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Abstract

Image registration, which is used to align two ies@nto a common coordinate
system, is an important task in a variety of fieklsch as remote sensing, medical
imaging, quality assurance and more. The imagesdifégr in acquisition time,
view point, sensor, etc., so the problem of imaggistration is quite involved.
Many registration methods use algorithms that discgpecific key-points in both
the reference and sensed images. Thus the main isask determine the
correspondence between resulting feature sets rime sdistance sense. After
correspondences are established, it is essentidistmmguish between true and
false matches (i.e., between inlying and outlyingrrespondences). A
transformation model can then be determined witke thid of inlying
correspondences , and the quality of the transfiitomahould be assessed in some
sense. If it is unsatisfactory, an iterative seaisbuld be applied to find a better
transformation. Most of these algorithms requirbaastive search for finding an

appropriate registration transformation.

In distinction from the above, we propose an effitialgorithm based on features
extracted by thescale invariant feature transform (SIFT) algorithm. The main
difference between our approach and other exiSiJ -based algorithms is the
way of distinguishing between true corresponder{tediers”) and false ones
("outliers"). Our determination is based on a medeking approach; specifically,
we compute the modes of scale ratio, orientatidifergince, and translation
difference histograms resulting in a quadruplecailes, orientation, and horizontal

and vertical translations that serves as an ingiass for the desired similarity



transformation. Assuming that a better transforamais in close vicinity to this
guess and that most of the correspondences inithisty are inliers, we construct
an outlier filter, which is a box in 4D centered tie above modes. All
correspondences inside the box are considereddrdied are retained, while all
other correspondences are considered outliers @nthas rejected. Aordinary
least squares (OLS) algorithm is then employed with respect liooh the above

inliers for computing a refined transformation.

Verification of the transformation's quality is lkedson a manual procedure in
which ground truth is provided manually by two sets of corresponddegmts in
the reference and sensed images. We apply the ¢echpnansformation to the
transformed image set of points and compute dbemean square error (RMSE).

A registration result is satisfactory if its RMSg& less than one pixel. We have
implemented the above algorithm in MATLAB and C dedted it on dozens of
remotely sensed image pairs. We observed more 8@ of satisfactory
registration results. In addition, we show how tivenber of resulting inliers may
indicate if the registration process results inugcess or a failure. We also
demonstrated how to improve our results (i.e., yecdrom registration failures
given a-priori information on the image-acquiringnsors) using basic image

processing enhancement techniques.



Chapter 1

1

I ntroduction

1.1 Background and Motivation

Image registration, as the term implies, efier the alignment of two (or
more) images of the same scene or area takafiffarent times from
different views and possibly by different semssor spectral bands. The
meaning of alignment is to overlay the two g®s onto a common
coordinate system, where both images share sdmae origin. Image
registration is important whenever multi-saidata need, in some sense, to
be fused. Typical applications of image regisbn involve, among others,

the following areas [1], [2]:

Computer Vision:

A computerized imaging system constantly sasigcenes over time; in
addition, if the system moves over time ot jisanges its aspect, then the
manufactured images will also have differenglas of the scene image;
therefore, image registration in this fieldhahlves aspects of different times
and viewpoints. Typical applications includeomioring time varying

images from surveillance/security cameras fideo to detect suspected
objects (baggage, suitcases, etc.) or humapests, comparing images of
manufactured electronic chips to an image oéfarence chip for quality

assurance in a production line, comparing esagf a predefined route by a
fully automated robot moving in the existingute in order to avoid

different obstacles, etc.



Remote Sensing:

Satellites take images at different times loé Earth and other planets,
usually from different views; in addition, fiifent satellites use different
spectral bands for imaging. Thus, image regfisin for remote sensing
involves the alignment of images taken by aldht sensors at different
times. Specific applications for remote segsimage registration include
environmental monitoring, image mosaicking, ltrepectral classification,

change detection, integrating information ing@ographic information

systems (GIS), etc.

Medical Imaging:

Medical images are taken at different times dfferent devices (i.e.,
different sensors) as Magnetic Resonance Imgag(MRI), Computerized
Tomography (CT), Positron Emission TomograffT) and Single-Photon
Emission Computed Tomography (SPECT). In &olditto the above,
medical images are usually taken from differ@mgles in order to create a
2D or 3D perspective; therefore, image regigin for medical imaging also
involves similar aspects as remote sensinggémeegistration. Typical
applications for registration of medical imagae combining data about a
patient from different sensors in order to aibt their detailed,
comprehensive medical condition, monitoringquenor's growth, treatment

verification and comparing a patient's anatevithh theoretical models.



e Cartography (map making):

Creating and updating maps requires companrages of the same scene
taken at different times from different viewshis enables to track changes
in roads, borders, coast lines and lakes.ridm application in this field is

to update existing maps according to such iggatncal changes.

1.2 Image Registration Methodology

1.2.1Image Registration Categories

As explained above, image registration imgel the alignment of two
images that may differ in, possibly, foupests; each aspect represents a

different type of registration, as follows:

e Multi-view images. The images were taken from different viewpoirtshe
scene; the purpose is to enlarge the 2D or 3D wakthhe scene. Relevant
applications include computer vision (a robot natilgg automatically in a
maze), remote sensing (a satellite sampling a Bpeciene from different
angles), medical imaging (a CT system which scapat&nt's body from

different viewpoints), etc.

e Multi-temporal images. The images of the scene were taken at different
times (possibly on a regular basis); the purpode imonitor changes in a
specific scene. Relevant applications include rens®nsing (a satellite
sampling the same scene from the same viewpoinatdifferent times),

cartography (tracking changes in roads and lalets),



e Multi-modal/Multi-spectral images: The images were taken by different
sensors (in different spectral bands); the purpede increase the amount
of data by fusing images from different sensoren{8 details in medical
imaging, for example, are transparent in a spedifiad and visible in
others and vice-versa.) Relevant applications deluemote sensing
(different satellites operate in different bandsgdical imaging (different

medical imaging systems operate in different barets)

e Scene to model registration: The "sensed” image is registered to a model
"reference"” image; the purpose is to compare aifspscene or a tested
object to their desired counterparts. Relevantiegipbns include computer
vision (inspection in production lines), medical agng (e.g., finding

pathologies), etc.
1.2.2Image Registration Steps

First we should emphasize the fact that wuthe variety of applications
and the diversity of registration types st impossible to develop one
universal method for all image registratipmblems. Nevertheless, most
image registration methods usually consisthe following four generic

steps (see surveys [1], [14], [15]):

e Feature extraction: Distinctive image features are automatically diete
and extracted; these features can be objects, respbmindaries (closed and
open), edges or simply picture elementsxdls). Detected features are

globally called key-points. Each key-point is asatsx with a specific



descriptor which depends directly on the key-psipirameters (location,

intensity, etc.) and possibly its neighborhood.

e Feature matching: This step concerns the establishment of
correspondences between the features of the finstge (called the
reference image) to the features of the second image (cahedsensed

image).

e Transform model estimation: The correspondences between the two images
found in the previous step are used to estimate tthasformation
parameters needed to align the sensed image tcetheence image. Of

course, this process could be iterative.

e Image resampling and transformation: The computed transformation is
applied to the sensed image and some interpolatiethod is used to

determine the gray levels at the discrete coordsat the sensed image.

1.3Thesis Organization

This thesis is organized as follows: Chapter 2 giextensive insight on
related research concerning image registrationegimote sensing. In Chapter 3
we give a complete formulation and an outline of ptoposed algorithm.
Chapter 4 presents our detailed experimental mestMé conclude our work in

Chapter 5.



Chapter 2
2. Related Work

The purpose of this research thesis is to developvaalgorithm for image
registration of remotely sensed images. As expthiime the Introduction,
remote sensing image registration deals with tloee of the four image
registration types; by that we mean that remotehsed (satellite) images are
usually taken at different times (multi-tempordtpm different views of the
same area (multi-view), and possibly by differeemsors (multi-resolution)
or by the same sensor but with different imagingcsal bands (multi-
spectral). Thus, the image registration problenréonotely sensed images is

still very challenging and evolving.

