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Figure 5: A plot where six points are given and the
position of the seventh point is estimated. The graph
shows the percentage of times that the seventh point’s
image shows up in the predicted error region and the
average area of the uncertainty region.
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Figure 6: For a given probability for the point in the
image to be in the uncertainty region, the average area
of the uncertainty region is shown in logarithmic scale
for different sizes of sets of matched points.

Figure 7: Uncertainty regions shrink as more points
are added to the match. The larger circles are com-
puted when only three points are matched. As more
points are added the uncertainty regions shrink but
still contain the measured point.



never requires an average area of 1750 pixels, because
it reaches 100% success rate for an average area of 830
pixels.

In Figure 6 we plot the size of the uncertainty region
as a function of the size of the match for several values
of the success rate. This graph which is plotted on a
logarithmic scale demonstrates how dramatically the
size of the uncertainty region shrinks as the size of the
match increases.

Finally we have tested our system on an image of a
real object whose corners we have measured by hand.
In Figure 7, the uncertainty regions are overlayed over
the image. We assume that e = 7.7 pixels and chose
A = 3.0. At first we computed the uncertainty re-
gions of all the points using a match of size three.
We then added additional points to our match and
computed the uncertainty regions for the remaining
points. We continue this process until all the points
measured in the image are part of the match. The
figure demonstrates how the uncertainty decreases sig-
nificantly when the size of the match increases.
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Figure 4: A plot where five points are given and the
position of the sixth point is estimated. The graph
shows the percentage of times that the sixth point’s
image shows up in the predicted error region and the
average area of the uncertainty region.

the uncertainty regions better than previously pub-
lished methods by finding the optimal linear combi-
nation of three point estimates which produces a very
good estimate for the position of the projected model
point, and a very small variance.

Future work will be dedicated to using this method
in recognition systems. The false negative and false
positive rates of our method can be chosen by the user
of our method. Therefore, further analysis has to be
performed on what combination of them will make the
recognition system most efficient.
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Figure 3: A plot where four points are given and the
position of the fifth point is estimated. The graph
shows the percentage of times that the fifth point’s
image shows up in the predicted error region and the
average area of the uncertainty region.

5 Discussion and Future Work

We have presented an extremely efficient method
for estimating the uncertainty region of the projec-
tion of a model point in the image when a match of
three other model points is given. We then incorpo-
rated our method into a general statistical framework
to deal with the case when more points are matched.
Besides being very efficient our method also estimates
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with the smallest possible variance (i.e. smallest un-
certainty region).

A theorem in statistics [5] states the following.
Let Xy, -+, X,, denote random variables that have
means fi1, - -, fy, and variances o7, .-, 02,. Let Pijs
i # j, denote the correlation coefficient of X; and X;
and let K1, -, K, denote real constants. The mean

and the variance of the linear function

Y = i K X;
1

are respectively

m
py = Z Kip
1

and

m
oy =Y Kioi+2 > > KiKjpjoio;  (11)
1 i<j

In our case all the means are equal to each other
and for Y to have the same mean ) ;' K; must equal
to one. When X3, ---, X,,, are mutually stochastically
independent the minimal variance for Y is achieved
when

1 1
AT

However, as the match triples are usually not dis-
joint the X;’s are not independent, therefore these val-
ues for the k;’s will not be optimal.

In order to analyze the problem of finding the op-
timal weights K consider the following two observa-
tions. First, each of the (g) estimation regions is ap-
proximately circular. Therefore a linear combination
of those estimation regions would also be a circular.
We can therefore limit ourselves to finding weights K
that minimize the extent of the = coordinate of the
uncertainty region. And second, all pairs of the 2n
coordinates ¢ of the n matched image points have a
correlation coefficient zero (including the z and y co-
ordinate of the same point), and have a variance €2 /4.

Using our linear approximation of the = coordinate
of the 1mage position of the n + 1’th point developed
in Section 3 we can estimate the variance of the ¢’th
estimate using (11). We shall denote by A; a vector
of coefficients of the coordinates &, all but six of which
are zero, such that if X; is the 7’th estimate

Xi(§+ AL = Xi(§) + AiA¢

K; =

Using (11) we get

2 e 2
0x, ™ Z|Az’|

Performing the same analysis for the linear combi-
nation of the X;’s yields

1 1 1

Writing this in matrix form where the matrix A =
(A1 -+ Am) and pp = X;(€) yields
Y = p, + AKAL

where AK 1s the vector of coefficients of the coordi-
nates &. Therefore using (11) again yields

2
o = Z|AK 2 (12)
Thus we have to find a K that minimizes (12) under
the constraint >.)" K; = 1. Substituting K; = 1 —
S5 K; into (12) yields

