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The problem of automatic robust estimation of the epipolar | 7 | 33 | 588 | 2,808 | 21,055 3.5E05| 2.6E06
geometry in cases where the correspondences are contam
nated with a high percentage of outliers is addressed. This
situation often occurs when the images have undergone
significant deformation, either due to large rotation or wid
baseline of the cameras. An accelerated algorithm for the

identification of the false matches between the views is pre-model with the largest consensus set is returned. Two issues
sented. The algorithm generates a set of weak motion modimmediately arise:

els (WMMs). Each WMM roughly approximates the motion 1. How to check the quality of the model? Different
of correspondences from one image to the other. The al-cost functions may be used, the standard being the number
gorithm represents the distribution of the median of the ge- of data points consistent with the model. In [9] a method
ometric distances of a correspondence to the WMMs as aof maximum likelihood estimation by sampling consensus
mixture model of outlier correspondences and inlier corre- (MLESAC) is described. MLESAC evaluates the likeli-
spondences. The algorithm generates an outlier correspon-hood of the hypothesis, representing the error distrilbutio
dence sample from the data. This sample is used to estimatas a mixture model in which the inlier error is Gaussian
the outlier rate and to estimate the outlier pdf. Using these and the outlier error is uniform. In [2] the need for user
two pdfs the probability that each correspondence is an in- supplied threshold is eliminated by reformulating another
lier is estimated. These probabilities enable to guide the robust method, the M-estimator, as a projection pursuit op-
sampling. In the RANSAC process this guided sampling actimization problem. The projection based pbM-estimator
celerates the search process. The resulting algorithm whenautomatically derives the threshold from univariate kerne
tested on real images achieves a speedup of between one aensity estimates.

Li’able 1:The number of samplerequired to ensure, with proba-
bility p = 0.99, that at least one sample has no outliers for a given
%ize of sample and proportion of outliers.

two orders of magnitude! 2. When to stop the algorithm? The number of it-
erations is chosen sufficiently high [4, 7] to ensure with
1. Introduction probability p that at least one of the random samples of

s points is free from outliers. Usually is chosen to be

Recovery of epipolar geometry is a fundamental problem0.99. Suppose: is the probability that any selected feature
in computer vision. The RANdom SAmple Consensus al- is an outlier. Then at leastselections are required, where
gorithm (RANSAC) [4] has been widely used in computer (1 — (1 —¢€)*)! =1 — p, thus
vision in particular for recovering the epipolar geometry. ,

The RANSAC algorithm is simple but powerful. Repeat- I'=log(1—p)/log(1l — (1 —¢)°). @)
edly, random subsets are selected from the input data ang.pp\q 1 gives the values dffor different values of ande.
the model parameters fitting the subset are calculated. The Although ¢ is not generally known in advance, a lower

si;g of a random sample is the smallest. S“fﬁﬁ?ie”t for det_er'bound can be estimated from the largest consistent set ob-
n;mr:ng thg rln_odel ;l)arargetersh. IP ﬁ’zCh |teratfn rt]he qga“ﬁyserved so far. It is widely appreciated that this stoping cri
ofthe modelis evaluated on the full data set. Atthe end, the g o, s often wildly optimistic [6, 3] because with noisy

*This work was supported partly by grant 01-99-08430 of thads q:;ta it is not enough .tO_ have a sample compo.sed 0n|y.0f
Space Agency through the Ministry of Science Culture andtSmé Israel. inliers, they must be inliers that span the manifold. This




significantly reduces the number of sample sets that will ac-enable to guide the sampling, i.e. in each iteration a random
curately span the manifold. Several approaches have beesaubset of seven correspondences is chosen where each cor-
suggested to speed-up RANSAC. ROR [1] can speed-up theespondence in this subset is chosen according to its proba-
sampling process by reducing the contamination lewef bility.

