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A Geometric Voting Algorithm for Star Trackers
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Abstract— We present an algorithm for recovering the ori-
entation (attitude) of a satellite based camera. The algorithm
matches stars in an image taken with the camera to stars in a star
catalogue. The algorithm is based on a geometric voting scheme
in which a pair of stars in the catalogue votes for a pair of stars
in the image if the angular distance between the stars of both
pairs is similar. As angular distance is a symmetric relationship,
each of the two catalogue stars votes for each of the image stars.
The identity of each star in the image is set to the identity of the
catalogue star that cast the most votes. Once the identity of the
stars is determined, the attitude of the camera is computed using
a quaternion based method. We further present a fast tracking
algorithm that estimates the attitude for subsequent images after
the first algorithm has terminated successfully. Our method runs
in comparable speed to state of the art algorithms but is still
more robust than them. The system has been implemented and
tested on simulated data and on real sky images.

Index Terms— star tracker, microsatellites

I. INTRODUCTION

A star-tracker is a satellite-based embedded system which
estimates the orientation of the satellite in space. This

information is essential for any space mission, as it supplies
all attitude data required for satellite control. There are other
sensors used for the same purpose (gyroscope, sun tracker,
magnetometer, GPS [1], [2] horizon sensor), but star trackers
are more accurate and allow for attitude estimation without
prior information. For these reasons star trackers are used
onboard most 3-axis stabilized spacecraft [3]. Star trackers
estimate the orientation directly from the images of stars
taken by an onboard camera. The estimation is based on a
comparison of the star locations in the image with those in
the predefined catalogue.

A classic star-tracker has two basic modes of operation.
When it is first activated, it has no information about the
satellite’s orientation. This is known as the Lost-in-Space
(LIS) mode. Once the orientation has been found, it aids
the algorithm in estimating the orientation in the subsequent
images. This is known as the tracking mode. It is based on
predicting the current orientation accurately from previously
obtained information (the orientation and its rate of change).

If, however, the satellite’s initial rotation rate is fast, the
stars on the image will be smeared, causing the star-tracker
to fail. This, the major problem with the classic star tracker,
is usually solved using gyroscope-based control of the satel-
lite to reduce the rotation rate. Recently, several systems in
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which the gyroscope is replaced with a camera-based “stellar
gyroscope” [3] were proposed. Dealing with this problem is
beyond the scope of this paper and we will therefore assume
that the satellite is relatively stable.

In our setting, LIS is the major problem which remains to be
solved. The tracking problem has been thoroughly researched
and many appropriate tracking algorithms already exist. The
main challenge is to provide fast LIS algorithms which are
robust to false stars that appear in the image when the satellite
is in harsh environments for example, when meteors are
present.

LIS methods can usually be separated into three main parts:
Star center estimation. Detection of star centers with
sub-pixel accuracy.
Star identification. Assigning a unique catalogue ID
or false tag to every star.
Orientation calculation. Calculation of the camera
viewing direction.

In addition to the solution of the LIS problem, we propose a
new method for onboard camera calibration. Camera calibra-
tion is the recovery of the intrinsic parameters of a camera.
The standard calibration procedure is to acquire images of
an object with known Euclidean structure and compute the
camera matrix that minimizes the error between the image
of the object and its reprojection. One of the most popular
calibration methods uses repeated circular patterns as a known
object [4]. Open source toolboxes for camera calibration in
laboratory environments [5] also exist. However, such cali-
bration methods might be problematic on board, as space is
limited and no additional objects exist. Therefore we propose
a camera calibration method that uses image stars as the only
calibration objects. It is accurate, because the star positions
are measured with good precision. This part of the paper is
similar to [6], [7], [8], but we also allow for estimation of
non-linear camera distortions.

A. Star identification

Star identification is the most complicated task for any
algorithm, and the different algorithms can be distinguished
mainly by how well they accomplish this task. The goal is to
match a catalogue star ID to every image star. If no match is
found for a star, it is marked as a false star.

Generally the matching is done by comparing star catalogue
information to stars detected in the image. Despite the fact that
the catalogue includes intensity as well location information,
brightness is used only as a secondary, supplementary filter.
It has been shown in [9] that the probability of correct star
recognition is considerably influenced by star brightness esti-
mation errors when brightness-based algorithms are used. As



the catalogue stores visual magnitude whereas the brightness
of the image stars depends on instrumental magnitude [10],
it is not trivial to predict the image star brightness from the
catalogue star brightness. In addition, brightness values are
more sensitive to noise and camera malfunctions.

