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Abstract The problem of automatic robust estimation of
the epipolar geometry in cases where the correspondences
are contaminated with a high percentage of outliers is ad-
dressed. This situation often occurs when the images have
undergone a significant deformation, either due to large ro-
tation or wide baseline of the cameras. An accelerated al-
gorithm for the identification of the false matches between
the views is presented. The algorithm generates a set of
weak motion models (WMMs). Each WMM roughly ap-
proximates the motion of correspondences from one image
to the other. The algorithm represents the distribution of the
median of the geometric distances of a correspondence to
the WMMs as a mixture model of outlier correspondences
and inlier correspondences. The algorithm generates a sam-
ple of outlier correspondences from the data. This sample is
used to estimate the outlier rate and to estimate the outlier
pdf. Using these two pdfs the probability that each corre-
spondence is an inlier is estimated. These probabilities en-
able guided sampling. In the RANSAC process this guided
sampling accelerates the search process. The resulting al-
gorithm when tested on real images achieves a speedup of
between one or two orders of magnitude.
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1 Introduction

Recovery of epipolar geometry is a fundamental problem
in computer vision. It is an important building block in
many applications such as ego-motion estimation, structure
from motion, and visual servoing. Corresponding point pairs
p ↔ p′ from two images of a scene, satisfy

p′T Fp = 0, (1)

where F is the fundamental matrix. The two points can
be concatenated yielding a point in �4. The points satisfy-
ing (1) lie on a quadratic manifold in �4.

The RANdom SAmple Consensus algorithm (RANSAC)
(Fischler and Bolles 1981) has been widely used in com-
puter vision for solving a variety of robust estimation prob-
lems. One of its most important applications is for recover-
ing the epipolar geometry from a set of putative matches
of which a certain fraction is incorrect (outliers). The
RANSAC algorithm is a simple but powerful tool. Repeat-
edly, random subsets are selected from the input data and
the model parameters fitting the subset are calculated. The
size of the random sample is the smallest sufficient for deter-
mining the model parameters. At each iteration the quality
of the model is evaluated on the full data set. At the end, the
model with the largest consensus set is returned. Two issues
immediately arise:

1. How to check the quality of the model? Different cost
functions may be used, the standard being the number of
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Table 1 The number of samples I required to ensure, with probability
p = 0.99, that at least one sample has no outliers for a given sample
size s and proportion of outliers ε

s\ε 25% 50% 60% 70% 80% 85%

3 8 34 70 168 573 1,362

7 33 588 2,808 21,055 3.5E05 2.6E06

data points consistent with the model. In Torr and Zisser-
man (2000) a method of maximum likelihood estimation
by sampling consensus (MLESAC) is described. MLESAC
evaluates the likelihood of the hypothesis, representing the
error distribution as a mixture model in which the inlier er-
ror is Gaussian and the outlier error is uniform. In Chen
and Meer (2003), Rozenfeld and Shimshoni (2005), Sub-
barao and Meer (2007) the need for user supplied threshold
is eliminated by reformulating another robust method, the
M-estimator, as a projection pursuit optimization problem.
The projection based pbM-estimator automatically derives
the threshold from univariate kernel density estimates. Sim-
ilar methods were suggested (Wang and Suter 2004a, 2004b)
which can also estimate models without the user having to
give them a threshold. Other methods for automatically sep-
arating the inliers from the outliers were suggested in Stew-
art (1995), Yu et al. (1994), Lee et al. (1998) and Moisan
and Stival (2004) which is a method which was designed to
deal with the estimation of the epipolar geometry.

2. When to stop the algorithm? The number of itera-
tions is chosen sufficiently high (Fischler and Bolles 1981;
Torr 1995) to ensure with probability p that at least one
of the random samples of s points is free from outliers.
Usually p is chosen to be 0.99. Suppose ε is the proba-
bility that any selected feature is an outlier. Then at least
I selections are required, where (1 − (1 − ε)s)I = 1 − p,
thus

I = log(1 − p)/ log(1 − (1 − ε)s). (2)

Table 1 gives the values of I for different values of s and ε.
Although ε is not generally known in advance, a lower

bound can be estimated at runtime from the largest consis-
tent set observed so far. It is widely appreciated that this
stopping criterion is often wildly optimistic (Tordoff and
Murray 2002; Chum et al. 2003; Torr and Davidson 2003)
because with noisy data it is not enough to have a sample
composed only of inliers, they must be inliers that lie on
different regions of the manifold in order to give a good es-
timate of the fundamental matrix. This significantly reduces
the number of sample sets that will accurately give a good
estimate of the manifold.

In the case of narrow baseline images, the approximate
position of the corresponding point is known and putative
correspondences are only selected in that region. Therefore,

even if a wrong match is chosen an approximate fundamen-
tal matrix might be found. In the case of wide baseline stereo
however, there is usually no prior knowledge where the cor-
responding point will lie in the second image and therefore
putative matches are found all over the image. As a result,
outliers usually yield gross errors which generate totally in-
correct fundamental matrices. Our work focuses on this case
for which the number of required iterations of the algorithm
is well approximated by (2).