the data points when the camera’s internal parameters are The two main contributions of this paper are: i) the use
known. ROR exploits the possibility of rotating one of the of WMMs to probe the correspondence set and ii) the gener-
images to achieve some common behavior of the inliers.ation and the use of the outlier correspondence sample. Our
ROR may be run as a postprocessing step on output fromapproach makes it possible to break the iteration number
any point matching algorithm. In R-RANSAC [5] the com- theoretical boundary given by Eq. (1). The acceleration is
putational savings are achieved by typically evaluating on especially significant for outlier percentages abo®#. In

a fraction of the data points for each of the hypothesizedsuch outlier percentages our algorithm achieves a speedup
models. Hypothesized models which pass the initial test areof between one to two orders of magnitude!!

evaluated with all of the data points. LO-RANSAC [3] ex- The paper is organized as follows. Section 2 describes
ploits the fact that the model hypothesis from an uncontam-the WMMs. Section 3 presents the mixture density model
inated minimal sample is often sufficiently near the optimal and the generation of the outlier correspondence sample.
solution and a local optimization step is applied to selécte The generation of the WMMs is described in Section 4. Sec-
models. The number of samples which the LO-RANSAC tion 5 presents the details of the algorithm. The results are
performs achieves a good agreement with the theoreticakhown and discussed in Section 6. The paper is concluded
predictions of Eq. (1). in Section 7.

As can be seen in Table 1, the number of needed itera-
tions increases when the percentage of outliers is GV&r .
and it dramatically increases aftéd%. The reason this is 2 Weak motion model
that fore close tol the expression in Eqg. (1) can be approx- _
imated byl ~ log(1 — p)/(1 — €)*, which is as degree Given a set ofV putative eorrespondencc{pi — pi}, we _
polynomial in1/(1 — ¢). Note that the iteration numbers in seek to find the set of inlier correspondences and we v_wsh
the table are the theoretic ones and in practice they can b& compute the fundamental matrix between the two im-
much higher. Situations with high percentages of outliers @9€s. The algorithm that we describe in the next sections
often occur when the images have undergone a significant'S€S WMMs to solve these problems. A WMM is a motion

deformation, either due to large rotation or wide baseline o Model that roughly approximates the motion that a point un-

the cameras [8]. derwent from the first image to the second image. In gen-

In this paper we propose novel improvements to the ro_eraI each point in the first image moves to its correspond-
ing epipolar line. In [11] a probabilistic motion model was

bust estimation of epipolar geometry. The main goal is to - : :

. - : presented limiting the motion to a segment of the epipolar
assign probabilities to the putative correspondences @nd tline A WMM should approximate the motion of the inlier
use them in the RANSAC step. We useak motion mod- : PP

els(WMMs) to estimate these probabilities which are more correspondences. Thus the agreement of the put_apve cor-
) . . ; respondences to the WMMs should yield a probability that
informative than the correlation scores used for this psepo

. a correspondence is an inlier. These probabilities enable
in [6]. ; . .
) . _ . guided sampling from the putative correspondences. We use
The algorithm generates a set of WMMSs which are simi-

. S oo . i an affine transformation as a WMM, i.e.
lar in spirit to weak classifiers in supervised learning sase

Each WMM roughly approximates the motion of corre- x a1 612 ta x
spondences from one image to the other. The algorithm Yy’ =[axn axn t, Y ,
represents the distribution of the median of the geomet- 1 0o 0 1 1

ric distances of a correspondence to the WMMs as a mix-

ture model of outlier correspondences and inlier correspon where the matrixA = [a;;] is an invertible2 x 2 matrix
dences. Typically the inlier correspondences are closer toand (¢,,t,) is a2D translation. Note that three points in
the WMMs then the outlier correspondences. The algorithmthe joint image space [10] define a unique affine transfor-
then generates an outlier correspondence sample. This sanmation and that an affine transformation is a linear trans-
ple is used to estimate the outlier rate and to estimate thdormation that defines a two dimensional manifold in the
outlier pdf. When generating the sample we take into con-joint image space. We have found that very often an affine
sideration the corner distribution on the images, the simil  transformation that has been formed from three inlier cor-
ity between the corners and the corner matching techniquerespondences can be used as a WMM.{zet} be a set of
Using these two distributions, the probability that eacti co N,, WMMs. Letd;; be the geometric distance from corre-
respondence is an inlier is estimated. These probabilitiesspondence,; < p. to the manifold defined by the WMM



