the k-means clustering can return erroneous results
when the embedded assumptions are not satisfied. Moreover, the k-
means algorithm is not robust; points which do not belong to any of
the k clusters can move the estimated means away from the densest
regions.

A robust clustering technique which does not require prior knowledge
of the number of clusters, and does not constrain the shape of the
clusters, is the mean shift-based clustering. This is also an iterative
technique, but instead of the means, it estimates the modes of the
multivariate distribution underlying the feature space. The number
of clusters is obtained automatically by finding the centers of the
densest regions in the space (the modes). See [1] for details. Under
its original implementation the mean shift-based clustering cannot be
used in high dimensional spaces. Already for d = 7, in a video sequence
segmentation application, a fine-to-coarse hierarchical approach had to
be introduced [5].

The most expensive operation of the mean shift method is finding
the closest neighbors of a point in the space. The problem is known
in computational geometry as multidimensional range-searching [4,
chap.5]. The goal of the range-searching algorithms is to represent the
data in a structure in which proximity relations can be determined
in less than O(n) time. One of the most popular structures, the
kD-tree, is built in O(n log n) operations, where the proportionality
constant increases with the dimension of the space. A query selects
the points within a rectangular region delimited by an interval on
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each coordinate axis, and the query time for kD-trees has complexity

bounded by O
(

n
d−1

d + m
)

, where m is the number of points found.

Thus, for high dimensions the complexity of a query is practically
linear, yielding the computational curse of dimensionality. Recently,
several probabilistic algorithms have been proposed for approximate
nearest-neighbor search. The algorithms yield sublinear complexity
with a speedup which depends on the desired accuracy [7, 10, 11].

In this chapter we have adapted the algorithm in [7] for mean shift-
based clustering in high dimensions. Working with data in high dimen-
sions also required that we extend the adaptive mean shift procedure
introduced in [2]. All computer vision applications of mean shift un-
til now, such as image segmentation, object recognition, and tracking,
were in relatively low-dimensional spaces. Our implementation opens
the door to use mean shift in tasks based on high-dimensional features.

In section 1.2 we present a short review of the adaptive mean shift
technique. Locality-sensitive hashing(LSH), the technique for approxi-
mate nearest-neighbor search, is described in section 1.3, where we have
also introduced refinements to handle data with complex structure. In
section 1.4 the performance of adaptive mean shift (AMS) in high di-
mensions is investigated, and in section 1.5 AMS is used for texture
classification based on textons and for segmentation of multispectral
images. We conclude in section 1.6.

1.2 Adaptive Mean Shift

Here we only review some of the results described in [2] which should
be consulted for the details.

Assume that each data point xi ∈ Rd, i = 1, . . . , n is associated with
a bandwidth value hi > 0. The sample point estimator

f̂K(x) =
1

n

n
∑
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x − xi

hi
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∥

2
)

(1.1)

based on a spherically symmetric kernel K with bounded support
satisfying

K(x) = ck,d k(‖x‖2) > 0 ‖x‖ ≤ 1 (1.2)

is an adaptive nonparametric estimator of the density at location x in
the feature space. The function k(x), 0 ≤ x ≤ 1, is called the profile

of the kernel, and the normalization constant ck,d assures that K(x)
integrates to one. The function g(x) = −k′(x) can always be defined
when the derivative of the kernel profile k(x) exists. Using g(x) as the
profile, the kernel G(x) is defined as G(x) = cg,d g(‖x‖2).
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By taking the gradient of (1.1) the following property can be proven

mG(x) = C
∇̂fK(x)

f̂G(x)
, (1.3)

where C is a positive constant and
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is called the mean shift vector. The expression (1.3) shows that at
location x the weighted mean of the data points selected with kernel
G is proportional to the normalized density gradient estimate obtained
with kernel K. The mean shift vector thus points toward the direction
of maximum increase in the density. The implication of the mean shift
property is that the iterative procedure
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is a hill-climbing technique to the nearest stationary point of the
density, i.e., a point in which the density gradient vanishes. The initial
position of the kernel, the starting point of the procedure y1, can be
chosen as one of the data points xi. Most often the points of convergence
of the iterative procedure are the modes (local maxima) of the density.