62

oy =7 |(A2 = A1) (A — A1) | + A
Km
(13)

(13) is the formulation of a standard linear least
squares problem which is solved exactly using stan-
dard numerical methods [8]. The only problem with
this solution 1s that the X;’s are not linear functions
of the coefficients & and thus our model for the vari-
ance of the linear combination of the X;’s 1s not exact
either. The major problem is that the K;’s are not
bounded. They could have arbitrarily large negative
or positive values which would magnify the small er-
ror 1n our linear model of the X;’s and increase 0'12/.
To deal with this problem we add to each coefficient
vector A; a small coefficient for an additional dummy
random variable which appears only in that X;. This
variable acts as a penalty against large values for the
[(i ’s.

The value obtained for oy and the vector K are re-
turned by the algorithm. The user chooses the value of
the parameter A which is the radius of the uncertainty
region in standard deviations.

The results for match sizes four,five, and six are
traced in Figures 34 and b respectively for several
values of A\. We plot the results presented in [2] and
our results. To demonstrate the quality of our results
consider the following example. In order for 98% of
the uncertainty regions to contain the image of the
model point for a match of size four, the method pre-
sented in [2] requires that the average area of the un-
certainty region be 1750 pixels, where our method re-
quires an average area of only 480 pixels. Our method



Method Cost Better
3 512 Pose Estimations
2 Linear Approximation | N/A

Basic Method 2 Pose Estimations 70.6

Derivative Method 8 Pose Estimations 84.7

Combined Method 9 Pose Estimations 83.9

Minimization 50 Pose Estimations 85.9
Rand. Samp. 1 512 Pose Estimations 71.0
Rand. Samp. 2 175 Pose Estimations 49.6

Table 1: The cost of estimating uncertainty regions,
and the percent of uncertainty circles for which the
method gives a better estimate than [3].

Method 2 4 6 8 10

Basic Method 85.7 | 88.7 | 91.0 | 92.1 | 934

Derivative Method | 95.0 | 96.7 | 97.5 | 97.8 | 98.3

Combined Method | 95.1 | 96.7 | 97.5 | 97.8 | 98.3

Minimization 97.1 1 98.5 1 99.1 | 99.3 | 99.6

Rand. Samp. 1 98.4 | 99.7 1 99.8 | 99.8 | 99.9

Rand. Samp. 2 87.9 1965 | 989 | 99.4 | 99.6

Table 2: The percent of uncertainty circles for which
the methods underestimate the area of the uncertainty
region relative to the method in [3] by less than a given
percent.

image point i1s within our uncertainty region. When
the image point is found, we record the size of region
in which we have been looking.

The performance of recognition algorithms which
would use our algorithm depend on the false positive
and false negative rates of our method. We therefore
let the designer of the recognition algorithm have a
choice between several values of false positive and false
negative rates to choose from. We therefore multiply
the results of our estimation algorithms by a user sup-
plied parameter A and use the result as the estimate.
The larger the value of A the higher the false positive
rate and the lower the false negative rate. The design-
ers of recognition algorithms will be able to choose the
value of A which produces the most efficient algorithm.

We plotted a graph for the success rate and average
uncertainty area for the method presented in [2], and
for the first four methods described above in Figure
2. To analyze this graph we have to check the “price”
that has to be paid in the average area of the uncer-
tainty region for a given success rate and vice versa.
From this analysis we can see that the minimization
algorithm performs the best for very low false nega-
tive rates. For all other values of false negative rates,
the combined method performs the best with the pure

derivative method yielding similar results, the basic
method is next, and finally the method presented in
[2].

One of the strengths of the method presented in
[2] is that it has been extended to deal with sets of
matches of any size using linear programming. In
the next section we will employ statistical analysis
to extend our method to deal also with larger sets of
matches.
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Figure 2: A plot where three points are given and the
position of the fourth point is estimated. The graph
shows the percentage of times that the fourth point’s
image shows up in the predicted error region and the
average area of the uncertainty region.

4 nth-Point Uncertainty Region

It has been shown [2, 4] that recognition algorithms
which use a small number of features to estimate the
pose of the object encounter large numbers of false pos-
itive matches due to the uncertainty in the pose which
leads to large uncertainty regions in which the wrong
image features may lie. Therefore it is important to
derive methods to compute more exact poses based
on more information which yield smaller uncertainty
regions.