Several approaches have been suggested to speed-up
RANSAC. ROR (Adam et al. 2001) can speed-up the sam-
pling process by reducing the contamination level ε of
the data points when the camera’s internal parameters are
known. ROR exploits the possibility of rotating one of the
images to achieve some common behavior of the inliers.
ROR may be run as a postprocessing step on output from
any point matching algorithm. In R-RANSAC (Matas and
Chum 2004) the computational savings are achieved by typ-
ically evaluating only a fraction of the data points for each of
the hypothesized models. Hypothesized models which pass
the initial test are evaluated with all of the data points. LO-
RANSAC (Chum et al. 2003) exploits the fact that the model
hypothesis from an uncontaminated minimal sample is of-
ten sufficiently near the optimal solution and a local opti-
mization step is applied to selected models. The number of
samples which the LO-RANSAC performs achieves a good
agreement with the theoretical predictions of (2).

As can be seen in Table 1, the number of needed iterations
increases when the percentage of outliers is over 50% and it
dramatically increases after 70%. For ε values close to 1
the expression in (2) can be approximated by I ≈ log(1 −
p)/(1 − ε)s . This is a polynomial in the variable (1 − ε)−1

of degree s. Thus, for large values of (1−ε)−1 and for s = 7
the number of iterations is very large. Note that the iteration
numbers in the table are the theoretic ones and in practice
they can be much higher.

In this paper we propose novel improvements to the ro-
bust estimation of epipolar geometry. The main goal is to
assign probabilities to the putative correspondences and to
use them in the RANSAC step. We use weak motion models
(WMMs) to estimate these probabilities which are more in-
formative than the correlation scores used for this purpose
in Tordoff and Murray (2002). In Triggs (2001) a proba-
bilistic motion model was presented for finding additional
matches after an estimate for the fundamental matrix was
found, limiting the motion to a segment of the epipolar line
based on the motion of other corresponding pairs. In our
case the WMMs are used to estimate the probabilities ini-
tially in order to speed up the fundamental matrix estimation
process.

The algorithm generates a set of WMMs which are simi-
lar in spirit to weak classifiers in supervised learning cases.
In the well known Adaboost (Freund and Schapire 1997)
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algorithm a high quality classifier is generated from a com-
bination of low quality (weak) classifiers. In our case each
WMM roughly approximates the motion of a fraction of the
correspondences from one image to the other. The algorithm
represents the distribution of the median of the geometric
distances of a correspondence to the set of WMMs as a mix-
ture model of outlier correspondences and inlier correspon-
dences. Typically the inlier correspondences are closer to
the WMMs than the outlier correspondences. Therefore, a
smaller distance will yield a higher probability that a match
is an inlier.

The algorithm then generates a sample of outlier corre-
spondences. This sample is used to estimate the outlier rate
and to estimate the outlier pdf. When generating the sample
of outliers we take into consideration the corner distribution
on the images, the similarity between the corners and the
corner matching technique. Using these two distributions,
the probability that each correspondence is an inlier is es-
timated. These probabilities enable guided sampling, i.e. in
each iteration a random subset of seven correspondences is
chosen where each correspondence in this subset is chosen
according to its probability.

The two main contributions of this paper are: (i) the use
of WMMs to probe the correspondence set and (ii) the gen-
eration and the use of the sample of outlier correspondences.
Our approach makes it possible to break the iteration num-
ber theoretical boundary given by (2). The acceleration is
especially significant for outlier percentages above 70%. In
such outlier percentages our algorithm achieves a speedup
of between one or two orders of magnitude.

The paper is organized as follows. Section 2 describe the
concept of the WMM. Section 3 presents the mixture den-
sity model and the generation of the sample of outlier cor-
respondences. The generation of the WMMs is described in
Sect. 4. Section 5 presents the details of the algorithm. The
results are shown and discussed in Sect. 6. The paper is con-
cluded in Sect. 7.

A short version of this paper was presented at the IEEE
Conference on Computer Vision and Pattern Recognition
(Goshen and Shimshoni 2005).

2 Weak Motion Model

Given a set of N putative correspondences {pi ↔ p′
i}, we

seek to find the set of inlier correspondences and we wish
to compute the fundamental matrix between the two im-
ages. The algorithm that we describe in the next sections
uses WMMs to solve these problems. A WMM is a motion
model that roughly approximates the motion that a point un-
derwent from the first image to the second image. In gen-
eral each point in the first image moves to a point on its
corresponding epipolar line, where the position on the line

depends of the depth of the 3D point. However, the motion
of images of points which are close in 3D can be a approx-
imated by a more constrained motion. These probabilities
enable guided sampling from the putative correspondences.
Several possible transformations can be considered to be
used as WMMs: a 2D homography, an affine transforma-
tion or a similarity transformation. An homography can be
induced in a scene by a world plane, but in a general scene
it is not easy to generate an homography since at least four
point correspondences on a plane in the scene have to be
found first. The other two transformations can be generated
very easily: an affine transformation can be generated by
any three correspondences and a similarity transformation
by any two correspondences. These transformations have a
geometric meaning as they are approximations of the ho-
mography, which is associated with the 3D plane on which
the points lie, between the first and the second images. These
approximations are not very accurate and the plane does not
have to be part of the scene. This however is not critical,
since the nature of the WMM is to give only rough ap-
proximations. We decided to use affine transformations as
WMMs because they have more generalization ability than
the similarity transformations and they are approximations
of the corresponding homography.