There are numerous methods described in the statistical literature to
define hi, the bandwidth values associated with the data points, most of
which use a pilot density estimate [17, subsection 5.3.1]. The simplest
way to obtain the pilot density estimate is by nearest neighbors [6,
section 4.5]. Let xi,k be the k-nearest neighbor(k-NN) of the point xi.
Then, we take

hi = ‖xi − xi,k‖1, (1.6)

where L1 norm is used since it is the most suitable for the data structure
to be introduced in the next section. The choice of the norm does
not have a major effect on the performance. The number of neighbors
k should be chosen large enough to assure that there is an increase
in density within the support of most kernels having bandwidths hi.
While the value of k should increase with d the dimension of the feature
space, the dependence is not critical for the performance of the mean
shift procedure, as will be seen in section 1.4. When all hi = h, i.e.,
a single global bandwidth value is used, the AMS procedure becomes
the fixed bandwidth mean shift discussed in [1].
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A robust nonparametric clustering of the data is achieved by applying
the mean shift procedure to a representative subset of the data points.
After convergence, the detected modes are the cluster centers, and the
shape of the clusters is determined by their basins of attraction. See [1]
for details.

1.3 Locality-Sensitive Hashing

The bottleneck of mean shift in high dimensions is the need for a fast
algorithm to perform neighborhood queries when computing (1.5). The
problem has been addressed before in the vision community by sorting
the data according to each of the d coordinates [13], but a significant
speedup was achieved only when the data are close to a low-dimensional
manifold.

Recently, new algorithms using tools from probabilistic approxima-
tion theory were suggested for performing approximate nearest neigh-
bor search in high dimensions for general data sets [10, 11] and for
clustering data [9, 14]. We use the approximate nearest neighbor algo-
rithm based on locality-sensitive hashing [7] and adapted it to handle
the complex data met in computer vision applications. In a task of
estimating the pose of articulated objects [16], the LSH technique was
extended to accommodate distances in the parameter space.

1.3.1 High-Dimensional Neighborhood Queries

Given n points in Rd the mean shift iterations (1.5) require a neighbor-
hood query around the current location yj . The naive method is to scan
the whole data set and test whether the kernel of the point xi covers yj.
Thus, for each mean computation the complexity is O(nd). Assuming
that for every point in the data set this operation is performed N times
(a value which depends on the hi’s and the distribution of the data),
the complexity of the mean shift algorithm is O(n2dN).

To improve the efficiency of the neighborhood queries the following
data structure is constructed. The data is tessellated L times with
random partitions, each defined by K inequalities (fig. 1.1). In each
partition K pairs of random numbers, dk and vk, are used. First, dk,
an integer between 1 and d, is chosen, followed by vk, a value within
the range of the data along the dkth coordinate.

The pair (dk, vk) partitions the data according to the inequality

xi,dk
≤ vk i = 1, . . . , n, (1.7)

where xi,dk
is the selected coordinate for the data point xi. Thus, for

each point xi each partition yields a K-dimensional Boolean vector (in-
equality true/false). Points which have the same vector lie in the same
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cell of the partition. Using a hash function, all the points belonging to
the same cell are placed in the same bucket of a hash table. As we have
L such partitions, each point belongs simultaneously to L cells (hash
table buckets).

To find the neighborhood of radius h around a query point ~q, L
Boolean vectors are computed using (1.7). These vectors index L cells

Cl, l = 1, . . . , L in the hash table. The points in their union C∪ =
L
⋃

l=1

Cl

are the ones returned by the query (fig. 1.1). Note that any ~q in

the intersection C∩ =
L
⋂

l=1

Cl will return the same result. Thus C∩

determines the resolution of the data structure, whereas C∪ determines
the set of the points returned by the query. The described technique is
called locality-sensitive hashing and was introduced in [10].

Points close in Rd have a higher probability for collision in the hash
table. Since C∩ lies close to the center of C∪, the query will return
most of the nearest neighbors of ~q. The example in fig. 1.1 illustrates
the approximate nature of the query. Parts of an L1 neighborhood
centered on ~q are not covered by C∪, which has a different shape. The
approximation errors can be reduced by building data structures with
larger C∪’s; however, this will increase the running time of a query.

L

Figure 1.1 The LSH data structure. For the query point ~q the overlap of L cells yields
the region C∪, which approximates the desired neighborhood.

1.3.2 Optimal Selection of K and L

The values for K and L determine the expected volumes of C∩ and C∪.
The average number of inequalities used for each coordinate is K/d,
partitioning the data into K/d + 1 regions. Qualitatively, the larger
the value for K, the number of cuts in a partition, the smaller the
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average volume of the cells Cl. Conversely, as the number of partitions
L increases, the volume of C∩ decreases and of C∪ increases. For a given
K, only values of L below a certain bound are of interest. Indeed, once
L exceeds this bound all the neighborhood of radius h around ~q has
been already covered by C∪. Thus, larger values of L will only increase
the query time with no improvement in the quality of the results.