wj, i.e. X. We use a Gaussian kernel function and the L-Stage Plug
In method [12] to estimate the bandwidth, i.e.
dz] = m}%n ||p1 _ﬁ”Q + ”p; - HajﬁHQ» 4A5
g

h:(?m

)1/5

)

where H,, is the affine transformation representing.
This geometric distance can be easily analytically calcu-wheres is the sample standard deviation.
lated because the affine transformation is a linear transfor ~ The estimation off,;() is more problematic. We usu-

mation. ally do not have any prior knowledge about this pdf. There-
Let d; be the median distance pf — p/ to the mani-  fore we turn to generate a sample of outlier correspon-
folds, i.e. dences. Given such a samgle — o},i = 1,..., N, we
d; = med{dij};\]:wl- can estimate,,,;() like we estimated;().

) ) ) _ We have tried three methods to generate this outlier sam-
This median distance can be thought of as a random variablge,

and is modeled as a mixture model:
1. Uniformly. Each point of each correspondence is sam-

fa(dy) = fin(d)(1 =€) + four(di)e, pled uniformly from the images.

where fin(di) = fldilp; < p, inlier), four(d;)) = 2. Corner based. Each point of each correspondence is

F(di|p; < P} outlier) ande is the mixing parameter which sampled uniformly from the corner sets of the images.

is the probability that any selected correspondence isenou 3 Algorithm guided. Using the same algorithm that
lier. generates the putative correspondenges — p}},
only this time it excludes from the input of the algo-
rithm the correspondences that already have been used

3 Pr Obablllty estimation using outlier to generatep; — p;}. In our experiments only mu-
sample tually best candidates were selected as putative corre-
spondences. So the entries that were selected for the
The probability,P;,, (7), that correspondengg < p/ is an putative correspondences were removed and the out-
inlier can be calculated by lier sample was generated using the same method.
_ Fin(di)(1 — ) We found that the algorithm guided method gives the
P (i) = ) best estimation to the outlier distribution. To demonstrat

this, a set of ten WMMs was randomly generated for the

We estimate this probability in a non-parametric manner. image pair in Fig. 1. Fig. 2 shows the distribution of the ac-
All we assume is that the median distances of the inlier Cor_tual outliers and of the three aforementioned methods. The
respondenceg’i' are bounded by an unknown paramdmr distributions in this ﬁgure and in rest of the figures in this

and that the outlier correspondences are not. Thus paper are shown with Gaussian kernel smoothing with the
L-Stage Plug In method for bandwidth estimation. In Fig. 2

the algorithm guided method gives a much better estimate

Falds) = { fin(di)(1 =€) + four(di)e, d; < D; of the f,.:() than the other two methods.
' fout (di)e, otherwise. The reason for this is that the outliers have a distribution
_ that depends on several factors. It depends on the distribu-
We obtain tion of the corners in the images. Usually there are regions
fald) = for@)e 4 < . in the image that have_ a larger depsity of corners than oth-
P (i) = { o Jaldy 0 = ers. For example in Fig. 1 the region of the white wall has
0, otherwise. much less corners than the slide projector region. The-distr

bution also depends on the texture around the corners. For
The algorithm estimatef; () using a kernel density esti- example a corner on the desk of Fig. 1 has a better chance
mator. The kernel estimator with given kerrf€lis defined  to be matched to another corner on the desk, because the

by texture around the corners on the desk is more similar to
— 1 — x—X; each other than to corners from other regions. The second

pdf (z) = nh Z K( h ): method takes into consideration the distribution of the cor
=1 ners in the images. Fig. 1 shows that the second method
whereh is the kernel widthy is the number of sampled data gives a slightly better estimation relative to the first noeth
points andX; is thei*" observation of the random variable The algorithm guided method gives the best estimation. It




takes into consideration the corner distribution, the lsirtyi
between the corners and the matching technique.

Figure 1:Slide projector image pair, with correct matching points
marked.
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Figure 2: The distributions for the slide projector image pair of

the actual outliers, uniformly method, corner based method and

the algorithm guided method. The algorithm guided method gives
the best estimation.