Given a match of size n there are (g) different
matches of size three. For each one of them we can
use the combined method to estimate the position of
the n + 1’th point and estimate the radius of the un-
certainty region. Putting this into a statistical con-
text, we have (g) random variables whose mean 1s the
position of the n 4+ 1’th point and whose variance is
approximately proportional to the area of the uncer-
tainty region for which we have an estimate. Our goal
is to combine all these estimates into a single estimate



above are all rotated by any angle # the displacement
stays the same, yielding a circular uncertainty region.

The final stage in our estimate computation is to
reevaluate H; and Hs using as the image positions
1g + €p,17 + €1, and is + €5, compute the perturbed
and unperturbed position of mg in the image and the
distance between them. This distance 1s used as our
estimate for the radius of the uncertainty region.

Our estimation method underestimates the real ra-
dius of the uncertainty region. However it is extremely
fast, requiring only two pose estimations which are
done using Alter’s method which is also very efficient.

In order to get a better estimate we have to analyze
the effects of the changes in ip,1; and i, on H; and
H5. Let & denote the vector of the six coordinates of
19,17 and 1. We can evaluate the derivatives

0H;
0&;

by computing directly the derivatives of the equations
in Section 2, or by estimating them using finite dif-
ferences at a cost of six additional pose estimations.
We use these derivatives for the following first order
approximation of H; and H-

OH; ,
5 o)

6
Hi(€ + Ag) = Hi(€) + Y Ag
ji=1

Substituting these equations into (8) we get a more
exact first order approximation for the x coordinate of
mj3. To the coefficients of the perturbations computed
above we add
( ) 0Hs 0H,
YW1 —Yo) w7/ — vt
9¢; 9¢;
We use the method described above to compute the
¢;’s from the coefficients and compute the estimate us-
ing the perturbed points.

Y(y2 — o)

3.1 Experimental Results

In order to test our method, we present here the re-
sults of running experiments on several variants of our
method and comparing them to previously published
methods.

In [3], the three uncertainty circles of radius ¢ are
uniformly sampled at 8 points and the error is com-
puted for the 512 combinations. The maximum dis-
tance is used as the estimate for the radius of the un-
certainty region. Due to the uniformity of the sample
the error of this estimate is never very large. In [2], a
linear approximation to the uncertainty in the image
position is used to estimate the uncertainty region.

The first three methods we tested are the basic
method described above, the method which requires
derivative estimations and the maximum of both meth-

ods.

In the fourth method we use a nonlinear minimiza-
tion algorithm [8] which uses the perturbed points ob-
tained by the third method as the starting position
for the algorithm. The algorithm tries to find points
on the three uncertainty circles which maximize the
uncertainty in the position of the projection of mgs in
the 1image. Because in many cases the results of the
third method are close to optimal, the number of pose
evaluations that the algorithm needs to perform is rel-
atively low and on average requires only 50 pose evalu-
ations. In the fifth and sixth methods we compare the
uniform sampling method presented in [3] to random
sampling. In the fifth method we choose 512 random
triples of points on the uncertainty circles and take the
maximum displacement as the estimate. As on average
this technique outperforms the method presented in [3]
we reduced the number of samples until the number
of times the two methods were better than each other
was approximately equal. That required only 175 pose
evaluations. The main drawback of the random meth-
ods is that in some rare cases the error in the estimate
can be quite large where as in the uniform sampling
technique the errors are relatively small.

We have tested the various methods by randomly
choosing model and image point triplets and an addi-
tional model point and using the different methods to
estimate the size of the uncertainty regions. Table 1
shows the cost of computing the estimate for the vari-
ous methods and how often they yield a larger estimate
than [3]. All the methods tested except [2] are guar-
anteed to produce estimates which are lower than the
true value. Therefore showing this value helps com-
pare them to [3]. Table 2 shows the percent of tests
for which the relative error compared to [3] is less than
a given percent.

From the results shown in Tables 1 and 2 it is clear
that our methods estimate well the true uncertainty
region at a fraction of the cost of [3].

However, in order to check quality of the estimates
we have to compare the false positive and false neg-
ative rates of the various methods. This is done by
repeating the following experiment which has been
used in [2] to test their method. Sets of four model
points are randomly generated and projected ortho-
graphically to a 1000 x 1000 square image. The image
points are then perturbed uniformly within a circle of
radius five pixels. Using the first three pairs of model
and image points, the uncertainty region for the fourth
model point is estimated. We check to see if the fourth



The translation and rotation components of the
pose can be computed easily before or after the scale
and viewing direction have been recovered (see for ex-
ample [4, 9]). The scale has been already computed.
Therefore the only component missing is the viewing
direction v. v is a unit vector which as can be seen
in Figure 1 is parallel to H; and Hs. From that we
deduce:

(m; —mg) -v=H; (5)
(ms —myg) - v=~H, (6)

Each of these equations defines a plane and the in-
tersection of these planes is a line in direction u =
(m; —myg) x (m2 —myg). To complete the definition
of the line we have to find a point p on that line. We
therefore add another equation u -v = w where w
could be any number and we choose for reasons that
will become apparent shortly w = 0. Using Gaussian
elimination we solve these three linear equations yield-
ing a point p. Thus we are looking for a point on the
line v = p + Au such that ||p + Au||? = 1.

llp+ Aull* = [Ip]]* + 24p -u + X?|[u|]* = 1

As we chose w = 0, the term 2Ap - u vanishes and the
solutions for A are:

1— 2
ro [l
Tul

yielding the following two viewing directions
v=(p+ Au)

These viewing directions yield the given image and
its reflection which can be easily separated. The
viewing directions corresponding to the other pair
(—Hy,—Hs) are simply v = —(p+ Au).

3 Uncertainty Region Estimation

We now turn to the main topic of this paper, esti-
mating the region in the image in which the projection
of a fourth model point mg will be located. We model
errors by assuming that the detected feature point is
within ¢ pixels from the location of the true point.
The main problem is to try to estimate the effects of
the uncertainty in the image locations of ip,11, and is
on the estimated location of the fourth point iz. The
maximum displacement occurs when the errors of the
three points lie on the circle of radius €. As mentioned
above the true uncertainty regions tend to be circular

therefore we will try to find a combination of errors
which will yield the largest displacement in the posi-
tion of ms and use that as our estimate for the radius
of the uncertainty region.

In [1] it is shown that the coordinates of ms can be
expressed as a function of the coordinates of mg, my,
and ms by solving the following vector equation for
the “extended affine coordinates”, (e, 8, 7), of ms.

mg) + f(my — my)
myg) + my (7)

ms=«a(m; —
+y(m; —mp) x (ms —

Substituting (2-4) into (7) yields that the image lo-
cation of ms 1s

(a(x1 — o) + B(x2 — 70)
+v((y1 — yo) H2 —

oy — o) + B(y2 — o)
+y(— (21 —xo)Ha + (22 — x0) H1) + %0) (8)

(y2 — yo) H1) + o,

We will use this expression for the position of
the image location of mgs to estimate the uncer-
tainty region. Let €g,€1,€e2 be the error vectors for
points 1ig,11,is respectively.  Substituting the per-
turbed points into (8) and subtracting the unper-
turbed image position of mg yields:

(€ (1 —a—pB,y(H1— H2)) +e1 - (o, 7H2)

€2 (B, —vH1),
€0 (=y(H1 — Ha), 1 —a =)+ e - (=7H2, a)
+ez - (vH1, B)) (9)
Let
=(1-a-08,v(H — H2))
= (a,vH>)
I(B, —yH )
S = (=y(Hy — Ha),1—a—f)
EL—( YHy, o )
Yy = (vH1, B)

Using this notation (9) is reduced to
(e0-Xo+er-Si+ea-Yo, €Sy +e1-E1 +ex-N3) (10)

Under the constraint ||eg|| = [le1]] = ||e2|| = ¢, and
neglecting for now the fact that H; and Hs are not
constants, the e;’s which maximize the x coordinate of
(10) are

X
T

As X; - B = 0 the y coordinate of the displacement is
zero. It 1s easy to show that when the ¢;’s computed

€; =



region are derived and the uncertainty region is esti-
mated using linear-programming.

Our method for estimating the uncertainty regions
is based on the pose estimation method presented by
Alter [1] which is very efficient and has an elegant ge-
ometric interpretation. The main advantages of our
method is that it 1s much more efficient than previous
methods, yields smaller uncertainty regions which re-
duce the probability for false matches, and has a higher
probability for the image point to be within the uncer-
tainty region.

The rest of the paper is organized as follows. We re-
view Alter’s pose estimation method in Section 2. We
present our method for estimation of the uncertainty
regions using a three point match in Section 3, and ex-
tend our method to larger sets of matches in Section
4. Finally a number of issues raised by our algorithm
and future research directions are discussed in Section

5.