The optimal values of K and L can be derived from the data. A
subset of data points xj , j = 1, · · · , m ≪ n, is selected by random
sampling. For each of these data points, the L1 distance hj (1.6) to its
k-NN is determined accurately by the traditional linear algorithm.

In the approximate nearest-neighbor algorithm based on LSH, for
any pair of K and L, we define for each of the m points h

(K,L)
j , the

distance to the k-NN returned by the query. When the query does not
return the correct k-NNs h

(K,L)
j > hj . The total running time of the m

queries is t(K, L). The optimal (K, L) is then chosen such that

(K, L) = arg min
K,L

t(K, L) subject to:
1

m

m
∑

j=1

h
(K,L)
j

hj

≤ (1 + ǫ),

where ǫ is the LSH approximation threshold set by the user.
The optimization is performed as a numerical search procedure. For

a given K we compute, as a function of L, the approximation error
of the m queries. This is shown in fig. 1.2(a) for a 13D real data set.
By thresholding the family of graphs at ǫ = 0.05, the function L(K)
is obtained (fig. 1.2(b)). The running time can now be expressed as
t[K, L(K)], i.e., a 1D function in K, the number of employed cuts
(fig. 1.2(c)). Its minimum is Kmin which together with L(Kmin), are
the optimal parameters of the LSH data structure.
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Figure 1.2 Determining the optimal K and L. (a) Dependence of the approximation
error on L for K = 10, 20, 30. The curves are thresholded at ǫ = 0.05 (dashed line). (b)
Dependence of L on K for ǫ = 0.05. (c) The running time t[K, L(K))]. The minimum is
marked ∗.

The family of error curves can be efficiently generated. The number of
partitions L is bounded by the available computer memory. Let Lmax

be that bound. Similarly, we can set a maximum on the number of
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cuts, Kmax. Next, the LSH data structure is built with (Kmax, Lmax).
As the result of a query is the union of the results on all the Lmax

partitions, the approximation error can be computed incrementally
for L = 1, · · · , Lmax by adding one partition at a time, yielding the
approximate error for all values of L. This yields L(Kmax) which is
subsequently used as Lmax for Kmax − 1, etc.

1.3.3 Data-Driven Partitions

The strategy of generating the L random tessellations has an important
influence on the performance of LSH. In [7] the coordinates dk have
equal chance to be selected and the values vk are uniformly distributed
over the range of the corresponding coordinate. Under this assumption
and when given a distance r, probabilities p1 and p2, and an uncertainty
value ǫ, an LSH data structure can be built using appropriate values
of K and L to satisfy the following requirements. Given a query point
q and a data point p, then if the distance between them is less than r,
then the probability that the query will return p is greater than p1. On
the other hand, if the distance between them is greater than (1 + ǫ)r,
then the probability that the query will return p is less than p2. This
partitioning strategy works well only when the density of the data is
approximately uniform in the entire space (i.e., the distance to the
required neighbors is less than r). However, feature spaces associated
with vision applications are often multimodal and with large differences
in the density. In [10, 11] the problem of nonuniformly distributed
data was dealt with by building several data structures associated
with different values of r which have different values of K and L to
accommodate the different local densities. The query is performed first
under the assumption of a high density (small value of r), and when
it fails to find the required neighbors the process is repeated for larger
values of r. The process terminates when the nearest neighbors are
found.

Our approach is to sample according to the marginal distributions
along each coordinate. We use K points xi chosen at random from the
data set. For each point one of its coordinates is selected at random
to define a cut. Using more than one coordinate from a point would
imply sampling from partial joint densities, but that does not seem to
be more advantageous. Our adaptive, data driven strategy assures that
in denser regions more cuts will be made yielding smaller cells, while in
sparser regions there will be fewer cuts. On average all cells will contain
a similar number of points.