2.1lmage Registration for Remote Sensing

Image registration in general employs algorithnmrfrtwo categories. The
first category is of area-based algorithms wherenplete areas in the
reference and sensed images are matched accodditiffdrences in pixel
intensities or by Fourier coefficients; usually ghealgorithms do not use
either correspondences between specific pointsreprpcessing of the raw
images (to obtain such points of interest). Theosdccategory consists of
feature- based algorithms, where preprocessingp$ieal in order to extract
specific features (e.g., edges, corners, etc.)clmra is done between these
features in order to compute an appropriate tramsfton. It is possible to

devise an algorithm which combines area-basedeatdre-based concepts.



Registration methods suited, among others, to rmemsénsing are:
(a) Manual registration, where one chooses manugallsesponding features
in the reference and sensed images followed by amsfiormation
computation;

(b) Correlation methods in which the correlationwe®en intensity values is
computed in order to minimize some distance medset@een areas in the
reference and sensed images. Since these methedsuts-force search for
the optimal transformation they are computationakpensive and have
relatively long run-times;

(c) Transform methods that use similarity betwdenttansform coefficients
(e.qg., Fourier) rather than pixels; these methdde have drawbacks like
correlation methods due to their brute-force nature
(d) Feature point methods that extract highly dgtve features from the
reference and sensed images and match betweenabewnding to local
image properties (the transformation computatiosasied out upon those
correspondences); and

(e) Contour- and area-based methods that use éegtaups extracted from
both images (e.g., contours, lines, edges, corredcs) for matching and

transformation computation.

2.2 Prior Work

In this section we give a brief overview of sevemakthods for image
registration for remotely sensed data that relythenscale-invariant feature
transform (SIFT) [3] for the detection and description ofykmoints. The

SIFT algorithm approximates the well-known Laplac@at Gaussian (LoG)



operator in order to detect local extreme pointhi¢tv are the desired key-

points) in different scales of an image; thesee®& points are associated
with the 4D vector(x,y,s,8)", where (x,y) are the key-point coordinates,

s is the key-point scale (the image scale for whibls key-point was
detected), and is the key-point orientation which is determineanfi peaks
in the key-point's gradient orientation histogram. addition, the SIFT
algorithm also assigns a 128-element vector osreakach key-point (i.e., a
descriptor). As explained earlier, this descriptor is used f®y-point
matching in image pairs, based on its gradient madgs at different
orientations in the key-point neighborhood (seeuf@g2.1). A detailed
explanation about the SIFT algorithm, which is viydeised in object

recognition, matching and image registration, carmdoaind in [3].
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Figure 2.1: SIFT descriptor of a key-point: (a) @emt values of8x8
neighborhood, and (b) gradient histograms whiciftire descriptor (source:

3], p. 15).



2.2.1 Robust Scale-Invariant Feature Matching for Rem8&nsing Image

Registration

Li et al. [4] were among the first to propose a method basethe SIFT
algorithm. They begin by refining the key-point esriation 6 in the

following manner:

2. _ {9 0 < [0,180]

360-0 0 < (180,360

This refinement is meant to compensate for gradiegte inversion, which
can be caused by different illumination or spectsahds between two
images to be registered. The next stage is toras&lditional orientations
to each key-point, besides the one assigned by Bilefder to enlarge the
transformation space, as the original SIFT orieoiaits not always accurate
and reliable. Assigning these orientations is mége computing the

histogram of the refined gradient orientations he nheighborhood of the
examined key-point; all orientations whose freqyenexceeds the
predefined threshold:

- 120 p
. T,=) —
(2.2) h ;180

where h, is the frequency of th&" orientation, are defined as "main
orientations" and assigned to the key-point in aesIn order to match
between descriptors from two images, a distancesuneas defined. Let
c={c,c,,....cy} and C'={c),c,,...C,} be the key-point sets,

respectively, from the reference and transformedges that need to be
9



registered. Each key-point is assigned its positemale and set of main
orientations. The relative main orientation betwéle® main orientations

of two different key-point sets is defined as=¢, —a', , wherea, and

o' are the main orientations of the key-point peanf the reference and

sensed images, respectively. The scale error isdbined as

(2.3) ()=1-s 2|
s

wheres ands, are scales of the corresponding key-points, sinig the

current scale estimate. In the same mannerydlative main orientation

(RMO) between the corresponding key-points is aefias
(2.4) g@)=Ir-r|

wherer” denotes the current rotation difference estimaiece ¢_ { ) and

g (i) represent distance measures for the scale andntatra,

respectively, they can be combined to define divet distance:
(2.5) J= [t e )]+ £, ()]EWM

where E () is the Euclidean distance between the key-poddstriptors.
Matching between key-points is done as follows:stFikey-points are
matched according to nearest neighbor (NN) Euchddiatances between
their correspondingl28x ISIFT descriptors; false matches are excluded
according to the ratio between the first and secoearest neighbors. If

this ratio exceeds a predefined threshold, the mahould be excluded.

10



(The rationale behind this ratio test is that fomet matches the NN
distance will be much smaller than the second Nstfadice, as opposed to
false matches where both the first and second Nbhugces are quite large.)
The above yields a set of key-point pairs, for whibe scale and RMO

histograms of peak values are computed along with joint set

.....

the number of peak combinations. Now, for eéeh r’}, key-points are
matched according to the nearest neighbor joirtadi®. Again, matches
are excluded by thresholding the ratio betweerfitseand second nearest

neighbors; in addition, the average joint distanédhe tested{s, r'},,
d,, is computed. The optimized point set is the ooe \Which d, is

minimized.

2.2.2 High-Resolution Multispectral Satellite Image Matagh Using Scale

Invariant Feature Transform and Speeded Up RolratuFes

Teke et al. [5] proposed a modified SIFT algorithm, tlueientation-
restricted SFT (OR-SIFT), to increase the correct feature matghatio.
First, bins in the gradient orientation histograrnthwopposite directions
(e.g., 0-45° and 188-225") are accumulated into one bin. The purpose is to
compensate for inversion in gradient orientationsch like the orientation
refinement described in (2.1). This accumulatiosuts in a feature vector
of half size relative to the original feature vectoe., 64 elements instead

of 128). As explained in Sub-section 2.2.1, matclresbased on the NN

11



Euclidean distance. In order to exclude false nexickhe scale difference

between two key-point®, and P, is computed by

(2.6) SD(P,R)=D =|c, -0, |

where o, and o, are the corresponding key-point scales. Next thbaas

define the scale restriction (SR) criterion:

(2.7) |SD-D|<W

where D is the peak value of the histograms of 8lbs and W is an
empiric, image dependent parameter. Matches thabtsatisfy the above
SR criterion are rejected. In order to compensatantensity differences,
histogram equalization is applied to both the mfee and sensed images.

(Contrast stretching may be applied instead.)

2.2.3 Uniform Robust Scale-Invariant Feature Matching foptical Remote

Sensing Images

Sedaghatt al. [6] proposed another SIFT based algorithm, thdorm
robust SFT algorithm (UR-SIFT), which provides an adequatenbar of
key-points uniformly distributed in both the imagad scale spaces. The

guality of the key-points is determined accordioghe following criteria:

(a) Stability, i.e., the strength of a feature'sgence under different

image acquisition conditions.

(b) Distinctiveness, i.e., the degree of featureigueness and

that of their descriptors.
12



The first step in the algorithm is to determine tb&l number of key-
points, N . Next, the SIFT algorithm is applied to create stale space

composed ofN, octaves, each contain¥, scale layers with an initial
scale factoro,. The next steps are taken for each layenf the octavep.

The initial key-points are computed by the SIFTcaitpm; key-points
whose contrast is within the bottom 10% of the msttrange are rejected.

The number of required features is determined aaogito

(2.8) N, = NF

ol ol

where F, is the proportion of features in the current sé¢ayer so that the

next normalization condition holds, i.e.,

No N

(2.9) YR =1

=1 1=1

o

Next, the authors compute the entropy in the loeglon near each key-

point by

(2.10) H=>) P log,P
j

where P, is the probability of thej ™ pixel within the region. This entropy

represents the amount of "data" (i.e., pixel intégs in the region. The

smoothed image of the scale of interest is divided grid cells. The

average entrop, of thei"™ cell is then computed by (2.10). In addition,

n and MC, (i.e., the number and mean contrast of the kegtpan the

13



cell, respectively) are also computed. Finally, tmember of required

features in each cell is determined by

WeE  Win | (1-Wg -W, MG,

o ZEi+Zni+ > MC

(2.11) Neell, = N

where W, and W, are the entropy and feature number weight factor,
respectively. For each grid ceBx Ncell, key-points with the highest

contrast are reserved and all other key-pointsrejected. The accurate
position and scale for each key-point is computgdthe regular SIFT
algorithm; key-points with low principal curvatuege also rejected since
those usually represent unreliable key-points aledges. The entropy of

all remaining key-points is computed by (2.10) dnmhally Ncell; key-

points with the highest entropy are chosen for spiecific cell. The key-
point orientation is determined as in the SIFT athm. The pre-matching
between key-points is done by a cross-matchingtang to confirm the
matching by reverse certification. This gives neesome false matches
which are excluded by checking key-point pairs igl@al transformation

between the reference and transformed images.