Previous approaches have employed several strategies to
solve the star identification problem [11]. The most common
approach is to treat the known stars as vertices in an undirected
graph G, with the angular separation between each pair of stars
serving as the edge weights. The set of points extracted from
the sensor serves as an undirected graph Gs. The problem
is then reformulated as finding a subgraph of G that is
isomorphic to Gs. The first algorithms of this group used
databases of pre-compiled distances between stars in different
star triplets, where the goal was to find the sub-graph in the
catalogue with similar distances [12]. [6] uses the relation
between the angular separations of triangle stars, thus making
the algorithm more robust to FOV and focal length changes.
[9] focused more on catalogue creation so as to ensure the
best possible sky coverage and fast catalogue performance.
They used pairs of stars for initial catalogue building while
continuing to use triplets for identification. [13] introduced
the K-Vector algorithm for fast triangle search. Guide star
algorithms are another version of algorithms from this group
[14], [15]. The idea is to find a catalogue star (polar star)
whose distances to its neighbors are most similar to the
distances of a given sensor star. A function of the distances is
used to index a hash table. [16] proposed a search consisting
of several iterations – similar to the Tracking mode.

Another popular approach is pattern algorithms. Every star
is associated with a pattern describing its own position and
that of its neighbors, as illustrated in Figure 1. For each star, a
bitmap of its neighborhood is rotated such that its first moment
is always aligned with the x axis.

(a) (b)
Fig. 1. Example of a star pattern. (a) shows a part of a sky map around
star S. A grid centered on S is drawn within a predefined distance from S -
(b). The grid represents a sparse matrix with zeros in empty cells and ones in
cells with stars. Every star in the catalogue is associated with such a matrix.

To determine the best match with the catalogue patterns, a
bit comparison is made with each pattern in the catalogue. The
match is made by finding the total number of shared on-grid
cells [17], [11]. As opposed to previous methods, the pattern
method allows the entire surrounding star field be used to form
a pattern for identification. A newer example of a grid method
is presented in [18]. It preforms SVD on the measurement
pattern matrix and reference vector matrix. Its advantages are
good performance and optimal attitude estimation. However,

it still suffers from sky coverage problems that prevent it from
being able to operate autonomously.

The method most similar to ours was presented in [19] and
a variant of it was presented in [20]. In all three methods
pairs of stars in the image are matched to pairs of stars in the
catalogue. The difference is in the way the match information
is processed. Our algorithm can deal robustly with many false
stars at comparable running times. A more detailed comparison
between the algorithms is described in Section IV-A.5.

B. Orientation calculation

Given a star catalogue match for every image star (or a
false indication for false stars), the orientation calculation can
be defined as finding a rotation matrix Q that satisfies

x = QX, (1)

where x is a set of star vectors in the camera frame and X are
the corresponding catalogue star vectors. The good (standard)
estimate for Q can be obtained by minimizing the least squares
error

N∑
i=1

‖QXi − xi‖2. (2)

Although only three stars are actually required for orientation
calculation, using more stars makes the algorithm more accu-
rate. Weights can be added to Equation (2) according to the
quality of each star center estimation.

C. Our method

Our method can also be defined as a sub-graph strategy;
however, the technique we propose is faster and more robust.
Rather than working with polygons (triangles, n-shapes), we
propose a voting scheme built on pairs of stars. All close pairs
of catalogue stars are stored in a lookup table sorted by the
angular distances between the stars. The angular distance is
also computed for all image pairs. Catalogue pairs vote for
image star pairs with similar distances. As the angular distance
is a symmetric relationship, each member of the catalogue pair
votes for each member of the image pair. Usually, the correct
identity of an image star is the one that receives the most
votes. Once the stars have been identified, the orientation of
the satellite is recovered using a quaternion-based orientation
estimation procedure.

Our approach has a number of advantages over other
approaches. It relies only on geometric information, and
thus is not sensitive to photometric properties of the sensor
which might change during the operation of the system. It
can however use star brightness as a supporting factor in
star identification. The algorithm uses information from the
whole image whereas other algorithms usually rely on local
neighborhoods of a certain star. This makes our algorithm
more robust. The voting method easily overcomes the problem
of non-star objects in the image because the concurrent use of
all stars minimizes their influence.

The paper continues as follows. The lost-in-space algorithm
is described in Section II and the tracking algorithm in Sec-
tion III. A description of the implementation, the experimental
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results, and the comparison with other methods are presented
in Section IV. Conclusions and future research suggestions are
discussed in Section V.