The matrix representing the WMM is

⎛
⎝

x′
y′
1

⎞
⎠ =

⎡
⎣

a11 a12 tx
a21 a22 ty
0 0 1

⎤
⎦

⎛
⎝

x

y

1

⎞
⎠ ,

where the matrix A = [aij ] is an invertible 2 × 2 matrix and
(tx, ty) is a 2D translation. Note that three points in the joint
image space (Triggs 1995) define a unique affine transfor-
mation and that an affine transformation is a linear transfor-
mation that defines a two dimensional manifold in the joint
image space. We have found that very often an affine trans-
formation that has been formed from three inlier correspon-
dences can be used as a WMM.

Let {wj } be a set of Nw WMMs. Let dij be the geomet-
ric distance from correspondence pi ↔ p′

i to the manifold
defined by the WMM wj , i.e.

dij = min
p̃

√
‖pi − p̃‖2 + ‖p′

i − Haj
p̃‖2

= min
p̃

∥∥∥∥
[
Haj

I

]
p̃ −

(
p′

i

pi

)∥∥∥∥ ,

where Haj
is the affine transformation representing wj . This

geometric distance can be easily analytically calculated be-
cause the expression is a square of a linear transformation.

When an inlier pair is considered, the value of dij is the
length of the sum of two error vectors. The first vector is the
difference between position computed by the affine transfor-
mation and the true homography associated with the plane
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Fig. 1 Simulation results
comparing distances obtained
using an homography WMM
with distances obtained using an
affine transformation WMM

spanned by the three projective 3D points created from the
three pairs of points used to compute the affine transforma-
tion. The second vector is the result of the projective depth
of the point pair relative to the plane. Usually the first com-
ponent is quite small whereas the second component varies
depending on the distance of the point from the plane. When
an outlier pair is considered the distance is usually much
larger as the point pairs usually do not satisfy the epipolar
constraint and this usually results in large projective depth
values.

As mentioned above homographies represent accurately
the distance from a plane. There is no way however to gen-
erate homographies from the data because it requires that
four pairs of corresponding points whose 3D points lie on a
plane be found. In the simulation results presented in Fig. 1
we generated a wide baseline image pair of a simulated 3D
scene for which inlier and outlier matches were generated.
We compared the distributions of distances obtained for one
WMM using an affine transformation with the distances ob-
tained for its corresponding homography. In the figure two
sets of results are presented. When outliers are considered,
the two distributions are practically identical. For inliers, the
distances obtained for the homography are usually smaller
than the ones obtained for the affine transformation and if
homography-based WMMs could be generated the results
would be slightly better, but in both cases the difference be-
tween the distribution of inliers and the outliers is consid-
erable. The conclusion is that even if the affine transforma-
tion does not closely approximate the homography, using it
should lead to satisfactory results.

Let di be the median distance of pi ↔ p′
i to the mani-

folds, i.e.

di = med{dij }Nw

j=1.

Thus, for inliers only the NW/2 affine models with smaller
projective depths are used, resulting in a small value. Each of
the affine transformations covers a certain part of the scene
and therefore will produce a small distance for some of the
inlier pairs. Small distances are also produced for some of
the other transformations. Choosing the minimal distance

yielded worse results because quite a few outliers would
have one low distance making them hard to be distinguished
from the inliers.

The median distance can be considered as a random vari-
able and is modeled as a mixture model:

fd(di) = fin(di)(1 − ε) + fout(di)ε,

where fin(di) = f (di |pi ↔ p′
i inlier), fout(di) = f (di |pi

↔ p′
i outlier) and ε is the mixing parameter which is the

probability that any selected correspondence is an outlier.
Following the description given above the distribution of the
distances associated with the inliers should be very different
than the distances associated with the outliers.

3 Probability Estimation Using an Outlier Sample

The probability, Pin(i), that correspondence pi ↔ p′
i is an

inlier can be calculated using Bayes’ rule. Due to the fact
that di is a continuous variable the continuous version of
Bayes’ rule is applied in which probabilities are replaced by
density functions (Duda et al. 2001, Chap. 2). The result is
therefore:

Pin(i) = P(pi ↔ p′
i inlier|di)

= P(di |pi ↔ p′
i inlier)P (pi ↔ p′

i inlier)

P (di)

= fin(di)(1 − ε)

fd(di)
.