2.2.4 Multispectral Image Matching Using Rotation-Invartidistance

Li et al. [7] proposed a registration method which is ingatito position
and orientation but not to scale. The method agarige SIFT descriptors
in a way which makes it easy to find a correlatbmween the reference
and sensed images and subsequently find the tt@amsland rotation

14



needed for the desired transformation. First, #gular rectangular grid
used for computing the SIFT descriptor is replabgda polar grid. The
polar region around each key-point is divided toeinand outer rings with
corresponding radii ofR /2and R, for some predefined paramet&.
Each ring is divided intd\ sectors and each refined orientation histogram
(defined in (2.1)) is divided intd\ bins. This partition gives rise to two
descriptor vectors (one for each ring), each wetigth N*. These vectors
are denoted a¥, andV,, respectively, and are ordered as tWo< N
matricesH, and H,, respectively, where the rows correspond to tims bi
and the columns correspond to the sectors. The letenkey-point feature
matrix is defined aH =H, + H,, as opposed to the requla?8x SIFT

descriptor. The matriXd is arranged such that each right circular shift by
one column and down by two rows corresponds totingtathe image
counter-clockwise b2z/N. Let H and H' denote a pair of key-points;
the correlation between the features can be cordpwith the aid of the

fast Fourier transform (FFT) by
(2.12) C(H,H)=F*F(H)F(H")

where F*and F are the IFFT and FFT, respectively, aR@H") is the
FFT complex conjugate dfl'. We note that the element of the correlation
matrix c(i) =c[mod@ —-1,N)][i], where mod stands for computing the

-1)-2x

remainder, corresponds to rotation angle&gi) = ( ,i=12,...,N.

Denoting the index of the maximal element @y i  and lettingV and

15



V' be the corresponding feature vectors, the rotaitiwariant distance

betweenVv andV 'is defined as
(2.13) RID(V,V") = DV, circshift (v',[mod(i* —1,N),i']))

where circshift(V',[a, b]) stands for a circular shift of the corresponding

matrix H' to the right bya and down byb and D stands for regular
Euclidean distance. Matching between feature veammone by finding
the nearest neighbor according to the rotation riamé distance which

becomes minimal once the correlation is maximal.

2.2.5 Multispectral Remote Sensing Image RegistrationSpatial Relationship

Analysis on SIFT Key-Points

Hasanet al. [8] proposed a method for automatic registratigniriflating
the number of SIFT key-points with the aid of ongi key-point area. First,
feature points are found via SIFT in both the refee and sensed images;
feature points are rejected according to the rbsbween the first and
second NN, where a distance ratio threshold ofOued to reject outlying
feature points. In order to remove outliers thaviste the above criterion,
the RANSAC algorithm [9] is applied to find a glébaffine
transformation. (The latter considers several ramdamples from the set
of correspondences obtained and tries to compui@resformation that
would be appropriate (i.e., within some pre-defitieeshold) with respect
to the whole set.) The resulting feature pointscaiéed primary matched
feature points. Next, the procedure locates, fartheprimary matched

feature point, all of its neighboring feature peimtithin aW - pixel wide
16



grid; this is done in order to increase the amairdorrespondences in the
primary feature's neighborhood, where the regioassumed to be "good"
in terms of SIFT matching. Once again, the ratitheffirst and second NN
iIs used to match between all the feature pointshen above grid. (A
threshold of 0.9 is picked here to reject outlieddl feature point matches
whose positional difference relative to that of #féne transformation is
greater than a predefined threshdldare rejected, and all other accepted
correspondences are called secondary matcheddgaturts. Finally, both
primary and secondary feature points are used wpdiats to register the

images.

2.2.6 Modified SIFT for Multi-Modal Remote Sensing ImaBegistration

Hasanet al. [10] proposed numerous modifications in the SIFjoathm
to improve the results of matching and registratidhese include the

following:

1. Preserve every key-point instead of eliminating-geints along edges; this
Is achieved by setting the SIFT threshold to inyinirhe rationale behind
this step is to enlarge the key-point sample spaceder to achieve better

correspondences.

2. Reduce the effect of strong edges; to prevent cakege a key-point in the
reference image lies on a strong edge while theesponding key-point in
the sensed lies on a weak edge, it is proposathibthe gradient values to

a predefined threshold (e.g., 0.08 for normalizeelpalues).

17



3. Enlarge the SIFT descriptor window; originally, teguared window is of
size (L6s)x (L6s) pixels, wheres is the current scale. A window which is
1.67 times larger than the above is consideredpsimal choice. This will
give rise to SIFT descriptors which will be "richém content and therefore

more reliable in the matching step.

4. Enlarge the sub-regions for the SIFT descriptorge tb the above, it is
proposed to us&x 6ub-regions instead of the classidad4 SIFT sub-
regions. This will result in dimensionality of 288r the SIFT descriptors

(instead of 128).

5. Overlook the largest difference; it is proposed igmore the largest
difference (out of 288 dimensions) between the nmijgses of each key-

point pair candidate.

6. Three-level matching: In order to increase the nemdd true matches, it is
proposed to match first the first 20 dimensiongdlofeed by the first 64

dimensions and finally all 288 dimensions to achiawefined matching.

18



Chapter 3
3. Research Outline
3.1 Preliminary Approach

Netanyahtet al. [11] proposed a remote sensing image registratmgorithm

in which key-points are actually image featureg.(eedges, corners, etc.)
extracted by a wavelet-based algorithm (Simonsedlieerable filters [12]).

Pixel intensities within the top 10% of all intetiss are considered as
features to be matched; the relatively high thrieskar feature detection was
meant to match fewer and more meaningful featundslaereby improve the

computational complexity.

Feature matching is done iteratively at variouselewof resolution. The

initial target transformation iq6,t and t,

X1 X

t,)=(0° ,00)where g, t
denote the rotation angle and vertical and horgottanslations of the
hypothesized similarity transformation, respeciryeh addition, an initial
bounding box (60, ¢, &,) = (L6° 3232 )is chosen to avoid the need for an
elaborate search at the higher resolution levelse Bearch is done

exhaustively at the coarsest level, followed bydean the finer levels with

relatively small bounding boxes. Denoting bi,t,,t, )the current

transformation, the initial transformation of thexh iteration becomes

(0,2t,,2t)). The process iterates until convergence is reachmedrder to

estimate the transformation accuracy, paetial Hausdorff distance (PHD)

similarity measure is used. It is defined as
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(3.1) med,_,(min,g |[a=b )

where med stands for the median valde,and B are the reference and

transformed feature sets, respectively, dad b is the Euclidean distance

between features from the reference and transforrfesture sets,
respectively. Convergence is achieved ideally wRéiD <1, i.e., when the

PHD between the feature sets is smaller than 1l.pikke matching

where (x,Yy, ) and (x',,y/ ) are the pixel locations of the corresponding

control points in the transformed and reference gesa respectively.
Defining the correspondence error under the siitylatransformation

assumed for each point pair as
(3.2) E =[x,—(x cosf—y,sind)—t,]* +[y,—(x sind+y, cosd) -t |*

the classicalordinary least sguares (OLS) method finds the optimal

transformation parameters by minimizing the sumenbrs E . Namely,

definingE(@,tx,ty):ZEi, the optimal transformation in an OLS sense is

the triplet (0,t

X1

t, ) that minimize€£(6,t,,t, ) The main problem of this

method is its sensitivity to noisy samples (i.ealsé correspondences).

Therefore, instead of minimizirig(6,t,,t, ,one may minimize the median
of the correspondence errors, definedE#,t,,t ) =med(E, . Sipce there

is no closed-form solution to this minimization plem, an approximation
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[13] is used to find the optimal transformationtloé east median of squares

(LMS).