II. THE LOST-IN-SPACE ALGORITHM

The major contribution of this paper is the lost-in-space
(LIS) algorithm. This algorithm finds matches between stars in
the image and those in the catalogue and computes, from these
matches, an estimation of attitude. The algorithm is given a
star catalogue which is processed off-line. The catalogue used
is the Tycho-2 catalogue and from it stars with star magnitude
stronger than 6 are used. At runtime the algorithm identifies
the stars in the image and uses them to estimate the orientation
of the camera with respect to the positions of the stars in the
catalogue.

Algorithm 1 LIS algorithm - Pre-processing
1: for i = 1 to i = N do
2: for j = i + 1 to j = N − 1 do
3: compute the angular distance Dij = |Si − Sj |
4: if Dij < D then
5: Append entry (i, j, Dij) to table T (ID1, ID2, d).
6: end if
7: end for
8: end for
9: Sort T according to distance d.

The pseudo-code of the off-line stage of the LIS algorithm
is given in Algorithm 1 and the pseudo-code of the runtime
stage is given in Algorithm 2.

In the off-line preprocessing stage the angular distances
between all pairs of stars Si and Sj 1 ≤ i < j ≤ N from the
given catalogue are calculated. The list of distances less than
a threshold D is sorted by the distance value and a distance
table T is built according to this order. Every row in this table
contains the distance d and the identities of the two stars ID1
& ID2 (three columns). The size of the table is O(Nk), when
N is the number of stars and k is the average number of star
neighbors with distance less than D.

In the on-line runtime stage the image is processed, and n
possible star centers Pi are extracted with sub-pixel accuracy,
with an estimate of the localization error ei. The localization
uncertainty depends on the star’s brightness.

For every pair of possible stars Si and Sj 1 ≤ i < j ≤ n
in the image, the distance dij = |Pi − Pj | and its uncertainty
eij = ei+ej are calculated. Thus, we assume that the distance
between the stars lies in the segment Rij = [dij−eij , dij+eij ].
For all rows k in the distance table with distances S(k).d ∈
Rij , a vote is cast for the identity of the two corresponding
stars in the image. Binary search is used to find the first row
in the table and a linear scan of the distance table is used to
extract the rest of the rows. For example, if T (k).d ∈ Rij ,
then both image stars Si and Sj will get votes from catalogue
stars ST (k).ID1 and ST (k).ID2 as possible identities for them.
So, if the distance between the image stars α and β equals the
distance between catalogue stars M and N , both image stars
will get votes from M and N , meaning M and N are possible

Algorithm 2 LIS algorithm - Runtime
1: detect n possible stars Si, 1 ≤ i ≤ n in the image
2: for all possible stars do
3: estimate position P .
4: estimate localization uncertainty e.
5: end for
6: for i = 1 to i = n do
7: for j = i + 1 to j = n− 1 do
8: compute the distance dij = |Pi − Pj |
9: if dij < D then

10: compute the distance uncertainty region Rij =
[dij − eij , dij + eij ]

11: locate entries k in T such that T (k).d ∈ Rij

12: for all entries T (k) do
13: append to voting lists Vi and Vj of possible stars

Si and Sj respectively the two catalogue stars
T (k).ID1 and T (k).ID2.

14: end for
15: end if
16: end for
17: end for
18: for all possible stars Si do
19: assign St(i) to the catalogue star which got the maximal

number of votes
20: end for
21: for i = 1 to i = n do
22: for j = i + 1 to j = n do
23: if |SSt(i) − SSt(j)| ∈ Rij then
24: add a vote for the match (Si,SSt(i)) and for the

match (Sj ,SSt(j))
25: end if
26: end for
27: end for
28: all possible stars whose votes are clustered together are

assumed correct.
29: estimate attitude using a least squares quaternion based

method.

identities for each. If, in addition, the distance between the
image stars α and γ is equal to the distance between the
catalogue stars M and O, the image star α will have received
two votes for being identified as catalogue star M , one vote
for being identified as catalogue star N , and one vote for being
identified as O. β will have one vote for M and one vote for
N . γ will have one vote for M and O.