We estimate this probability in a non-parametric manner.
All we assume is that the median distances of the inlier cor-
respondences, di , are bounded by an unknown parameter D

and that the outlier correspondences are not. Thus,

fd(di) =
{
fin(di)(1 − ε) + fout(di)ε, di ≤ D;
fout(di)ε, otherwise.

We obtain

Pin(i) =
{

fd (di )−fout(di )ε
fd (di )

, di ≤ D;
0, otherwise.

(3)
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Fig. 2 Car image pair, with
correct matching points marked

The algorithm estimates fd() using a kernel density esti-
mator. The kernel estimator with given kernel K is defined
by

̂pdf (x) = 1

nh

n∑
i=1

K

(
x − Xi

h

)
,

where h is the kernel width, n is the number of sampled
data points and Xi is the i th observation of the random vari-
able X. We use a Gaussian kernel function and the L-Stage
Plug In method (Wand and Jones 1995) to estimate the ker-
nel width. I.e.,

h =
(

4σ̂ 5

3n

)1/5

,

where σ̂ is the sample standard deviation.
The estimation of fout(), which is also needed to compute

the probabilities, is more problematic. We usually do not
have any prior knowledge about this pdf. Therefore we turn
to generate a sample of outlier correspondences. Given such
a sample {oi ↔ o′

i}, i = 1, . . . ,No we can estimate fout() in
the same way that we estimated fd().

We tried the following three methods to generate the out-
lier sample.

1. Uniformly. Each point of each correspondence is sam-
pled uniformly from the image.

2. Corner based. Each point of each correspondence is
sampled uniformly from the corner sets of the images.

3. Algorithm guided. Using the same algorithm that gen-
erates the putative correspondences {pi ↔ p′

i}, only this
time it excludes from the input of the algorithm the cor-
respondences that already have been used to generate
{pi ↔ p′

i}. In our experiments only mutually best can-
didates were selected as putative correspondences. So
the entries that were selected for the putative correspon-
dences were removed and the outlier sample was gener-
ated using the same method.

We found that the algorithm guided method gives the best
estimation to the outlier distribution. To demonstrate this, a

Fig. 3 The distributions for the car image pair of the actual out-
liers, uniformly method, corner based method and the algorithm guided
method. The algorithm guided method gives the best estimation

set of ten WMMs was randomly generated for the image
pair in Fig. 2 (using the method which will be described in
Sect. 5). Figure 3 shows the distribution of the actual outliers
and of the three aforementioned methods. The distributions
in this figure and in rest of the figures in this paper are shown
with Gaussian kernel smoothing with the L-Stage Plug In
method for bandwidth estimation. In Fig. 3 the algorithm
guided method gives a much better estimate of the fout()

than the other two methods.
The reason for this is that the outliers have a distribution

that depends on several factors. It depends on the distribu-
tion of the corners in the images. Usually there are regions
in the image that have a larger density of corners than oth-
ers. For example in Fig. 2 the region of the white car has
much less corners than the region of the bushes. The distri-
bution also depends on the texture around the corners. For
example a corner in the bushes of Fig. 2 has a better chance
to be matched to another corner in the bushes, because the
texture around the corners in the bushes is more similar to
each other than to corners from other regions. The second
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Fig. 4 Example of outlier distributions for different image pairs

method takes into consideration the distribution of the cor-
ners in the images. Figure 2 shows that the second method
gives a slightly better estimation relative to the first method.
The algorithm guided method gives the best estimation. It
takes into consideration the corner distribution, the similarly
between the corners and the matching technique.

One could think that the outlier distribution does not
change from image pair to image pair, but this is not true.
Figure 4 shows examples of three more outlier distributions
of different image pairs. This figure demonstrates the vari-
ety of outlier distributions that can be obtained and that in
order to achieve better results the outlier sample has to be
generated for each image pair.

The median distances of the inlier correspondences are
bounded by the unknown parameter D. At this point we al-
ready have the outlier sample and assuming that we know
the outlier fraction ε the expected number of inliers is
(1 − ε)N . Therefore, for values less than D there should
be (1 − ε)N inliers and the rest should be outliers. Since
the artificially generated outliers are assumed to follow the
same distribution as the outliers in the putative correspon-
dences, we estimate that the same fraction of outliers of the
N putative correspondences have values who are less than
D, i.e.

D = min

{
d|

⌈ N∑
i=1

I (di < d) − N

No

No∑
i=1

I (do
i < d)

⌉

= �(1 − ε)N	
}
, (4)

where do
i is the median of the distances of oi ↔ o′

i to
the WMM manifolds and I () is the index function, i.e.
I (True) = 1 and I (False) = 0. Figure 5 illustrates the D

estimation method. As can be seen from the illustration all
the inliers (whose number has already been estimated) have

Fig. 5 Illustration of the estimation of D. The empty red bullets rep-
resent the outlier sample distances and the filled blue bullets represent
the putative correspondences distances. D is the smallest distance at
which the number of putative correspondences less the expected num-
ber of outliers according to the outlier sample is equal to the expected
number of inliers, i.e. �(1 − ε)N	

Fig. 6 fd(d) density function for the car image pair

values less than D. Thus, using the smallest value of D en-
ables us to remove the largest number of outlier matches by
assigning them probability zero.