3.20ur New Approach

The main rationale of our proposed method is tachttoe intensive search
for the optimal transformation based on extractedtures as explained
above. Instead, we use correspondences betweaemdges, based on the
SIFT descriptors. Using these correspondences wecompute an initial
transformation which is expected to be sufficientlpse to the optimal
similarity transformation between the reference ssansed images, provided
that the correspondences used are true. Furtheemsént could be carried
out to find a more accurate transformation (if reBd A block diagram of

the proposed method is shown in Figure 3.1. Rinst SIFT descriptors are

Refere\rlw/ce Imge Sensed Image
SIFT descriptors SIFT descriptors
\4 \4

Find nearest neighbor- based correspondences

\4

Compute modes in scale ratio and orientation
difference histograms

4

Rotate and scale th§ andY position differences

\V

Compute modes oX andY location difference
histograms

\'4
Inlier filter construction

V

Transformation computation (OLS)

V

Transformation activation

Figure 3.1: Proposed regtgin algorithm.
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extracted for both the reference and sensed im&gesnatching, instead of
using the standard ratio test between the firstssswbnd nearest neighbors,
we use a Hough-like approach for mode seeking (BSjollows. First we

find for each key-point in the reference image ntsarest neighbor in a

Euclidean distance sense in the sensed image.d demote the set of the

and (x,',y, ') are the spatial locations of the SIFT key-pointthia reference

and transformed images, respectively. The nextesimgo form histograms
of scale ratios and orientation differences betwibencorrespondence pairs
found in the previous stage. We find the maximwatug of each histogram

and compute the corresponding modgs,, and AQ

ode DY @ weighted
average of the maximum value and its two adjacerd {.e., the bins to its
left and right). We use these modes to rotate aralesthe position

differences, in both th&X andY directions, between nearest neighbor pairs

as follows:

AX=X— Smode(XI COS@Hmode) - yISin(Aemode))

(3.3) . ,
Ay =y- Smode(X Sln(Aemode) +Yy COS@@mode))'

Now we can compute the histograms of these diffes and find their

modes which we denote bxx, .. andAy, .. respectively. Obtaining the

qQUadruples, e A, oge AX s AYos) » WE can now filter outliers with

respect to the initial correspondences. First windethe following two

logical filters:

22



Fl : |AX - AXmode]| 2 AXthresh

(3.4)
FZ . |Ay - Aymode]| 2 Aythresh

where Ax,., and Ay,.., denote, respectively, predefined thresholds of

horizontal and vertical differences, in terms ofresponding histogram bin
widths (measured in pixels). Our outlier filter Wigject all correspondences
for which F, or F, holds. All remaining correspondences are consttlere
inliers, i.e., they are assumed to be very reliabte the next stage is to
compute the similarity transformation resultingnfrahese correspondences
by OLS. (An exact derivation of the OLS procedure mave used can be

found in Appendix A.)

In order to assess the correctness of the finaktoamation, we will choose
manually N points (pixels) in the reference image and thenmresponding

points in the sensed image. Typicalli, will be between 10 to 20 points.

.......... N ?
respectively. We refer to these setsgeaund truth (GT), in the sense that

they represent the most accurate transformationilpes Next we apply the

transformation to each point ifx,,y" )}, , and compute theoot mean

sguare error (RMSE) defined as

(3.5) RMSEZ\/%Z(X. ~X)?+(y, - ¥)°

.....

at most 1 pixel represents a good registration.
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As for comparison with other approaches, we focussionplicity and fast
performance rather than exhaustive, time consusgagch algorithms. The
approach described in [4], for example, involvempating joint distances
for all possible correspondences (which pass atmlirstandard rejection
filter) for each pair of peaks in the RMO and sdaigtograms; this means
that the computation complexity is greater bygeatst, an order of magnitude
than that of our method. In the same manner, tipeoagh described ih 7]
involves computing a correlation matrix betweenth# key-points; this is
followed by rotating the feature matrix of minimugorrelation by the
appropriate orientation. Again, these are very mspe computational
operations. In addition, this method is not scailariant. Our approach also
eliminates the search for an optimal transforma#isnn [11] and is thus far

simpler.

To further explain our algorithm, we illustrate @gemplete execution on a
simple example. Figure 3.2 shows80x  G6@derence image (left) and a
sensed image (right) of the same size. Both imagese acquired by

Landsat; the reference image (band5) in 1984 amde¢hsed image (band7)
in 1986 (images source: UCSB site: http://visioa.ecsb.edu /registration
[satellite/testimag/index.htm). This pair is thusnailti-temporal, multi-

spectral, and multi-view. As we can see, the refeggeimage is much

brighter than the sensed one due to the multi-sgdecature of the image
pair; we also note a slight rotation and horizomtadl vertical translations
between the images. The upper part of Figure @%/shhe scale ratio and

orientation difference histograms as explainechenfrevious section. In the
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same manner, the lower part of Figure 3.3 showsXhand Y position

difference histograms after being scaled and rdtaiethe mode values of
the scale ratio and orientation difference histograAs explained above,
these modes are used to construct an inlier filtech resulted in this case in

82 correspondences (out of 797 initial corresigmces) from which the

-300

-200

-100

(@) (b)

Figure 3.2: Landsat images over Casitas Lake: éf¢rience (band5, 1984), and

(b) sensed (band7, 1986) ; source: UCSB site angbove.
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Figure 3.3: Histogramef/-point correspondences.
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similarity transformation is computed (via OLS)remister the sensed image
onto the reference image. The registered imageshanen in Figure 3.4. We
can see that the registration is quite goad the sensed imageis now
aligned with the reference image. This visual peioapis also confirmed

by computing the RMSE which is 0.75 pixels.

200
-100
0
100
200
300 200 400 0 100 200 300 200 00 0 100 200 300

Figure 3.4: Registered image pair of Figure 3.2.
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Chapter 4
4. Experimental Results

4.1 Experimental Methodology

We have implemented our SIFT-based MS algorithnMiRTLAB and C

and applied it to dozens of multi-temporal, msltiectral, and multi-sensor
image pairs. For each type of image pair, the tedadlow are arranged in
the following manner. First, we present the imag&sp(including sensor
used, size, time, and area of acquisition); thisliswed by visual results of
the registration process, i.e., the reference asmkexl images of their
overlapping area are mosaicked onto a common auetedisystem. Finally,
we provide numerical results which include the nembof initial

correspondences and the number of key-points wichived the filtering

process, the transformation parameters, an RMSEeyalod the run-time
measured within the C-style implementation on aul@gPC (Intel Q8200
with 3 [GB] of RAM and Vista OS). We point out that some cases the
registration process failed because the numberoofegspondences after
filtering was insufficient to compute a meaningftdnsformation; in these

cases, we introduce black "images" instead of Viegistration results. We

used consistently the bin widthsqg,=0. Q%f,=9° and

J.x =0, = 7.5[pixels] for the histograms of the scale ratio, orientatio

difference, and position difference, respectively.
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4.2 Chip Extraction

Our first two datasets are the ones described 1h Hirst, we used several
256x 256 sub-images with known geographical positions toveseas our

reference chips. Next we used sevet@#i8x 2048dsat-7 and Landsat-5

images sensed at different times, from whi56x 2aihdows"” partially
overlapping these reference chips were extracted [1] for details). We

registered these windows against the referenceschigure 4.1 shows these

concepts.

4.2.1. Data over Washington, DC

Our first set of chips is from the Washington, D@aa Eight reference chips
were extracted from a Landsat-7/ETM image acquired2®@7/99; these

chips are depicted in Figure 4.2. Our 8-windsets were extracted from

Figure 4.1: Extraction d?56x 25@&indows from2048x 2048 _andsat scene.
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Landsat-5/TM images taken on 27/08/84, 16/05/870&/820, and 11/07/96
(abbreviated as 840827, 870516, 900812, and 960&kpectively). These
windows are shown in Figures 4.3, 4.5, 4.7, and #h@ corresponding
registration results are shown in Figures 4.4, 4.8, and 4.10 and in Tables
4.1-4.4 (N/A stands for non-applicable registratidne to an insignificant

number of inliers after filtering).

Figurd.2: Eight referenc56x 256hips from the Washington, DC area.