The algorithm estimate® as the smallest distance at

which the number of putative correspondences less the num-

ber of expected outliers according to the outlier sample is
equal to the number of expected inliers, i.e.

)~ NS 1@ <yl = [(1- N},

)
where d? is the median of the distances of < o} to
the WMM manifolds andI() is the index function, i.e.

D =min{d|[Y_ I(d: < d

i=1 1=1

I(True) = 1 andI(False) = 0. The estimation ot is
described in Section 5.

The following figures show results for the slide projec-
tor image pair. Fig. 3 shows;(), fou:() and f;,, () density
functions and Fig. 4 shows histograms @8f,() for inlier
and outlier correspondences. Note that a large number of
outlier correspondences get probability zero to be anrinlie
and a large number of the inlier correspondences get proba-
bility 0.6 to be an inlier while the original inlier rate is only
0.22. These probabilities are used to guide the RANSAC
step of the algorithm enabling to accelerate the search pro-
cess. For illustration Fig. 5 shows some of the inlier corre-
spondences with solid white lines, three outlier correspon
dences with a probability greater than zero to be an in-
lier with black solid lines and three outlier correspondesnc
with probability zero to be an inlier with white dashed lines
Note that outlier correspondences with probabilities gea
than zero have motions similar to the inliers and can not
be discarded using the WMMs. However outlier correspon-
dences with probability zero have a different motion rekati
to the inliers and have been successfully detected using the
WMMs.
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Figure 3: Density function for the slide projector image pair (a)
fa(d) density function (b)f,.:(d) and f;»(d) density functions.
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Figure 4:Histograms forP;,, () of (a) inlier correspondences (b)
outlier correspondences for the slide projector image pair.



Algorithm 1 Guided Sampling via WMMs and Outlier Sample
Generation
1: Generate an outlier sample
2: For eacly; starting from the smallest up to the highest:
a) Generate random WMMs for the current
rate levele;
b) Fine tune the estimate of the outlier rate
c) Estimate inlier probabilities
d) Estimate the number of iterations,, for the
guided LO-RANSAC

Figure 5: Several inlier correspondences are shown with solid e) If Ns < N, then
white lines, three outlier correspondences with a probability execute guided LO-RANSAC
greater than zero to be an inlier are shown with black solid lines f) Check the stopping criteria of the algorithm

and three outlier correspondences with probability zero to be an
inlier are shown with dashed white lines.

rithm guided method to generate the outlier sample.

4 Weak motion model generation _ _
Gener ation of random weak motion models

In order to get a set of approximately,, WMMs. A . . .
RANSAC style algorithm is used. At each iteration a sub- The generatlo_n of t_he random WMMs is dqne n the same
manner described in Section 4. However in Section 4 we

set of three correspondences is randomly chosen from the ssumed that is known in advance. As in practice this is

putative correspondences. Each subset uniquely defines an ) pr

affine transformation. AfteN,, /(1 — ¢)? iterations we have not the case we vyork on Fhe rate level ¢ef} in para"e.l'

on averageN,, subsets conltuaining only inlier correspon- Each rate levek;, is associated with a number of iterations
w _ _ 2 \3 .

dences. Each subset gets a score. The score is the ge%’f s_us”(\af zt/e (c} WI\E/flz/ll Eﬁg?eriﬁslegg Eatsd:t;fél}r?:\ the

metric distance of thél — ¢) Nth closest correspondence to éuneratf)on of the ran d<'3m affine transformgtions 9

the manifold of the affine transformation of the subset. A 9 Each setB. k theN best affine t f ’ i

subset that fits an affine transformation that can be used afe,o ach setb; keeps w DESLAMINE transtormations

a WMM gets a low score because at le@ist- €) N inliers ) unq until now that are suspected to be WMMS.‘ In each
are relatively close to the manifold. An affine transforma- iteration a new subset of three correspondences is randomly

tion based on a subset that includes outliers usually can no hosen and the appropriate affine transformation is formed.