Once the voting process has ended, the initial identification
phase begins. For every possible star in the image, the identity
which got the maximal number of votes St(i) 1 ≤ i ≤ n
is assumed to be correct. Although the resulting identities
will be correct for the most part, some will be erroneous.
Therefore a validation stage, based also on a voting procedure,
is performed. For each pair of matched stars Si and Sj we
check whether

|SSt(i) − SSt(j)| ∈ Rij ,

that is, whether the distance between them in the image is
close to the distance between the stars with those IDs from the
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catalogue. When the distances are close, the two stars are voted
for. Typically, about 80 pairs of catalogue stars will be found
for each image star pair. Still, stars with incorrect identities
will receive a very small number of votes, whereas correctly
identified stars will support each other. A simple clustering
algorithm is used to recognize the correctly identified stars:
if the number of votes for a star is close to the maximal
number of votes among all stars, the star identification is
considered correct. This process is effective in eliminating
erroneous matches.

In the final step of the algorithm the attitude is calculated
using a two step least squares approach. If the associated least
squares error is small enough, the algorithm returns the attitude
and stops. Otherwise the match between the image star which
got the minimal number of votes and its corresponding star in
the catalogue is removed, and the attitude is recalculated. This
process continues until a match is found with a small enough
error or until the number of matched stars becomes less than
three. In that case the algorithm reports a failure.

Typically, the image contains false stars that is, bright spots
which are erroneously considered to be stars and are matched
to stars from the catalogue in the voting stage. Therefore,
the validation step is essential because the least square min-
imization process alone cannot detect erroneous matches and
as a result will yield an erroneous attitude estimation. The
validation step however, allows the algorithm to handle even
a large set of false stars. The algorithm also handles true stars
which are erroneously matched in the voting stage. The latter
happens when the star has only a few close neighbors. The
validation stage is able to detect the false match because all
the matched stars participate in that stage.

There are many possible variations of the algorithm. These
depend on specific camera quality, fine tuning, and accuracy
vs. speed requirements. The basic algorithm did not exploit the
star brightness information because image and catalogue star
brightness values cannot be matched reliably. Still, a rough
match can be made by dividing the brightness values into
several (2-4) brightness groups. Comparing the brightness of
catalogue and image stars can aid the identification process
and remove erroneous matches.

When a star has several identities with the same number of
votes, two or more identities can be tested by the validation
step.

The runtime complexity of the algorithm is quadratic in
the number of possible stars detected n. To speed up the
algorithm, it can be run only on the NN brightest possible
stars detected in the image. NN should be chosen to be the
smallest number that will ensure, with high probability, correct
attitude estimates.

The least squares procedure (Section II-B) can be replaced
by a weighted least squares procedure, with higher weights
assigned to equations involving stars whose centroid has been
estimated more accurately.

To conclude, the proposed algorithm, which is based on
the most simple star structure (i.e., a pair of stars), is able to
recover the attitude efficiently and is robust to false stars and
incorrect matches.

A. The algorithm example

The following short example, whose results are shown in
Table I, demonstrates how the algorithm works.

The input image was generated by the image simulation
procedure from the star catalogue, the camera’s internal cal-
ibration parameters, and its attitude. The resulting image
contains 22 stars. A false star was added to the image at a
random location. The first step of the LIS algorithm is to
search for stars in the image. Only 11 stars are extracted. The
rest are too faint to be detected. The possible image stars are
assigned the identities that received the maximal number of
votes. The identities of the stars and the number of votes are
shown in the second and third rows of the Table I. The false
star is star number 7.

In the validation stage only identified stars participate. A
star is voted for only if the distance between it and another
identified star in the image is close to the distance between
their corresponding stars in the catalogue. The fourth row of
Table I shows the number of correspondences for every star.
The clustering algorithm determines that stars 0,2,3,5 and 10
are correctly identified. These stars support each other, as all
of them received four votes. Stars 1 and 8 also support each
other, but no other star. That is why their identification is
considered incorrect. The false star is also discarded at this
step.

The orientation is estimated from the correctly identified
star positions and their matching positions in the catalogue.

B. Attitude estimation

The attitude estimation process has two steps. The first
step is linear and gives an approximate attitude, which is
later improved by the second, nonlinear stage. The attitude
is represented by a rotation matrix Q between the inertial
coordinate system and the camera coordinate system. Let
(u, v, f) be the coordinates of a star center in the image (where
f is the focal length). The direction of this star is given by
the unit vector

x̄ =

x
y
z

 =
1√

u2 + v2 + f2

u
v
f

 . (3)

The direction of the corresponding star in the catalogue is
similarly given by the unit vector X̄ = (X, Y, Z)T .

Ideally, the rotation matrix Q should satisfy

x̄ = QX̄.