In the method described above we have assumed the ε

is known in advance. This is of course not true in general.
A method for the estimation of ε is described in Sect. 5.

The following figures show results for the car image pair.
Figure 6 shows the fd() density function, Fig. 7 shows the
fout() and the fin() density functions. In practice the algo-
rithm does not compute fin. The values shown in the graph
were computed from the ground truth and are presented
here for illustrative purposes. Figure 8 shows histograms of
Pin() for inlier and outlier correspondences computed us-
ing (3). Note that a large number of outlier correspondences
get probability zero to be an inlier and a large number of
the inlier correspondences get probability 0.6 to be an in-
lier while the original inlier rate in the putative correspon-
dences is only 0.22. These probabilities are used to guide
the RANSAC step of the algorithm and accelerate the search
process. For illustration Fig. 9 shows some of the inlier cor-
respondences with solid yellow lines, three outlier corre-
spondences with probability greater than zero to be an inlier
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with black solid lines and three outlier correspondences with
probability zero to be an inlier with yellow dashed lines.
Note that outlier correspondences with probabilities greater
than zero have motions similar to the inliers and can not
be discarded using the WMMs. However outlier correspon-
dences with probability zero have a different motion relative
to the inliers and have been successfully detected using the
WMMs.

4 Weak Motion Model Generation

In order to obtain a set of Nw WMMs A RANSAC style
algorithm is used. At each iteration a subset of three cor-
respondences is randomly chosen from the putative corre-
spondences. Each subset uniquely defines an affine transfor-
mation. After Nw/(1− ε)3 iterations on average Nw subsets
containing only inlier correspondences have been generated.
Each subset gets a score. The score is the geometric distance
of the (1 − ε)N th closest correspondence to the manifold of
the affine transformation of the subset. A subset that fits an

Fig. 7 fout(d) and fin(d) density functions for the car image pair

affine transformation that can be used as a WMM gets a low
score because at least (1 − ε)N inliers are relatively close
to the manifold and therefore the geometric distance of the
(1 − ε)N th closest correspondence is relatively small. An
affine transformation based on a subset that includes out-
liers usually can not be used as a WMM and does not have
a set of (1 − ε)N correspondences that are relatively close
to its manifold and because of that will get a relatively high
score. We take the set of Nw models with the lowest scores
to be the set of the WMMs.

5 The Algorithm

In this section we describe the flow of the algorithm. The
generation of the WMMs and the computation of the proba-
bility of each correspondence to be an inlier depend on ε. In
general ε is not known in advance. The algorithm searches
for the correct ε starting from the lowest rate level up to the
highest rate level from a rate level set, {εj }, given as input
by the user. The algorithm is summarized in Algorithm 1.
The details of the algorithm are as follows:

Algorithm 1 Guided Sampling via WMMs and Outlier
Sample Generation
1. Generate an outlier sample
2. For each εj starting from the smallest up to the highest:

(a) Generate random WMMs for the current
rate level εj

(b) Fine tune the estimate of the outlier rate
(c) Estimate inlier probabilities
(d) Estimate the number of iterations, N̂s , for the

guided LO-RANSAC
(e) If N̂s < Nt then

execute guided LO-RANSAC
(f) If the stopping criteria are validated then terminate

Fig. 8 Histograms for Pin() of
(a) inlier correspondences
(b) outlier correspondences for
the car image pair
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Fig. 9 (Color online) Several inlier correspondences are shown with
solid yellow lines, three outlier correspondences with a probability
greater than zero to be an inlier are shown with black solid lines and
three outlier correspondences with probability zero to be an inlier are
shown with dashed white lines

Generation of Outlier Sample

The algorithm generates an outlier sample. This step is done
only once at the beginning of the algorithm using the algo-
rithm guided method.

Generation of Random Weak Motion Models

The generation of the random WMMs is done using the
method described in Sect. 4. However in Sect. 4 we assumed
that ε is known in advance. As in practice this is not the case
we work on the whole rate level set {εj } in parallel. The data
structure used for the generation of the WMMs is illustrated
in Fig. 10. Each rate level, εj , is associated with a number of
iterations NIj

= �Nw/(1 − εj )
3	. Each rate level has a set,

Bj , of Nw suspected WMMs. These sets are updated during
the generation of the random affine transformations.

Each set Bj keeps the Nw best affine transformations
found until now that are suspected to be WMMs. In each
iteration a new subset of three correspondences is randomly
chosen and the appropriate affine transformation is formed.
The geometric distance of each of the correspondences to
the manifold of the affine transformation is calculated. Each
rate level εj gives a different score to this affine transfor-
mation. The score is the distance of the (1 − εj )N th closest
correspondence to the manifold of the affine transformation.
Each of the rate levels that the algorithm did not pass until
now, keeps the current affine transformation if it has one of
the Nw lowest scores obtained till now. In our implementa-
tion each of the WMM sets, Bj , is kept in a different heap.
Thus, the sets can be updated very efficiently. The random
generation of the affine transformations continues until the
number of iterations reaches NIj

. Then the algorithm can be
applied to εj .