be used as a WMM and does not have a setlof ¢) N thhen?er?h[nleofmé tﬂlstafrf}cr:]e torf ﬁafcr;n?f ttihi icorrelsplo?dder;ées to
correspondences that are relatively close to its manifatd a € manitoid ot the aflin€ transformation 1S calculated. feac

because of that will get a relatively high score. We take the rate levele; gives a different score to this affine transforma-

set of NV, models with the lowest scores to be the set of the tion. The score is the dlsta_nce of thie _Ej)Nth closest_
WMMSs. correspondence to the manifold of the affine transformation

Each of the rate levels that the algorithm did not pass until
now, keeps the current affine transformation if it has one of
5 Theal gor ithm the N,, lower scores obtained till now. In our implementa-
tion each of the WMM setsl3;, is kept in a different heap.
In this section we describe the flow of the algorithm. The This enables very efficient updates of the sets. The random
generation of the WMMs and the computation of the proba- generation of the affine transformations continues unéil th
bility of each correspondence to be an inlier depend.dn number of iterations reachéé;, .
generalk is not known in advance. The algorithm searches
fqr the correck starting from the lowest rgte Ieve! up to the Finetunethe estimate of the outlier rate
highest rate level of a rate level s¢t, }, given as input by
the user. The algorithm is summarized in Algorithm 1. The The outlier rate level sefte; } is given as an input from the

details of the algorithm are as follows: user. So, na; is expected to be the accurate outlier rate
of the putative correspondences. In this step the algorithm
Generation of outlier sample fine tunes the estimation of the outlier rate. First the media

distance sets of the putative correspondereg$ and of
The algorithm generates an outlier sample. This step is donghe outlier sampldd?} are calculated according to the cur-
only once at the beginning of the algorithm using the algo- rent set of WMMs,B;, where; is the index of the current



outlier rate level. The search for the accurate outlierisate calculation is infeasible, however we can estimisteusing
carried out around; in the regionA = [eﬁ%, eﬁ%] a Monte Carlo method. We generate a sefi¢of length
Note that for eackk € A there is an appropriat®. ac- Ny, of subsetss;. Each member in the series is chosen in
cording to Eq. (2). The search seeks to fiydthat gives  the same manner as in the guided sampling step, i.e. ac-
the best fit between the outlier sample distribution and pu- cording to the probability functio®.(). The series\f rep-
tative correspondence distribution for distances grehter resents an “average” subseries of the guided sampling step.
D. Let cdfou:() be the empirical distribution function of We calculate how many such subseries should be taken in
the outlier sample, i.ecdf,(d) = Zﬁvé’ljl\f’(dz’<d> and let order to ensure with probability that at least one of the

cdfmiz() be the empirical distribution function of the out- samples of seven correspondences is free from outliers. We

lier pdf given by the mixture model, i.e.cdfpi.(d) = have N
(W — (1 —¢))/eford > D. The quality of the (H(l — P.(my)) =1-p,
fit between these cdfs is measured by the number of zero =1

crossing ofedfou:(d) — cdfmiz(d), where a large number )
wherem; € M is a subset of seven correspondences and

represents a good fit. To ensure that this score will not be™ " . )
biased toward lower values ethe parameteb is set to be K is the number of subseries needed to be taken in order to
ensure the probability. Now we can estimat&/’; as

D¢, t¢,;_,)/2 for all of the checked values ef Other meth-
ods for cdf comparison can also be used in this step, such as

the Kolmogorov-Smirnov test. Ny =K * Ny

_ . ) _ The length of seried/ should be sufficiently long to en-
Inlier probability estimation sure thatM represents an “average” subseries of the guided

The probability,P;,, (7), that correspondengg < pj is an sampling step.

inlier is calculated for all the correspondences by
R Guided LO-RANSAC
fd(di)*fzut(di)fj’ d; < D:.:
0 falds) otherwise. The guided LO-RANSAC step is not carried out when the
’ WMNMs did not provide enough probabilistic information to

The estimate of the density function at each point is donefeduce the number of iterations, below a user defined

using the kernel density estimator described in Section 3. thresholdV;. In this step a slightly different version of
LO-RANSAC algorithm is applied. The difference is in