The good (standard) estimate for Q may be obtained by
minimizing the least squares error

N∑
i=1

‖QX̄i − x̄i‖2. (4)

1) The Linear Solution: Equation (4) can be minimized
linearly using quaternions to represent the rotation matrix.
Quaternions are four-dimensional unit vectors q which can
represent three-dimensional rotations Q. As a result, each
match between a star in the image and a star in the catalogue
yields two linear equations in the components of q. Thus two
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Star Num. 0 1 2 3 4 5 6 7 8 9 10
ID 3064 3930 2981 3870 4679 4769 2481 4877 3930 4891 4877

Votes 7 5 6 6 3 5 5 5 5 5 3
Votes2 4 1 4 4 0 4 0 0 1 0 4

TABLE I
THE IDENTITIES, THE NUMBER OF VOTES FOR THE IDENTITY, AND THE NUMBER OF FINAL CORRESPONDENCES FOR THE IDENTIFIED STARS

or more stars are needed to recover the rotation matrix. The
full derivation of this method can be found in [21, Chap 21.3].

This least squares solution is optimal under the assumption
that the errors in all three components of the x̄i’s have the
same distribution. This is obviously not correct in our case,
where the f component is the constant camera focal length
and the other two components are pixel values estimated from
the image. Therefore, we first run the linear least squares
procedure and then use the results as a starting point for the
following iterative optimization procedure, which yields the
optimal solution.

2) The Iterative Procedure: From the previous step we
obtain an estimate for the rotation matrix Q: Q0. Applying
Q0 to the star catalogue we get:

x0

y0

z0

 = Q0 ·

X
Y
Z

 .

This estimate for Q is very close to the correct rotation.
Therefore we can approximate the correction rotation matrix
dQ from (x0, y0, z0) to (x, y, z) by:

dQ =

 1 κ φ
−κ 1 −ω
−φ ω 1

 ,

where ω, φ and κ are the rotation angles around the x, y and
z axes respectively.

This yields the following set of equation is these angles:

x
y
z

 =

 1 κ φ
−κ 1 −ω
−φ ω 1

x0

y0

z0

 .

For the measurements u and v for a star we have

u =
x

z
f = f

x0 + κy0 + φz0

−φx0 + ωy0 + z0

v =
y

z
f = f

−κx0 + y0 − ωz0

−φx0 + ωy0 + z0
.

In order to linearize the equations, we compute all the partial

derivatives
∂u

∂ω
= −f

y0x

z2
≈ f

xy

z2
= −uv

f

∂u

∂φ
=

fz0

z
+

fxx0

z2
= f

z0z + x0x

z2
≈ f

z2 + x2

z2
= f +

u2

f

∂u

∂κ
=

f

z

∂x

∂κ
=

fy0

z
≈ fy

z
= v

∂v

∂ω
= −f

z0z + y0y

z2
≈ −f

z2 + y2

z2
= −(f +

v2

f
)

∂v

∂φ
= −f

yx0

z2
≈ f

yx

z2
=

uv

f

∂v

∂κ
= f

−x0

z
≈ −fx

z
= −u

which are the components of the Jacobian matrix J , where

J =

(
−uv

f f + u2

f v

−(f + v2

f ) uv
f −u

)
.

Thus, for the ith star we have two equations:(
∆ui

∆vi

)
=
(

ui − xi

zi
f

vi − yi

zi
f

)
= J ·

ω
φ
κ

 .

Given two or more stars, an estimate for dQ can be recovered
by minimizing the mean square error of

n∑
i=1

∆u2
i + ∆v2

i .

dQ is then applied to (x0, y0, z0) yielding (x1, y1, z1) and
the process is repeated for the new points. This process is
repeated until it converges. Usually one to three iterations of
this process are needed.

III. TRACKING

Once the Lost-In-Space (LIS) process has obtained an initial
attitude for an image, a (computationally lighter) procedure,
able to run at a higher frame rate may be used to estimate the
attitude for the next images. Given the attitude computed from
the previous image, the approximate positions of the stars in
the new image can be predicted using a Kalman filter of 1st

or 2nd order [22], [23]. The prediction is relatively accurate
if the rotation is small or smooth.

Thus, given an image, we can extract from it the star centers
by searching for star centroids at the approximate positions of
the stars in the image. These stars do not require identification,
as their corresponding catalogue stars are known. Moreover, as
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the approximate positions of the stars are known, fainter stars
can be detected in this step than in the LIS step, which scans
the entire image. Actually the attitude can be calculated using
only the non-linear step of the attitude computation procedure,
as the predicted attitude is a good estimate for the rotation
matrix.