The 2D data in fig. 1.3(a) and 1.3(b) comprised of four clusters
and uniformly distributed background is used to demonstrate the two
sampling strategies. In both cases the same number of cuts were used
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but the data driven method places most of the cuts over the clusters
[see fig. 1.3(b)]. For a quantitative performance assessment a data set of
ten normal distributions with arbitrary shapes (5000 points each) were
defined in fifty dimensions. When the data-driven strategy is used, the
distribution of the number of points in a cell is much more compact
and their average value is much lower [fig. 1.3(c)]. As a consequence,
the data driven strategy yields more efficient k-NN queries for complex
data sets. For more uniformly distributed data sets the data-driven
method converges to the original LSH method.
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Figure 1.3 Uniform vs. data-driven partitions. Typical result for 2D data obtained with
(a) uniform, (b) data-driven strategy. (c) Distribution of points per cell for a 50D data
set.

1.4 Mean Shift in High Dimensions

Given yj, the current location in the iterations, an LSH-based query
retrieves the approximate set of neighbors needed to compute the next
location (1.5). The resolution of the data analysis is controlled by the
user. In the fixed bandwidth mean shift method the user provides the
bandwidth parameter h. In the AMS method, the user sets the number
of neighbors k used in the pilot density procedure. The parameters K
and L of the LSH data structure are selected employing the technique
discussed in subsection 1.3.2. The bandwidths hi associated with the
data points are obtained by performing n neighborhood queries. Once
the bandwidths are set, the adaptive mean shift procedure runs at
approximately the same cost as the fixed bandwidth mean shift. Thus,
the difference between mean shift and AMS is only one additional query
per point.

An ad hoc procedure provides further speedup. Since the resolution
of the data structure is C∩, with high probability one can assume that
all the points within C∩ will converge to the same mode. Thus, once
any point from a C∩ is associated with a mode, the subsequent queries
to C∩ automatically return this mode and the mean shift iterations
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stop. The modes are stored in a separate hash table whose keys are the
L Boolean vectors associated with C∩.
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Figure 1.4 Distance from the origin of 5000 points from ten 50D clusters after (a) to
(d): fixed bandwidth mean shift, and (e) to (h): AMS. The parameters: mean shift –
bandwidth h; AMS – number of neighbors k. (i) to (l): the adaptive bandwidths for AMS
data points.

1.4.1 Adaptive vs. Fixed Bandwidth Mean Shift

To illustrate the advantage of adaptive mean shift, a data set containing
125,000 points in a 50D cube was generated. From these 10 × 2500
points were generated from ten spherical normal distributions (clusters)
whose means were positioned on a line through the origin. The standard
deviation increases as the mean becomes more distant from the origin.
For an adjacent pair of clusters, the ratio of the sum of standard
deviations to the distance between the means was kept constant. The
remaining 100,000 points were uniformly distributed in the 50D cube.
Plotting the distances of the data points from the origin yields a graph
very similar to the one in fig. 1.4(a). Note that the points farther from
the origin have a larger spread.
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The performance of the fixed bandwidth mean shift and the AMS
procedures is compared for various parameter values in fig. 1.4. The
experiments were performed for 500 points chosen at random from
each cluster, a total of 5000 points. The location associated with
each selected point after the mean shift procedure is the employed
performance measure. Ideally this location should be near the center
of the cluster to which the point belongs.

In the mean shift strategy, when the bandwidth h is small due to the
sparseness of the high-dimensional space, very few points have neigh-
bors within distance h. The mean shift procedure does not detect any
neighbors and the allocation of the points is to themselves [fig. 1.4(a)].
On the other hand, as h increases the windows become too large for
some of the local structures and points may converge incorrectly to the
center (mode) of an adjacent cluster [fig. 1.4(b) to (d)].

The pilot density estimation in the AMS strategy automatically
adapts the bandwidth to the local structure. The parameter k, the
number of neighbors used for the pilot estimation, does not have a
strong influence. The data are processed correctly for k = 100 to 500,
except for a few points [fig. 1.4(e) to (g)], and even for k = 700 only
some of the points in the cluster with the largest spread converge to the
adjacent mode [fig. 1.4(h)]. The superiority of the adaptive mean shift
in high dimensions is clearly visible. In fig. 1.4(i) to (l) the bandwidth
values for the AMS procedure are shown. Note the wide spread of values
for the different points. This shows that the attempt to choose a single
bandwidth for all the data points is futile. Due to the sparseness of the
50D space, the 100,000 points in the background did not interfere with
the mean shift processes under either strategy, proving its robustness.