. . . the sampling technique. Instead of random sampling, the
Iteration number estimation samples are chosen according to the probabilffigs:). In
The inlier probability estimation is used to accelerate the each iteration a subset of seven correspondences is sampled

search for the fundamental matrix using a guided RANSAC The number of iterations is limited t;. At the end of this
algorithm. The correspondences are sampled according t§t€P, the fundamental matrix with the largest number of
their inlier probability. In each guided RANSAC iteration a Mliers Ny is kept.

subset sample of seven correspondences is chosen. Corre- Note that the algorithm has two RANSAC style steps,
spondence has probability Pin(i) _ to be chosen. The the WMM generation step and the guided LO-RANSAC

N . . .
U2 Pinli) . step. Each iteration of the second type is more costly be-
number of sampled/, is chosen sufficiently high to ensure : . . :

: . cause in each iteration a fundamental matrix has to be com-
with probability p that at least one of the samples of seven

correspondences is free from outliers. Thus Eq. (1) has toputed based on seven correspondences. This involves com-
be generalized. Le$ be the set of all possible subsets of puting the roots of a polynomial of degree three which may

seven correspondences. The probability of subsetS to have up to three solutions for the fundamental matrix and
>SP T P y € the distances of the putative correspondences to each of the
be chosen in the guided sampling step is

non linear manifolds of the fundamental matrices have to

Pin(i) =

7 P be calculated. On the other hand, in each iteration of the
P.(s;) = H #7 random WMM generation step a unique affine transforation
i1 2kt Pin(k) is formed using a linear algorithm and the distances of the

putative correspondences to the linear manifold of theaffin
wherec;; is thej" correspondence in subsst The calcu-  transformation have to be calculated. In our implementatio
lation of N, has to take into consideration all the possible the run time of an average iteration of the LO-RANSAC is
combination series of subsetswhere each subset is cho- 4.5 times more costly than an average iteration of the ran-
sen according the probability functia®.(). This kind of dom WMM generation step.



Characteristics LO-RANSAC Proposed algorithm Speedup rate

N [In. ] e 75% | End [ In. 75% | End | In. 75% | End
Slide pr. || 565 | 122 | 0.78 70,878 384,171| 114.8 326 (427)| 1,388 (1,274)| 118.9 18.2 59.2
Desk 303 63 | 0.79 80,841 341,958| 61.7 168 (411) 495 (908) | 62.1 42.1 78.3
Lab 730 | 131 | 0.82 || >232,596| >860,590| 124.3 109 (2,216) 1,214 (2534)| 129.0 >90 | >114

Corridor || 401 | 70 | 0.83 || >228,675| 1,000,000 59.7 || 1,038 (1,327)| 1,645 (2,227)| 66.4 | >137 | >178
Building || 363 | 44 | 0.88 || >821170| 1,000,000 26.8 || 1,042 (4,635)| 2,202 (7,832)] 41.9 || >208 | >251
Road 201 | 50| 0.88 || >547,547| 1,000,000| 37.6| 1,532 (1,937)| 5,168 (10,000)] 49.2 || >270 | >181
Yard 508 | 53| 0.90 || >508,519| 1,000,000| 435 | 91 (10,000)| 2,843 (10,000) 50.9 | >265 | >185

Table 2: Experiment characteristics and resulf$.is the number of putative correspondences, “In.” is the number of iotiespon-
dences and is the outlier rate level. For each algorithm “75%"” is the average numbearopkes until at least 75% of the true inliers are
found, “End” is the average number of iterations until the termination otherithm and “In.” is the average number of inliers that were
found until the termination of the algorithm. The numbers in parenthesgbaaverage numbers of the WMMs that have been generated.
The last two columns show the average time speedup rate until at leastftB&possible inliers are found and until the termination of
the algorithm. Several numbers in the table are shown with the “greatérsynabol that indicates that there have been cases in which the
LO-RANSAC algorithm terminated when it exceeded one million iterations.