(d)

(e) (@) (h)
Figure 4.3: Extracted windows from Landszne (840827) over the DC area.
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(f)

(9)

(h)

Figure 4.4: Registration results for Landsat windd@from 840827 over the
DC area) vs. reference chips.

wind | #init | # inliers s dldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
corres

a 68 12 (17%)| 1.001 -0.24 -5.76  -46.39 0.74 0.658
b 93 19 (20%)| 1.006  -0.27 -4.7%  -47.61 0.86 0.698
c 134 0 (0%) N/A N/A N/A N/A N/A 0.742

d 105 | 13(12%)| 1.014  0.04 -4.22  -45.74 0.73 0.69p
e 120 | 18(15%)| 1.008  -0.47 -4.55  -48.f3 0.63 0.725
f 99 2 (2%) N/A N/A N/A N/A N/A 0.710

g 139 9 (6%) 1.034 2.38 -6.36 -46.18 0.76 0.751
h 98 19 (19%)| 1.002 -0.00 -5.40  -47.70 0.60 0.698

Table 4.1: Registration resultslfandsat over the DC area (840827)
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We failed to register windows (c) and (f) due téoew number of inliers that
survived the filtering process. Both failures résdl from substantial
differences between the reference and sensed infdgedo clouds mainly). It
seems that intensity distributions for these winglavere different in a manner
which confused the SIFT algorithm and led to irral@vcorrespondences. To
further validate this assumption, we picked mamdibr both failed image
pairs, eight ground truth correspondences and ctedpuhe resulting

transformationss s, 0,t

1txy

t, >=<101,081- 602,—4729> (for image pair (c))

and <s,0,t,,t, >=<0.999,03 - 492 -4792> (for image pair (f)). Next, we

computed the Euclidean distance between the SIFT key-pointe oéférence
chip and the corresponding transformed key-points of the sevisddw. We
consider a correspondence to be true if the above distance is stinate?
pixels and false otherwise. This stems from the noisy nature ddlgorithm,
e.g., the histogram quantization. Only 3 true correspondencesobtiaed
for window (c) and none for window (f). Obviously, these arafingent
numbers of inliers for our algorithm. As for a comparison to [fl14, original
algorithm failed on windows (c) and (g) but succeeded on winffpw\e
should emphasize that run-times of the latter for both failuressaodesses

were greater by an order of magnitude, at least.
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(€) (f) (9) (h)

(f) (9) (h)

Figure 4.6: Registration results for Landsat windows (from es8&0516 over
the DC area) vs. reference chips.
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wind | #init | # inliers s dldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
corres

a 68 11 (16%)| 0.983  0.12 -8.10  -47.21 0.90 0.699
b 87 17 (19%)| 0.972  0.42 -8.06 -44.17 0.80 0.692
c 133 2 (1%) N/A N/A N/A N/A N/A 0.732

d 102 8 (8%) 0.996 -0.35 -8.43 -45.08 0.71 0.695
e 130 8 (6%) 1.002  1.26 -6.8%  -47.39 0.81 0.738
f 99 0 (0%) N/A N/A N/A N/A N/A 0.700

g 153 14 (9%) | 0.99 -0.26 -8.4( -42.95 0.82 0.75p
h 80 7 (8%) 0.991 -0.07 -8.30  -47.92 0.68 0.676

Table 4.2: Registration results for Landsat oveDtharea (870516)

Again, we failed to register windows (c) and (f) for the same reasonaimeqgbl

above; specifically, comparing SIFT correspondences against graithdas

explained above resulted in 4 true correspondences for window (c) aedaro

window (f). Comparing to [11], the original algorithm failed tegister

windows (d), (e), (f), and (g).

(a) (b) (c) (d)
(e) (f) ()] (h)

Figure 4.7: Extracted windows from Landsat oveDiiearea (900812).
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(f)

(9)

Figure 4.8: Registration results for Landsat windows (from sgé@812 over
the DC area) vs. reference chips.

(h)

wind | #init | # inliers s gldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
corres
a 68 16 (23%)| 1.029 -09% -1645 -3063 0.75 0.679
b 85 21 (24%)| 1.002 0.14 -15.64 -33)/0 0.76 0.682
c 111 13 (11%)| 1.01 0.69 -14.43 -32.p7 0.79 0.737
d 101 25 (25%)| 1.001 0.04 -16.10 -31.33 0.82 0.694
e 128 26 (20%)| 0.997 0.06 -16.32  -35/78 0.87 0.749
f 99 13 (13%)| 1.004 -1.37 -16.99 -35.82 0.71 0.704
g 133 0 (0%) N/A N/A N/A N/A N/A 0.737
h 98 17 (17%)| 1.005 -0.06 -15.52 -349 0.66 0.702

Table 4.3: Registration results for Landsat tive DC area (900812)
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In this case we only failed to register window (g) whicklged only 4 true
correspondences. These results are consistent with those of [Hltheinain

advantage of significantly shorter run-times.

(f) (h)

Figure 4.9: Extracted windows from Landsat scef&®Bbover the DC area.

(9) (h)

Figure 4.10: Registration results for Landsat windows (fromes8é0711 over
the DC area) vs. reference chips.
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wind | #init | # inliers s gldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
corres
a 68 18 (26%)| 0.99 -0.33 -8.80 -102(73 0.72 0.658
b 73 1 (1%) N/A N/A N/A N/A N/A 0.673
c 116 9(7%) | 1.002  -0.50 -7.69  -103{08 0.75 0.725
d 107 19 (17%)| 0.998 0.17 -8.72 -101.4 0.95 0.710
e 126 12 (9%)| 0.988 0.05 -8.31 -106(15 0.79 0.742
f 97 0 (0%) N/A N/A N/A N/A N/A 0.677
g 145 1 (1%) N/A N/A N/A N/A N/A 0.738
h 102 | 12 (12%)] 1.008 0.0 -8.64  -10436 0.63 0.704

Table 4.4: Registration results for Landsat the DC area (960711)

In this case we had 3 failures. Ground truth testing for these gagesise to
6, 0 and 3 true correspondences for windows (b), (f) and (g), resggctiv

Results for this scene in [11] show failures for windows (a),(é))and (g).

4.2.2 Data over Virginia

Our second set of chips is from the Virginia area. Six referenges oiere
extracted from a Landsat-7/ETM image taken on 07/10/99; these chips are
depicted in Figure 4.11. Our 6-window sets were extracted from the sam
sensor on 04/08/99, 08/11/99, 28/02/00, and 22/08/0frdalated as 990804,
991108, 000228 and 000822, respectively). Figures 4.12, 4.16, and 4.18
show the corresponding window sets. Figures 4.13, 4.15, 4nd 4.19 and
Tables 4.5-4.8 give the registration results (all imagesigdése are of size

250x 250 pixels).
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Figure 4.11: Si50x 25@eference chips from Virginia.

Figure 4.12: Extracted windows from Landsat scene 9908&Mirginia.
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(d)

Figure 4.13: Registration results for Landsat windows (from se@6804) vs.
reference chips over Virginia.

wind C#c#)i?(iats # inliers s gldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
a 128 | 13 (10%) 1.000  -0.43 -0.06 3.6p 0.77 0.74
b 117 | 55(47%)] 0.996  -0.05 -0.19 3.98 0.83 0.71
c 123 9(7%) | 1.002 -0.11 -0.35 3.9% 0.69 0.74
d 156 | 102 (65%) 0.999| 0.06 0.00 4.21 0.20 0.813
e 123 24 (19%), 1.00 -0.02 0.141 4.14 0.93 0.74
f 140 | 15(10%)| 1.01 0.82 -0.67 4.7¢ 0.81 0.807

Table 4.5: Registration results fandsat over Virginia (990804)

As we can see, no registration failures were observed for these wirsbows

opposed to [11] were failures were observed for windows (c), (e), amdtiff)

substantial run-times (at least 14 seconds).
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Figure 4.14: Extracted windows from Landsat sceriel (over Virginia.

Figure 4.15: Registration results for Landsat windows (from sg@h208) vs.
reference chips over Virginia.
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wind Ci:rri(iats # inliers S dldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
a 117 | 20 (17%)] 0.996  -0.15 -0.57 13.45 0.98 0.712
b 123 | 52 (42%)| 0.995 -0.02 -1.58 13.48 0.94 0.711
c 146 | 63 (43%)] 1.000  -0.07 -1.29 13.47 0.69 0.78D
d 136 | 69 (50%) 1.000  0.15 -1.18 13.43 0.54 0.79p
e 101 | 25(25%) 1.002  0.07 -1.52 13.46 0.73 0.738
f 163 | 88 (54%)| 0.998 -0.03 -1.2§ 13.44 0.54 0.809

Table 4.6: Registration results for Landsat Virginia (991108)

Again, no registration failures were observed for these windexasgtly as in

[11], where run-times were at least 12 seconds.