Fig. 10 Illustration of the generation of WMMs stage. Each rate level
εj is associated with the number of iterations �Nw/(1 − εj )

3	 and a
score that is the distance of the (1 − εj )N th closest correspondence to
the manifold of the affine transformation. N = 411 is the number of
putative correspondences of the car image pair. Each rate level keeps
in a heap the Nw affine transformations with the lowest scores obtained
until now

Fine Tune the Estimate of The Outlier Rate

The outlier rate level set {εj } is given as an input from the
user. So no εj is expected to be the accurate outlier rate of
the putative correspondences. In this step the algorithm fine
tunes the estimation of the outlier rate. First the median dis-
tance sets of the putative correspondences {di} and of the
outlier sample {do

i } are calculated according to the current
set of WMMs, Bj . The search for the accurate outlier rate is

carried out around εj in the region A = [ εj +εj−1
2 ,

εj +εj+1
2 ].

Note that for each ε ∈ A there is an appropriate Dε accord-
ing to (4).

Any correspondence whose median distance is larger
than D is considered an outlier. Therefore, for distances
larger than D we have two distributions of outliers: me-
dian distance distribution from the putative correspondences
and the median distance distribution from the outlier sam-
ple. Therefore, the algorithm seeks to find ε̂j that gives the
best fit between these two distributions for distances greater
than D. Let cdfout() be the empirical cumulative distribution

function of the outlier sample, i.e. cdfout(d) =
∑No

i=1 I (do
i <d)

No

and let cdfmix() be the empirical distribution function of the
outlier pdf given by the mixture model, i.e. cdfmix(d) =
(

∑N
i=1 I (di<d)

N
− (1 − ε))/ε for d > D. These two distribu-

tions are noisy and when they fit each other we expect that
their curves will cross each other in many places. There-
fore, the quality of the fit between these cdfs is measured
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Fig. 11 An example of the fine
tuning process of ε̂ for the car
image pair. The figure shows the
number of zero crossing with
respect to ε and several
corresponding cdf functions.
The zero crossing locations are
marked by ×’s

by the number of zero crossings of cdfout(d) − cdfmix(d),
for d > D, where a large number represents a good fit
(see Fig. 11). To ensure that this score will not be biased
toward lower values of ε the parameter D is set to be
D(εj +εj−1)/2 for all of the checked values of ε. Other meth-
ods for cdf comparison can also be used in this step, such as
the Kolmogorov-Smirnov test. In that test maxd |cdfout(d)−
cdfmix(d)| is computed. As the starting position in the cdf
from where the test is applied D is only approximated, the
maximal value obtained might be noisy and might yield high
values. Therefore we chose the other method which yields a
high value for two approximations of the true outlier cdf.

Consider the special case when the algorithm is given a
pair of non-overlapping images. In this case the matches
given to the algorithm and the outlier sample of matches
come from the same distribution, the outlier distribution.
Therefore this step of the algorithm will detect a value of
ε close to one and decide to terminate.

Inlier Probability Estimation

The probability, Pin(i), that correspondence pi ↔ p′
i is an

inlier is calculated for all the correspondences by

Pin(i) =
{

fd (di )−fout(di )ε̂j

fd (di )
, di ≤ Dε̂j

;
0, otherwise.

The estimate of the density function at each point is done
using the kernel density estimator described in Sect. 3.

Iteration Number Estimation

The inlier probability estimation is used to accelerate the
search for the fundamental matrix using a guided RANSAC
algorithm. The correspondences are sampled according to
their inlier probability. In each guided RANSAC iteration
a subset sample of seven correspondences is chosen. Cor-
respondence i has probability Pin(i)∑N

i=1 Pin(i)
to be chosen. The

number of samples Ns is chosen sufficiently high to ensure
with probability p that at least one of the samples of seven
correspondences is free from outliers. Thus (2) has to be
generalized. Let S be the set of all possible subsets of seven
correspondences. The probability of subset si ∈ S to be cho-
sen in the guided sampling step is

Pc(si) =
7∏

j=1

Pin(cij )∑N
k=1 Pin(k)

,

where cij is the j th correspondence in subset si . The proba-
bility that this seven tuple consists of only inliers is:

Pt (si) =
7∏

j=1

Pin(cij ).

The calculation of Ns has to take into consideration all the
possible combination series of subsets si where each subset
is chosen according the probability function Pc(). This type
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of calculation is infeasible. We can however estimate Ns us-
ing a Monte Carlo method. We generate a series M of length
NM of subsets si . Each member in the series is chosen in the
same manner as in the guided sampling step, i.e. according
to the probability function Pc(). The series M represents an
“average” subseries of the guided sampling step. We calcu-
late how many such subseries should be taken in order to
ensure with probability p that at least one of the samples of
seven correspondences is free from outliers. We have

(NM∏
i=1

(1 − Pt (mi))

)K

= 1 − p,

where mi ∈ M is a subset of seven correspondences and K

is the number of subseries needed to be taken in order to
ensure the probability p. We obtain

K = log(1 − p)/ log

(NM∏
i=1

(1 − Pt(mi))

)
.