The use of the LSH data structure in the mean shift procedure assures
a significant speedup. We have derived four different feature spaces from
a texture image with the filter banks discussed in the next section. The
spaces had dimension d = 4, 8, 13, and 48, and contained n = 65, 536
points. An AMS procedure was run both with linear and approximate
queries for 1638 points. The number of neighbors in the pilot density
estimation was k = 100. The approximation error of the LSH was
ǫ = 0.05. The running times (in seconds) in table 1.1 show the achieved
speedups.

Table 1.1 Running times of AMS implementations

d Traditional LSH Speedup

4 1507 80 18.8

8 1888 206 9.2

13 2546 110 23.1

48 5877 276 21.3
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The speedup will increase with the number of data points n, and will
decrease with the number of neighbors k. Therefore in the mean shift
procedure the speedup is not as high as in applications in which only
a small number of neighbors are required.

1.5 Applications

The adaptive mean shift procedure in high dimensions has been im-
plemented. This procedure has been used in two different applications:
texture classification and multispectral image segmentation. In both
cases the mean shift method is compared to k-means-based methods.

1.5.1 Texture Classification

Efficient methods exist for texture classification under varying illumi-
nation and viewing direction [3, 12, 15, 18]. In the state-of-the-art ap-
proaches a texture is characterized through textons, which are cluster
centers in a feature space derived from the input. Following [12] this
feature space is built from the output of a filter bank applied at every
pixel. However, as was shown recently [19], neighborhood information
in the spatial domain may also suffice.

The approaches differ in the employed filter bank.

– LM: A combination of forty eight anisotropic and isotropic filters was
used by Leung and Malik [12] and Cula and Dana [3]. The filters are
Gaussian masks, their first derivative, and Laplacian, defined at three
scales. Because of the oriented filters, the representation is sensitive to
texture rotations. The feature space is 48D.

– S: A set of thirteen circular symmetric filters was used by Schmid [15]
to obtain a rotationally invariant feature set. The feature space is 13D.

– M4, M8: Both representations were proposed by Varma and Zisser-
mann [18]. The first one (M4) is based on two rotationally symmetric
and twelve oriented filters. The second set is an extension of the first
one at three different scales. The feature vector is computed by re-
taining only the maximum response for the oriented filters (two out
of twelve for M4 and six out of thirty six for M8), thus reducing the
dependence on the global texture orientation. The feature space is 4D
and 8D respectively.

To find the textons, usually the standard k-means clustering algo-
rithm is used, which, as was discussed in section 1.1, has several limi-
tations. The shape of the clusters is restricted to be spherical and their
number has to be set prior to the processing.
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The most significant textons are aggregated into the texton library.
This serves as a dictionary of representative local structural features
and must be general enough to characterize a large variety of texture
classes. A texture is then modelled through its texton histogram. The
histogram is computed by defining at every pixel a feature vector, re-
placing it with the closest texton from the library (vector quantization)
and accumulating the results over the entire image.

Let two textures i and j be characterized by the histograms Hi and
Hj built from T textons. As in [12] the χ2 distance between these two
texton distributions,

χ2(Hi, Hj) =

T
∑

t=1

[Hi(t) − Hj(t)]
2

Hi(t) + Hj(t)
, (1.8)

is used to measure similarity, although note the absence of the factor
1/2 to take into account that the comparison is between two histograms
derived from data. In a texture classification task the training image
with the smallest distance from the test image determines the class of
the latter.

In our experiments we substituted the k-means based clustering
module with the AMS-based robust nonparametric clustering. Thus,
the textons instead of being mean-based are now mode-based, and the
number of the significant ones is determined automatically.

The complete Brodatz database containing 112 textures with vary-
ing degrees of complexity was used in the experiments. Classification
of the Brodatz database is challenging because it contains many non-
homogeneous textures. The 512 × 512 images were divided into four
256×256 subimages with half of the subimages being used for training
(224 models) and the other half for testing (224 queries). The normal-
izations recommended in [18] (both in the image and filter domains)
were also performed.

The number of significant textons detected with the AMS procedure
depends on the texture. We have limited the number of mode textons
extracted from a texture class to five. The same number was used for
the mean textons. Thus, by adding the textons to the library, a texton
histogram has at most T = 560 bins.

Table 1.2 Classification results for the Brodatz database

Filter M4 M8 S LM

Random 84.82% 88.39% 89.73% 92.41%

k-means 85.71% 94.64% 93.30% 97.32%

AMS 85.27% 93.75% 93.30% 98.66%

The classification results using the different filter banks are presented
in table 1.2. The best result was obtained with the LM mode textons,



xiv Adaptive Mean Shift Based Clustering in High Dimensions

an additional three correct classifications out of the six errors with the
mean textons. However, there is no clear advantage in using the mode
textons with the other filter banks.