Figure 4.16: Extracted windows from Landsat sc8Q228 over Virginia.
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Figure 4.17: Registration results for Landsat windows (from sge228) vs.
reference chips over Virginia.

wind C#;:rrgts # inliers S dldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
a 128 | 20 (15%) 1.000  -0.11 0.54 2.4 0.66 0.74
b 124 | 54 (43%)| 0.999  -0.05 0.97 2.8 0.58 0.71
c 146 | 34 (23%)] 0.996  0.07 1.09 2.5 0.82 0.77
d 147 | 75(51%) 1.000  0.06 0.98 2.1 0.53 0.80
e 125 | 35(28%) 0.99y  -0.13 1.03 2.6 0.87 0.75
f 174 | 103 (59%) 0.998| 0.07 0.85 2.30 0.77 0.825

Table 4.7: Registration results for Landsat Virginia (000228)

Once again, registration results are identical to those specifigd]in

41




(b)

(d) (e) (f)

Figure 4.18: Extracted windows from Landsat sce@8Z®over Virginia.

(d) (e) (f)

Figure 4.19: Registration results for Landsat windows (from s@@8822) vs.
reference chips over Virginia.
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wind Ci;?(iats # inliers s dldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
a 115 2 (1%) N/A N/A N/A N/A N/A 0.725
b 124 | 44 (35%)| 0.999  -0.09 -0.0% 9.8p 0.89 0.73
c 146 | 59 (40%)| 0.997 -0.23 -0.04 9.68 0.88 0.76
d 138 | 31(22%) 1.004  0.09 -0.638 8.9p 0.76 0.77
e 125 | 58 (46%) 1.001  0.16 -0.2) 9.7 0.82 0.75
f 145 3 (2%) N/A N/A N/A N/A N/A 0.797

Table 4.8: Registration results for Landsat ¥irginia (000822)

In this case we had only two failures. Ground truth testinghfese cases

showed that window (a) had 5 true correspondences while winddadfho

true correspondences at all. It is quite evident that the twordailwere

caused due to substantial

differences between the windows and the

corresponding reference chips caused by large amount of clouds (egpeciall

window (f)). These explanations are similar to those offered in [11].

4.3. Multi-spectral/sensor Images

Our next 4 datasets consist of images obtained by Landsat/&id/

IKONOS in the near infra-red (NIR) and infra-red (IR) bands.

4.3.1.Cascade Area

For this area we had 6 images listed in Table 4.9 and shotgune 4.20.

Seven image pairs were registered from this dataset; specifically, weotried

register pairs (a,b), (c,d), (c,e), (c,f), (d,e), (d,f), and (e,f)his tase we
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were successful in all registration trials. The results are detaileabie #.10

and illustrated in Figure 4.21.

Image Sensor Band Size
a ETM NIR 2048x 2048
b ETM IR 2048x 2048
c ETM NIR 312x 312
d ETM IR 312x 312
e IKONOS NIR 312x 312
f IKONOS IR 312x312

Table 4.9: Images from Cascades area

(d)

Figure 4.20: Cascades area images.
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(f)

Figure 4.21: Registration results for image pgeora Cascades area.
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Image | #init | #inliers s dldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
pair corres

(ab) | 3719] 70(2%] 1.000 -0.07 1.0 0.77 0.82 9.40
(c,d) | 153| 33(21%) 0.996| -0.13| -0.84 0.03 0.63 0.885
(ce) | 223 142(63%)1.064| -0.09 8.73 10.27 0.88 0.920
(c,fi | 184 | 53(28%) 1.064| -0.15 7.64 9.67 0.97 0.923
(de) | 153| 21(13%) 1.061| -0.04 9.21 10.54 0.69 0.877
(d,f) | 153 | 78(50%) 1.064| -0.10 8.83 10.28 0.75 0.853
(ef) | 184 | 46(25%) 1.001| -0.18| -0.29| -0.10 0.68 0.896
Table 4.10: Registration results for image pairs from Cascades area

4.3.2.Konza Area

For this area we had 6 images listed in Table 4.11 and shokigure 4.22.

Seven image pairs were registered from this dataset; specifically, weotried

register pairs (a,b), (c,d), (c,e), (c,f), (d,e), (d,f), and (e,f). i ¢hse we

succeeded to register only pairs (a,b), (c,e), and (d,f). The raselitetailed

in Table 4.12 and illustrated in Figure 4.23.

Image Sensor Band Size
a ETM NIR 2048x 2048
b ETM IR 2048x 2048
c ETM NIR 344x 336
d ETM IR 344x 336
e IKONOS NIR 344x 336
f IKONOS IR 344x 336

Table 4.11: Images from Konza area
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Figure 4.22: Konza area images.

Image | #init | #inliers S dldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
pair | corres
(a,b) | 2610] 84(3%] 1.00 0.05 -0.1 0.35 0.85 17.4
(cd) | 209 0(0%)] N/A N/A N/A N/A N/A 0.970
(ce) | 209| 45(21%) 1.061| 0.00 13.56]  12.29 0.84 0.974
(c)f) 209 | 1(-0%) N/A N/A N/A N/A N/A 0.976
(de) | 227 0 (0%)| N/A N/A N/A N/A N/A 0.989
(d,f) 210 | 104 (50%)1.064| -0.05 12.42|  11.54 0.94 0.985
(e.f) 210 |  1(-0%)| NI/A N/A N/A N/A N/A 0.987

Table 4.12: Registration tsdor image pairs from Konza area
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(e) (f) (9)

Figure 4.23: Registration restdt image pairs from Konza area.

We found no true correspondences at all for all registration failuses

for this area.

4.3.3USDA Area

For this area we had 4 images listed in Table 4.13 and shokigure 4.24.

Two image pairs were registered from this dataset; specificallyrieg to
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register pairs (a,b) and (c,d). In this case we succeeded to registéa, ipair

The results are detailed in Table 4.14 and illustrated in Figlge 4.

Image Sensor Band Size
a ETM NIR 2048x 2048
b ETM IR 2048x 2048
c IKONOS NIR 392x 296
d IKONOS IR 392x 296

Table 4.13: Images from USDA area

(d)

Figure 4.24: USDA area images.
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(b)
Figure 4.25: Registration resultdrftage pairs from USDA area.

n

Image| #init| #inliers
pair | corres

0[deq] | t, [pix] t, [pix] RMSE [pix] | run-time [s]

(a,b) 1760 22 (1%) 1.001 0.10 0.59 1.47 0.91 15.8

(cd | 228 o0@©w| NA|l NA N/A N/A N/A 1.00

Table 4.14: Registration results for image pairs from USDA area

4.3.4Virginia Area

For this area we had 6 images listed in Table 4.15 and shokigure 4.26.
Seven image pairs were registered from this dataset; specifically, weotried
register pairs (a,b), (c,d), (c,e), (c,f), (d,e), (d,f), and (e,f). i ¢hse we
succeeded to register pairs (a,b), (c,e), (d,f), and (e,f). The rasltetailed

in Table 4.16 and illustrated in Figure 4.27.
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Image Sensor Band Size
a ETM NIR 2048x 2048
b ETM IR 2048x 2048
c ETM NIR 344x 344
d ETM IR 344x 344
e IKONOS NIR 344x 344
f IKONOS IR 344x 344

Table 4.15: Images from Virginia area

(c)

(d) (€)

Figure 4.26: Virginia area images.

)

Image | #init | #inliers s gldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
pair | corres
(ab) | 364| 34(9%) 1.002 0.10 -2.8 0.4 0.74 6.4¢
(c,d) | 187| 0(0%)| N/A| NA N/A N/A N/A 1.02
(c.e) 187 | 54 (28%) 1.07 0.14 12.67 13.56 0.88 0.97
(ch | 187 | 1(~0%) N/A| N/A N/A N/A N/A 0.99
(de)| 197 1(~0%) N/A| N/A N/A N/A N/A 1.02
(d,f) 197 | 24 (12%) 1.082 0.23 10.50 13.04 0.74 1.00
(e)f) 197 | 28 (14%M) 0.99 0.14 -1.10 -0.78 0.68 0.98

Table 4.16: Registration resultsrfage pairs from Virginia area
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(e) (f) (9)

Figure 4.27: Registration resultsrftage pairs from Virginia area.