2 Geometric Pose Estimation

In this section we will present a brief overview of
Alter’s geometric pose estimation method. For details
please refer to [1]. The geometric setting underlying
the weak-perspective three point pose estimation prob-
lem is shown in Figure 1. The picture shows the three
model points being projected orthographically to the
plane that contains mg and is parallel to the image
plane, and then shows them being scaled down by
scale factor s into the image. Let the distances be-
tween the model points be Rg1, Roo and Ri9, and the
corresponding distances between the image points be

dol, d02 and d12~ Also let

a=(Ro1 + Ro2 + Ri12)(—Ro1 + Roz + R12)
(Ro1 — Roz + Ri2)(Ror + Ro2 — Ri2)
b=d5i(—R3 + Ry + RYs) + dis(RG, — Ry + Ri)
+di,(R3, + Ry — Ris)
¢ =(do1 + do2 + d12)(—do1 + do2 + d12)
(dor — doz + d12)(dor + doz — di2)
o= { 1 if dfy + iy + diy < $*(RGy + Ry + Riy),
—1 otherwise.

Then the unknown parameters in Figure 1 are

b+ Vb2 —ac

a

(h1,ho) =+ ( (sRo1)? — diy,

§=

o\flsRea)t = 2, )
1
(Hy, Ho) = g(hl, hs)
For each image of three points there are two poses

which yield that image. (1) yields two pairs of values
for hy and hs which correspond to those two poses.

m2 R12

s (scale)

Figure 1: Model points mg, m;, and m, undergoing
orthographic projection plus scale to produce image
points ig, iy and iz (adapted from [1]).

Given image points ig = (20, y0),11 = (#1,21), and
iz = (%2,y2), the 3D locations of the model points in
camera-centered coordinates are:

1

mozg(anyOaw) (2)
1

m1=g(l‘1,y1,h1+w) (3)
1

mzzg(l‘z,yz,hz-l-w) (4)

Alter [1] did not present a method to compute the
pose in model-centered coordinates from the values
computed above so we will show a simple geometric
method here.
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Abstract: Ffficient and robust model-based recogni-
tion systems need to be able to estimate reliably and
quickly the possible locations of other model features
i the tmage when a match of several model points to
mmage points is given. Errors in the sensed data lead
to uncertainty in computed pose of the object which in
turn lead to uncertainty in those positions. We present
a very fast and accurate method for estimating these
uncertainty regions. Qur basic method deals with an
wmttial mateh of three points and is extended using sta-
tistical methods to estimate the uncertainty region us-
g tnitial matches of any size.

1 Introduction

Model-based object recognition systems usually in-
volve estimating the pose of the object using a small
set of matched features. The hypothesis is then ver-
ified by using the pose to find additional matches.
These systems perform the operations of pose estima-
tion and estimation of the location of other features
many times during the recognition process. There-
fore efficient methods for computing them must be de-
veloped for these systems themselves to be efficient.
For example, in the alignment recognition method pre-
sented by Huttenlocher and Ullman [6], the pose of the
object is estimated from a match of triples of model
and image points and used to predict the approximate
image location of other points. If there are m model
points and n image points, O(m?3n?3) pose estimations
will be computed and for each pose m estimations of
the position in the image of other points will be com-
puted. Therefore it is critical for the performance of
this and similar algorithms to find efficient methods for
pose estimation and computation of the uncertainty
region in the image of other model points.

Another important factor which is critical for the

*This work was supported in part by the Koret Foundation.

performance of recognition algorithms is the quality of
the estimate of the uncertainty region. The more exact
the estimate, the lower the chances for the projection
of a model point not to be within the uncertainty re-
gion (false negative). A good estimate of the position
of projection of the model point will result in a smaller
uncertainty region. This lowers the chances for a point
in the image to be within the uncertainty region of an
incorrect match (false positive), which might cause an
incorrect match to be considered correct, requiring a
costly verification process. Therefore a method which
produces good estimates with small exact uncertainty
regions will improve the efficiency of recognition algo-
rithms considerably.

In this paper we will consider the “weak-
perspective” imaging model. We use this model be-
cause it is simpler than the full perspective model and
because it is a good estimate of the perspective model
when the object is relatively far from the camera rel-
ative to its size.

Several methods for estimating the pose of the ob-
ject from a match of three model points to image
points have been presented [1, 2, 4, 6, 9]. Methods
for estimating the uncertainty regions have also been
presented. Several methods estimate the pose uncer-
tainty region [4, 9] which can then be used to estimate
the uncertainty regions in the image, others estimate
directly the uncertainty regions in the image [2, 3, 7].
Our method belongs to the latter.

In [3], the three uncertainty circles are uniformly
sampled and for each combination of sampled points
the position of the fourth point is calculated. The
results of these experiments show that the true uncer-
tainty regions tend to be circular. They also show that
a very coarse sampling of only 8 points of each circle
(i.e. 512 pose computations) is needed to achieve a
very good estimate of the radius of the circle.

In [2], the uncertainty region is estimated by a lin-
ear approximation. When the given match has more
than three points, linear constraints on the uncertainty