Now we can estimate Ns as

N̂s = K ∗ NM.

The length of series M should be sufficiently long to en-
sure that M represents an “average” subseries of the guided
sampling step. We chose p = 0.99 and Nm = 2000. As a
result the estimated Ns will yield a sample of seven inlier
correspondences with probability of at least p = 0.985 for
widely diverse probability distributions.

When the WMMs did not provide enough probabilistic
information to reduce the number of iterations N̂s below a
user defined threshold Nt the next step is not performed and
the next εj is tested.

Guided LO-RANSAC

In this step a slightly different version of LO-RANSAC al-
gorithm is applied. The difference is in the sampling tech-
nique. Instead of random sampling, the samples are chosen
according to the probabilities Pin(i), i.e. correspondence i

has a probability

Pin(i)∑N
i=1 Pin(i)

to be chosen. In each global iteration a subset of seven corre-
spondences is sampled and the fundamental matrix satisfy-
ing these matches is computed. The set of putative matches
whose Sampson distance (see its definition in Hartley and
Zisserman (2000)) is less than a certain preset threshold is
found. If the size of this set, which we will call the sup-
port set of the candidate fundamental set, is the largest so far
the LO-RANSAC step is applied several times. In this step

a larger set of matches from the support set is chosen and
from it the fundamental matrix is estimated. Due to the set’s
size, the estimate of the fundamental matrix is usually more
accurate, yielding an even larger support set. The number of
global iterations is limited to N̂s . At the end of this step, the
fundamental matrix F with the largest support set Ninj

is
kept.

Note that the algorithm has two RANSAC style steps, the
WMM generation step and the guided LO-RANSAC step.
Each iteration of the second type is more costly because
in each iteration a fundamental matrix has to be computed
based on seven correspondences. This involves computing
the roots of a polynomial of degree three which may have
up to three solutions for the fundamental matrix and the dis-
tances of the putative correspondences to each of the non
linear manifolds of the fundamental matrices are calculated.
On the other hand, in each iteration of the random WMM
generation step a unique affine transformation is formed us-
ing a linear algorithm and the distances of the putative corre-
spondences to the linear manifold of the affine transforma-
tion have to be calculated. In our implementation the run-
ning time of an average iteration of the LO-RANSAC is 4.5
times more costly than an average iteration of the random
WMM generation step.

Checking the Stopping Criteria of the Algorithm

In this step the algorithm checks the stopping criteria. The
algorithm has two estimates of the number of inliers: N(1 −
ε̂j ) from the mixture model and Ninj

from the guided LO-
RANSAC. If the two estimations are approximately the
same then the algorithm terminates and returns the funda-
mental matrix F and the set of Ninj

inlier correspondences.
The algorithm also terminates in cases that the current es-
timation of the number of inliers is lower than the largest
inlier set found until this stage. In such cases the algorithm
already has found a solution with a number of inliers that
is greater than the expected number of inliers in the current
stage. Therefore, it is not worthwhile to continue the search.
This situation is checked after the estimation of ε̂j in the fine
tuning step of the algorithm. In this case the algorithm re-
turns the largest found inlier set and its fundamental matrix.

6 Experiments

The proposed algorithm has been tested on many image
pairs of indoor and outdoor scenes several of which are pre-
sented here. The proposed algorithm can use putative cor-
respondences generated by any technique. In the experi-
ments we have tested two methods. In the first method, the
putative correspondences were detected and matched auto-
matically using a very simple method. Corners were de-
tected by the Harris corner detector. Cross correlation scores
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Table 2 Experiment characteristics and results. For image pairs marked with asterisk the putative correspondences were generated using the SIFT
keypoint detector. The putative correspondences of the rest of the image pairs were generated using Harris corner detector with rotated cross
correlation scores. N is the number of putative correspondences, “In.” is the number of inlier correspondences and ε is the outlier rate level. For
each algorithm “75%” is the average number of samples until at least 75% of the true inliers are found, “End” is the average number of iterations
until the termination of the algorithm and “In.” is the average number of inliers that were found until the termination of the algorithm. The numbers
in parentheses are the average numbers of the WMMs that have been generated. The last two columns show the average time speedup rate until
at least 75% of the possible inliers are found and until the termination of the algorithm. Several numbers in the table are shown with the “greater
than” symbol that indicates that there have been cases in which the LO-RANSAC algorithm terminated when it exceeded one million iterations

Characteristics LO-RANSAC Proposed algorithm Speedup rate

N In. ε 75% End In. 75% End In. 75% End

Slide pr. 565 122 0.78 70,878 384,171 114.8 326 (427) 1,388 (1,274) 118.9 18.2 59.2