We found only 2 true correspondences for the failure in image pair (cld) an

no true correspondences at all for the other two failures.
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4.4. Miscellaneous Image Pairs

Our last dataset consists of various sensors and bands (fronC 8t Website:
http://vision.ece.ucsb.edu /registration /satellite/testimagidm). Table 4.17
presents a summary of the image pairs shown in Figure 4.2&egstration

results are summarized in Table 4.18 and Figure 4.29.

Pair # Scene Image Pair Size
a Desert 1. Optical Image 1.512x 512
2. Simulated Transformation | 2. 512x 512
b Coast line 1. Landsat from 1988 1. 400x 400
2. Landsat from 1986 2. 400x 400
c Agricultural | 1. Landsat Band 5 from 9/9/90| 1. 512x 512
2. Landsat Band 5 from 18/7/94 2. 512x 512
d Coast line 1. Landsat from 1988 1. 600x 600
2. Landsat from 1990 2. 600x 600
e USsSCB 1. Optical Image. 1. 386x 306
2. Simulated Transformation | 2. 472x 335
f Coast line 1. AVIRIS Band 39 1. 256x 256
2. AVIRIS Band 39 2. 256x 256
g Rain forest 1. Landsat Band 5 from 7/6/92 1. 512x 512
2. Landsat Band 5 from 15/7/94 2. 512x 512
h Casitas lake 1. Landsat Band 5 from 1984| 1. 600x 600
2. Landsat Band 7 from 1986 | 2. 600x 600
i Gibraltar 1. Landsat Band 5 from 1984 | 1. 600x 600
2. Landsat Band 7 from 1986 | 2. 600x 600
] Mountains 1. Landsat 1.512x 512
2. Landsat 2.512x 512
k Coast line 1. Landsat Band 3 from 1988 | 1. 512x 512
2. Landsat Band 5 from 1988 | 2. 512x 512
I Mountains 1. Landsat Band 1 from 1988 | 1. 512x 512
2. Landsat Band 3 from 1988 | 2. 512x 512
m Mountains 1. Landsat Band 4 from 1988 | 1. 512x 512
2. Landsat Band 7 from 1988 | 2. 512x 512
n Unknown 1. JERS 1 from 10/10/1995 1. 256x 256
2. JERS 1 from 13/8/1996 2. 256x 256
0 Brasilia 1. SPOT Band 3 from 8/8/95 | 1. 256x 256
2. Landsat Band 4 from7/6/94 | 2. 256x 256

Table 4.17: List of miscellaneous images

53



Figure 4.28: Miscellaneous image pairs : (a) Desert, (b) coastd)regricultural, (d) coast line, (e)
UCSB, (f) coast line, (g) rain forest, (h) Casitas lake, (i) Giara{f) mountains, (k) coast line, (1)
mountains, (m) mountains, (n) unknown ,(0) Brasilia.
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Figure 4.29: Registration results for image pairs of Fig..4.28
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Image | #init | #inliers s dldeg] | t,[pix] | t, [pix] | RMSE [pix] | run-time [s]
pair | corres
a 531 | 284(53%) 0.996| -29.94| -52.1§ 137.47 0.58 2.00
b 310 | 53(17%) 1.00 | 0.021| -127.0% -7.15 0.57 1.25
c 562 | 64(11%) 0.99 | -0.00 | 77.65 -87.21 0.67 2.05
d 211 12(5%)| 1.00% -0.26 -1.8( -81.91 0.65 1.87
e 135 | 109(80%) 1.00 | 19.98| -96.93 -75.61 0.21 1.12
f 40 | 12(30%) 0.99 1.43 23.70| -166.66  0.59 0.66
g 553 | 34(6%)] 1.00 -0.021 -183.28 36.98 0.66 2.14
h 797 | 82(10%) 0.99 | 0.285| 127.8] 112.34 0.75 2.61
[ 684 | 102(14%) 1.00 0.17 -3.89| 110.98 0.71 2.49
j 763 112(14%}‘ 1.00 | 15.02| -82.0§ 307.4p 0.31 2.31
k 252 | 84(33%) 0.99 | 0.043| 78.11 -0.04 0.62 1.2
I 340 | 149(43%) 1.00 | -5.02 | -43.39 -88.08 0.43 1.37
m 342 | 34(10%) 1.00 | -0.09 | -17.95 = 64.69 0.75 1.34
n 153 | 20(13%) 1.00 0.42 10.35| -20.97 0.88 0.78
0 115 | 10(8%)| 0.97] -0.918  -7.4( -78.47 0.57 0.72

Table 4.18: Registration results for Image pairs of Table 4.17.

4.5. Analysis

4.5.1 Algorithm's Performance

As explained above, we consider the registration as success if tB& RV

smaller than 1 pixel. On the other hand, if the transformation tdmmo

computed due to an insufficient number of filtered inliers, thestegion

fails. In accordance with the above, we observed 76 successes tltaf to

94 registration trials, i.e., ~81% success rate. Also, as stabene, the

algorithm's run-time varies between less than a secong256x

to several seconds for very large images of 2@é48x
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times can be further improved by a more powerful computer and/or more
efficient coding. In any event, they are much faster than those ef oth
similar SIFT-based algorithms which usually vary between doZens

hundreds of seconds for similar image sizes.

Another important issue is that of verification/validation ofie t
transformation correctness due to some indication as to whethet ¢hen
algorithm finds the correct transformation (in an RMSE sense)rd-ig30
depicts the distribution of the number of inliers for all registratitals; we
can easily spot a gap between 4 to 7 inliers and exploit itefiafication of
our transformation as follows. If the number of inliers is larger traequal

to 7, then we accept the transformation found by the MS-SIgaritim;
otherwise, we will assume the algorithm has failed to find a proper
transformation. We should emphasize that in all of our registratias, we
did not encounter a single case where evident, concrete peales sodie,
orientation, and translation histograms were found and the repulti

transformation was wrong. Registration failures were caused only mchen

Frequency

40 50 60 70 80 90
Num Of Inliers

Figure 4.30: Inlier distribution.
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evident peaks were found. This rule of thumb can serve as a practical

indication as to the correctness of our method.

4.5.2 Failure Analysis and Enhancements

We can divide our failures into two categories:

(1) The first category consists of failures due to substantiéreinces
between the reference and sensed images. These differences can be due to
changes in land cover (e.g., deforestation, lake dehydration,iescifjcient
overlap between the images and instantaneous differences upon asyguisiti
of one of the images (e.g., cloud appearance). It is impodsilgjeantify to

what extent and where the images should overlap in order for ostragigin
algorithm to succeed. In any event, our failures from this categeng
caused usually due to clouds which were present in one imagetin the

other.

(2) The second category is of failures due to differences in intensities
between the images. Since the SIFT algorithm is based on gradiees,
substantial differences in the intensity distribution betweemefegence and
sensed images can lead to a wrong match between corresponding SIFT
descriptors and eventually to no evident peaks in the distmizuid the

SIFT characteristics. Fortunately, differences in intensities dertwmages

can be anticipated, since these differences usually stem from thef use o
different sensors. We can thus exploit some basic image processing

techniques to enhance the SIFT results, as well as our MS-3)6&iltlain.
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Let us revisit the image pair over the Konza area shown in Fig8ie fihe
reference image is the NIR band of a Landsat/ETM image and the sensed
image is in the IR band of IKONOS (the size of both image344x 336
pixels). Figure 4.32 shows the histograms of the various 8h@&facteristics.

As we can see, there are no evident, concrete peaks in the translation
histograms; in addition, there are two possible peaks in thentation
histogram. This kind of histograms will usually cause algorithm to falil,

as only a small amount of inliers (less than five) will be foulmdthis
specific case, only one possible inlier (out of 209 correspondemcEs
found. In order to improve our results, we employ some basigema

processing techniques. First we enhance both images withidhef the

Laplacian operatoW?, defined for a digital imagd (x,y as:

(1) VE(Xy) = f(x+Ly)+ f(x=Ly)+ f(xy+D)+ f(x,y-1)-4f(xy)

(@) (b)

Figure 4.31: Image pair over Konza area: (a) RefereldeNER and (b)
sensed IKONOS IR.
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Figure 4.32: Histograms of SIFT characteristicéfiage pair of Fig. 4.31: (a)
Scale ratios, (b) orientation differences, (c) horizonttlal (d) vertical
shift.

we have sharpened both images by taking:
2) F(xy)=f(xy)-kvZf(xy )

where F(x, y Js the sharpened image akdis a positive constank(= 005
was picked for the reference image ake W3as picked for the sensed
image); see [16]. In addition, we reverse the intensity levelofdference
imager (i.e., s=T(r)=1-r where we assume thrat [Q1] The reason
for the sharpening procedure is that the SIFT algorithm usediftaeence
of Gaussians (DoG) in order to find image key-points, and she®oG is
analogous to an edge detection operator, it is reasonable to emptEze

in both images in order to obtain reliable key-points. Tinpgse of intensity
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reversal in the reference image is to equalize intensity distrilsubetween

the two images. Figures 4.33 and 4.34 depict the insagkthe resulting

Figure 4.33: Image pair over Konza after sharpeningnaeusity transformation.