The classification performance is close to its upper bound defined
by the texture inhomogeneity, due to which the test and training
images of a class can be very different. This observation is supported
by the performance degradation obtained when the database images
were divided into sixteen 128 × 128 subimages and the same half/half
partition yielded 896 models and 896 queries. The recognition rate
decreased for all the filter banks. The best result of 94%, was again
obtained with the LM filters for both the mean and mode textons. In [8],
with the same setup but employing a different texture representation,
and using only 109 textures from the Brodatz database, the recognition
rate was 80.4%.

A texture class is characterized by the histogram of the textons,
an approximation of the feature space distribution. The histogram
is constructed from a Voronoi diagram with T cells. The vertices of
the diagram are the textons, and each histogram bin contains the
number of feature points in a cell. Thus, variations in textons translate
in approximating the distribution by a different diagram, but appear
to have a weak influence on the classification performance. When by
uniform sampling five random vectors were chosen as textons, the
classification performance (RANDOM) decreased only between 1% and
6%. The reduction in performance is probably due to textons located
in sparse areas of the distributions. But when they are located in more
dense regions as a result of the mean shift or the k-means procedures
the performance improves somewhat.

The k-means clustering imposes rigidly a given number of identical
spherical clusters over the feature space. Thus, it is expected that when
this structure is not adequate, the mode based textons will provide a
more meaningful decomposition of the texture image. This is proven in
the following two examples.

In fig. 1.5 the LM filter bank was applied to a regular texture. The
AMS procedure extracted twenty one textons, the number also used
in the k-means clustering. However, when ordered by size, the first
few mode textons are associated with more pixels in the image than
the mean textons, which always account for a similar number of pixels
per texton. The difference between the mode and mean textons can
be seen by marking the pixels associated with textons of the same
local structure (fig. 1.5, bottom). The advantage of the mode-based
representation is more evident for the irregular texture in fig. 1.6, where
the cumulative distribution of the mode textons classified pixels has a
sharper increase.
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Figure 1.5 Mode (∗)- vs. mean (◦)-based textons. The local structure is better captured
by the mode textons. D001 texture, LM filter bank.

Since textons capture local spatial configurations, we believe that
combining the mode textons with the representation proposed in [19]
can offer more insight into why the texton approach is superior to
previous techniques.

1.5.2 Multispectral Image Segmentation

In a second set of experiments we compared mean shift-based segmenta-
tion with k-means-based segmentation. The inputs were multispectral
images. Each pixel consisted of thirty one bands in the visual spec-
trum. In the experiments only the photometric data were used. The
x-y coordinates of the pixels were discarded. As in the previous exper-
iments the number of clusters recovered by the mean shift clustering
was used as the value of k for the k-means clustering. In the following
two examples, shown in fig. 1.7, the differences between the two meth-
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Figure 1.6 Mode (∗)- vs. mean (◦)-based textons. The local structure is better captured
by the mode textons. D040 texture, S filter bank.

ods can be seen. In both examples the mean shift-based segmentation
better segments the images. Consider the large leaf on the left side
of the first image. The mean shift segmentation correctly segments the
leaf into two segments whereas the k-means clustering method overseg-
ments the light green part of the leaf. The reason for that is that the
intensity of light falling on the leaf changes depending on the surface
normal. This causes all the thirty one bands to change depending on
the normal, creating an approximately 1D surface in ℜ31. Mean shift
clustering can deal clusters of arbitrary shape as long as they are con-
tinuous. k-means clustering on the other hand assumes that the clusters
are spherical and thus in this case oversegments the single natural clus-
ter. The mean shift clustering is also able to detect other meaningful
clusters, e.g., a segment of specular pixels.
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Figure 1.7 Multispectral image segmentation. Mode- vs. mean-based classification.

1.6 Conclusion

We have introduced a computationally efficient method that makes
possible the detection of modes of distributions in high dimensional
spaces. By employing a data structure based on LSH, a significant
decrease in the running time was obtained while maintaining the
quality of the results. The new implementation of the mean shift
procedure opens the door to the development of vision algorithms
exploiting feature space analysis - including learning techniques - in
high dimensions. The C++ source code of this implementation of mean
shift can be downloaded from http://www.caip.rutgers.edu/riul.
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