Checkingthestopping criteriaof thealgorithm , the number of WMMs generated for each of the outlier
rate levels was set t&v,, = 10, the length of the serie&/
In this step the algorithm checks the stopping criteria. 55 set toN,; = 1000 and the threshold for the guided
The algorithm has two estimates of the number of inliers: | 9. RANSAC step wasV, = 3000. Seven experiments
N(1—¢;) from the mixture model and;,,; fromthe guided  gre presented in this section. Some of the image pairs are
LO-RANSAC. If the two estimations are approximately the shown in Fig. 6. The cases that are presented here are diffi-
same then the algorithm terminates and returns the fundagyt cases in which the outlier rate is between 0.78-0.9. The
mental matrix/” and the set oV, inlier correspondences.  characterization of the scenes, the number of putative cor-
The algorithm also terminates when that the current eStima‘respondences, the number of inlier correspondences and the
tion of the number of inliers is lower than the largest inlier g tjier rate are summarized in Table 2. Each algorithm has
set found until this stage. This situation is checked aftert pegnp applied to each image pair twenty times. For each al-
estimation ofé; in the fine tuning step of the algorithm. In g4rithm the following statistics are presented: The number
this case the algorithm returns the largest found inlier setq¢ samples until at least 75% of the true inliers are found
and its fundamental matrix. (as was suggested in [6]), the number of iterations until the
termination of the algorithm and the number of inliers that
. have been found until the termination of the algorithm. The
6 Experlments number of generated WMMs is also reported. The results
of the experiments are summarized in Table 2. The aver-
The proposed algorithm was tested on many image pairsage speedup rate time achieved in the experiments until at
of indoor and outdoor scenes several of which are pre-least 75% of the possible inliers have been found is between
sented here. All the putative correspondences were ded8.2-270 and the average speedup rate time until the ter-
tected and matched automatically using a very simplemination of the algorithm is between 59.2-251. Note that
method. Corners were detected by the Harris corner de-several numbers in the table are shown with the “greater
tector. Cross correlation scores were generated betweethan” symbol that indicates that at least in one case the LO-
all corners with each patch undergoing 36 evenly spacedRANSAC algorithm terminated when it exceeded one mil-
rotations, the strongest matches over these rotations aréon iterations. Removal of this early termination critari
stored. Only mutually best candidates were selected agields much higher results. In addition, the number of inlie
putative correspondences. We have compared our algocorrespondences found by the proposed algorithm is larger
rithm with the LO-RANSAC algorithm which gives near than in the ones achieved by LO-RANSAC and the results
perfect agreement with the theoretical performance thatare near perfect.
is given by Eq. (1). The termination criterion based on
Eq. (1) was set tp = 0.99. In cases where the num- .
ber of iterations exceeded one million the algorithm also 7 Summary and Conclusions
terminated. The parameters for the proposed algorithm
were as follows. The outlier rate level sdt;}, was set  In this work, we presented a novel algorithm for automatic
to {0.1,0.25,0.5,0.6,0.7,0.75,0.8,0.85,0.9,0.925,0.95} robust estimation of the epipolar geometry in cases where



(a) Corridor image pair

(c) Road image pair

/‘

(d) Building image pair

Figure 6:Some of the real image pairs on which the algorithms were tested.

the correspondences are contaminated with a high percent-[3]
age of outliers. The algorithm uses WMMs that roughly
approximate the motion of correspondences from one im-
age to the other. The algorithm generates a set of WMMs [4]
and represents the distribution of the median of geomet-
ric distances of a correspondence to the WMMs as a mix-
ture model of outlier correspondences and inlier correspon
dences. An outlier correspondence sample is then generateds]
using the algorithm guided method. This method takes into
consideration the corner distribution in the images, the si

ilarity between the corner neighborhoods and the matching [6]
technique. The outlier sample is used to estimate the outlie
rate and to estimate the outlier pdf. These pdfs are then used
to estimate the probability that each correspondence is anj7)
inlier. These probabilities guide the sampling which accel
erates the search process. The performance of the algorithm
was compared to the performance of the LO-RANSAC al- 8]
gorithm that gives near perfect agreement with the number

of iterations given by Eq. (1). The resulting algorithm when
tested on real image pairs achieves speedup rates of 59-251![9]
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