R — 14

-300  -200  -100 0 100 200 300 400

SrefScensed A6 (Degrees)

(@) (b)

%

-200 -100 0 100 200 300 200 100 0 100 300
AX (Pixels) AY (Pixels)
(c) (d)

Figure 4.34: Histograms of SIFT characteristics fogamnaair of Fig. 4.33: (a)
Scale ratios, (b) orientation differences, (c) horizortdt, sand (d) vertical

shift.
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histograms of the SIFT characteristics. Now, the peaks obtaieednague
and can easily be spotted; in this case, we had 154 initial pon@snces,
17 of which survived the filtering process (i.e., ~11%). This sedBcient to

compute reliably the transformation parameters which  were

<s,6,t,,t, >=<105-063"13061351>, with an RMSE of 0.76 pixels.

The registration results are shown in Figure 4.35. In the sairie (Se.,
using the same values d&f), Figure 4.36 and Table 4.19 summarize the
successful registration results for several image pairs for which aarithaig

originally failed to register. (Run-times were measured inside AT MB.)

Figure 4.35: Improved registration results for image pair oveKtimza area.

(@) (b) ()

Figure 4.36: Improved registration results after preprocessing esrnaimt.
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Img. Details #init. | #inliers| s 0 [deg]| t, [pix] | ty [pix] | RMSE [pix]| run-time [s]
pair corresp.

a Konza ETM NIR 183 13 (7%) 1.035 -0.12 3.34 2.92 0.76 0.75
Konza ETM IR
b Konza ETM IR 183 14 (7%) 1.07| -0.20 11.94 14.989 0.63 0.75
Konza IKONOS NIF
c USDA IKONOS IR 184 13 (7%) 0.99 0.98 -1.45 0.03 0.67 0.77

USDA IKONOS NIR

Table 4.19: Improved registration results after preprocessing enhancem
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Chapter 5
5. Conclusions
5.1 Summary of Thesis

In this thesis we presented a novel framework for registratiorerobtely
sensed images based on the SIFT algorithm. Specifically, we hged t
complete data available from the SIFT key-points location vector,scale,
orientation, and position as opposed to other available algarithhich tend

to use only the scale and orientation. We exploited the aboveniation in a
mode-seeking fashion where we first searched for modes in the soalendti
orientation difference histograms defined over initial correspondences
obtained by the nearest neighbors between SIFT descriptors. Wextsed
these values to compute the modes in the horizontal and vddaalon
difference histograms. The overall quadruple obtained served as w@h init
guess for the transformation parameters, assuming that a more esuitabl
transformation lies in its vicinity. We constructed an outlieefilvith respect

to this initial guess, which was found very reliable. Tkisinovel approach

for filtering correspondence outliers, as opposed to other algaritlihmch
typically use the distance ratio between the first and second neaigisbor

(of SIFT descriptors) to achieve this. We applied a one-steparydieast
squares algorithm to the remaining inliers to refine the transformatio

parameters values.

We implemented the above algorithm in MATLAB and C and testedh i&
variety of datasets including multi-temporal, multi-view, msknsor, and

multi-band image pairs. The registration quality was measurtztims of the
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RMSE value (using the criterion ®RMSE < (ixel). Our results show over
80% success. When compared to other existing algorithms, th&t m
prominent advantage of our algorithm is its run-time which isefagy an
order of a magnitude, at least. Another important issue is thagrification,
i.e., computing an RMSE value with respect to manually pickedngl truth
correspondences. Concerning automatic verification, we used the nomber
inliers after filtering to determine whether or not the transformatidairéd is
reliable; of course, this threshold is a trade-off between detectiadailures

and classifying successful registrations as failures.

Concerning registration failures, our investigation against grotmth
transformations showed that in all cases there was a very smalenofrtibue
SIFT correspondences in order to find a proper transformation. Tiee ab
implies that we have been taking full advantage of the datdisddpy the
SIFT descriptor. We also showed that by some basic image progessi
techniques used to enhance the images, we can improve our résltentes
mainly to enhance the SIFT algorithm outputs, in the sdreeitt makes its

key-points and descriptors more distinctive and thus more rliabl

5.2Future Work
We point to several issues concerning future work:
1. The usage of a mode-seeking approach can be problematic wreeiaréhe
multi-modes in the SIFT characteristics histograms. Accordingitgesearch

and relevant publications, the multi-mode problem usually ocauysio the

orientation difference histogram. A simple solution to this [gmbwould be
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to use a search algorithm on all possible modes and to take¢hesulting
with the largest amount of inliers in the filter; of courses tapproach will

result in a slower algorithm.

2. Along the way we assumed a similarity transformation betwéen t
reference and sense image pair; in some applications this is notardgdhke
case, and a more complicated transformation might be required! ke a
challenge to devise an algorithm, based on our MS-SIFT parattigmampute

a transformation for such cases.

3. As noted, in some cases the SIFT descriptor does not gislafficient
number of true correspondences, which results in registration failbirese
SIFT was first presented, several competing descriptors have beeapdevel
(e.g., SURF [17], GLOH [18], etc.). Again, it would be pferest to derive a
mode-seeking registration approach based on these descriptors thather

SIFT.
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Appendix A
Derivation of the 1-Step Ordinary L east Squares|[19]

This procedure computes either a rigid or similarity transformdbhiah maps a

n
i=1

set of model points to a set of corresponding object poids.M ={m}
denote the model points (as 2-element column vectorspaﬂélo, }i”:l denote the
object points. Let (a-b ) denote vector dot product, and let

Im,o|=(m[x]o[y]-m[ylo[X]) be the determinant of th2x 2 matrix(m,o).

We do this manner to minimize the sum of squared distances between
corresponding pairs. Here is some justification. It is welMkmthat, irrespective
of rotation and scale, the translation that minimizes the sumuaired distances

is the one that aligns the centroids of the two sets, so demetem,, and o,

as the centroids of the model and object points respectively theefibjtion:

1
My =—2.M

(A1) .
Oy = Ez 0

According to the above, the optimal translation is given by:
(A.2) t =0y —My

Next we letm; and o, denote the image ofm ando, , respectively, under the

translation that maps their respective centroids to the origin.

For a given correspondence and for any scaling factor, we claim thatltien
angle that minimizes the sum of squared errors is given by:
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(A.3) r=arctan§., / X,o, )

where x_,, is the sum of determinan|lr:1;1'i ,0'i| and x,,, is the sum of dot products

(m-0}). To see this, leR denote the optimal rotation matrix. Then the objective

is to minimize the sum of squared distances:

(A.4) > JRm =0 "= 3" (R, )? — 2(Rmi 0" ) + (0} )?)

where (a)® = (a-a ) denotes the squared length of a vector. Observe that rotation
does not alter the length of a vector, angRu’, )*> = (m)?, and hence the first

at last of the summation do not appear on the rotation. Tthaeaffices to

maximize the negation of the middle term:

(A'5) z (lei 'Oli )

Letting ¢ and s denote the cosine and sine of the optimal rotation angle we

have:

5 (Rmi, 0,) = ¥ (e, [x] - s, [y)O, X+ (s, [+ e, [y 0, ]
(A.6) = CZ (mi; [x]o'; [X] +m; [y]o'; [y]) + SZ (mi; [x]0 [y] —mi; [y]o,; [X])

= vaar + Sdet

By taking the derivative with respect to the raiatangler and setting to zero,

we obtains/c= X, / X, , as desired. Finally, we compute the scale faador
Z(lei 'oli )

A7 Sc=—"———

A7) >.(0,0,)
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We should note that this derivation is analogouthtse given in [20] without

the need to inverse the least squares matrix.
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