Desk 303 63 0.79 80,841 341,958 61.7 168 (411) 495 (908) 62.1 42.1 78.3

Lab 730 131 0.82 >232,596 >860,590 124.3 109 (2,216) 1,214 (2534) 129.0 >90 >114

Corridor 401 70 0.83 >228,675 1,000,000 59.7 1,038 (1,327) 1,645 (2,227) 66.4 >137 >178

Motorbike 592 86 0.85 >302,867 1,000,000 80.5 160 (2,963) 737 (2,963) 85.5 >95 >197

Car 411 59 0.86 >248,987 1,000,000 53.5 42 (2,877) 1,016 (2,877) 58.4 >114 >238

Building 363 50 0.86 >602,181 1,000,000 40.3 614 (3,067) 2,023 (3,667) 49.7 >208 >251

Road 401 50 0.88 >547,547 1,000,000 37.6 1,532 (1,937) 5,168 (10,000) 49.2 >270 >181

Yard 508 53 0.90 >508,519 1,000,000 43.5 91 (10,000) 2,843 (10,000) 50.9 >265 >185

Statue* 328 58 0.82 >485,417 1,000,000 43.4 130.2 (1,945) 575 (2,630) 54.7 >103 >141

Van* 323 59 0.82 >327,871 1,000,000 42.1 159.7 (2,231) 492 (2,827) 56.2 >88 >123

Parking* 301 48 0.84 >221,793 1,000,000 37.9 302 (3,015) 459 (4,732) 45.9 >91 >137

were generated between all corners with each patch un-
dergoing 36 evenly spaced rotations, the strongest matches
over these rotations are stored. Only mutually best can-
didates were selected as putative correspondences. In the
second method, the putative correspondences were gener-
ated using the SIFT keypoint detector (Lowe 2004). We
have compared our algorithm with the LO-RANSAC algo-
rithm which gives near perfect agreement with the theoret-
ical performance that is given by (2). The termination cri-
terion based on (2) was set to p = 0.99. In cases where
the number of iterations exceeded one million the algorithm
also terminated. The parameters for the proposed algorithm
were as follows. The outlier rate level set, {εj }, was set
to {0.1,0.25,0.5,0.6,0.7,0.75,0.8,0.85,0.9,0.925,0.95},
the number of WMMs generated for each of the outlier rate
levels was set to Nw = 10, the length of the series M was
set to NM = 1000 and the threshold for the guided LO-
RANSAC step was Nt = 3000. Twelve experiments are pre-
sented in this section. Some of the image pairs are shown in
Figs. 12 and 13. The cases that are presented here are diffi-
cult cases in which the outlier rate is between 0.78–0.9. The
characterization of the scenes, the number of putative cor-
respondences, the number of inlier correspondences and the
outlier rate are summarized in Table 2. Each algorithm has
been applied to each image pair twenty times. For each al-
gorithm the following statistics are presented: The number
of samples until at least 75% of the true inliers are found
(as was suggested in Tordoff and Murray (2002)), the num-
ber of iterations until the termination of the algorithm, and

the number of inliers that have been found until the termi-
nation of the algorithm. The number of generated WMMs
is also given. The average speedup rate time achieved in the
experiments until at least 75% of the possible inliers have
been found is between 18.2–270 and the average speedup
rate time until the termination of the algorithm is between
59.2–251. Note that several numbers in the table are shown
with the “greater than” symbol that indicates that at least
in one case the LO-RANSAC algorithm terminated when it
exceeded one million iterations. Removal of this early termi-
nation criterion yields much higher results. In addition, the
number of inlier correspondences found by the proposed al-
gorithm is larger than in the ones achieved by LO-RANSAC
and the results are near perfect.

7 Summary and Conclusions

In this work, we presented a novel algorithm for automatic
robust estimation of the epipolar geometry in cases where
the correspondences are contaminated with a high percent-
age of outliers. The algorithm uses WMMs that roughly ap-
proximate the motion of correspondences from one image to
the other. The algorithm generates a set of WMMs and rep-
resents the distribution of the median of geometric distances
of a correspondence to the WMMs as a mixture model of
outlier correspondences and inlier correspondences. An out-
lier correspondences sample is then generated using the al-
gorithm guided method. This method takes into consider-
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Fig. 12 Some of the real image pairs on which the algorithms were tested
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Fig. 13 Another set of real image pairs on which the algorithms were tested
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ation the corner distribution in the images, the similarity
between the corner neighborhoods and the matching tech-
nique. The outlier sample is used to estimate the outlier rate
and to estimate the outlier pdf. These pdfs are then used to
estimate the probability that each correspondence is an in-
lier. These probabilities guide the sampling which acceler-
ates the search process. The performance of the algorithm
was compared to the performance of the LO-RANSAC algo-
rithm that gives near perfect agreement with the number of
iterations given by (2). The resulting algorithm when tested
on real image pairs achieves speedup rates of 59.2–251.
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