During the tracking process most of the stars persist from
frame to frame. Nonetheless, some stars may enter the image
or leave it. Therefore the star catalogue is scanned at each
frame in order to detect new stars appearing in the image.
This scanning process can be performed over several frames
in order to save running time. In some rare cases the tracking
process fails to recover the attitude. The failure can be due to
incorrect matches or unpredicted motion of the camera. When
this happens the LIS process is applied to the current image.

Whenever the LIS algorithm is run, the Tracking algorithm
is then run with the recovered attitude given as the predicted
attitude. This improves the accuracy of the result because
additional stars are detected during this step. The Tracking
step can be improved by using more sophisticated tracking
algorithms.

IV. IMPLEMENTATION AND RESULTS

In this section we explain the capabilities of our algorithm
and compare it with other methods. We present results for
both simulated and real images. We tested the algorithm in
MATLAB and implemented it in C/C++ in the Windows
environment. Our application is composed of five modules:

• Image Simulation. The initial part of the work was done
on synthetic images. The user can specify the internal
camera parameters and and its attitude and the system
synthesizes an image taken by a camera with these
parameters. It may also synthesize a sequence of images
when it is also given the velocity parameters of the
attitude.

• Lost-in-space. This module runs the LIS algorithm on
both synthetic and real images. Its inputs are the star
catalogue and either the camera internal and external
parameters or an image. Its output is the estimated
rotation matrix and the observed star identities.

• Tracking. The tracking process can run in real time
on a sequence of synthetic or real images. For each
image it returns the estimated rotation matrix and the
star identities.

• Image Grabbing. We implemented a process that grabs
images from a camera connected to the computer and
sends them to the LIS or Tracking module.

• Calibration. In addition to the standard calibration proce-
dure [5], this module calibrates cameras using star images
(see Section IV-B.1).

For simulated images we used cameras similar to those
discussed in [24], to facilitate comparison. The properties
of these cameras are shown in Table II, where Instrumental
Threshold is the intensity of the faintest star simulated and
Position σ is the average single star centroid position accuracy.
The centroid accuracy depends on the signal-to-noise ratio
(SNR), as will be shown in Section IV-A.1, and on the camera

field of view (FOV). In [24] a constant Position σ was used.
We found that using SNR=9 yields the same average centroid
position accuracy as was used there.

Parameters Values
CCD dimension 385× 276[pixels]

FOV1(wide) 20◦ × 15◦

FOV2(narrow) 10.7◦ × 8◦

Bits per pixel 8
Instrumental Threshold 6 magnitude

PSF σ 0.7 pixels ≈ 0.03◦

Position σ1 12 arcsec
Position σ2 6.4 arcsec

SNR 9

TABLE II
CAMERA CONFIGURATIONS

Star Magnitude Range Number Of Stars
< 3 99

3− 4 314
4− 5 1015
5− 6 3136
6− 7 9572
7− 8 27731

TABLE III
NUMBER OF CATALOGUE STARS FOR EACH STAR INTENSITY MAGNITUDE
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Fig. 2. Histogram of number of stars for (a) camera FOV 20◦ × 15◦; (b)
camera FOV 10◦ × 8◦

The star statistics presented below can give the reader
a better understanding of the conditions under which the
algorithm performs. Table III shows the number of stars for
different magnitude ranges.

Figure 2 presents the histogram of the number of stars up to
magnitude 6 (the working magnitude of most cameras) in both
camera configurations for randomized view directions. Note
that there are starless regions in the narrow FOV configuration.
Hence the narrow FOV camera can operate in pre-defined
regions only.

A. Simulation

To test our algorithm’s performance, we ran simulations
using the two camera configurations mentioned earlier. We
analyzed LIS and tracking performance separately. In addition,
we compared our algorithm with those used in previous
research. This was no trivial task because there is no agreed
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standard for measuring star tracker performance. A good sur-
vey on star tracker performance is presented in [25]; however,
the authors do not propose specific performance definitions.
Many authors have referred to different aspects of star tracker
performance, such as speed, accuracy, memory requirements,
and stability. But each of them used a different configuration.
We decided to use the camera configuration (our camera 1)
suggested by [24], because the authors of that paper test
several algorithms, check the influence of false stars, and use
a camera model similar to ours. We will present the following
results:

• Single Star Centroid Estimation. The accuracy of single
star centroid vs. SNR.

• Speed Performance. The running time of the algorithm.
• Star Identification Rate. The fraction and number of

correctly identified stars and misidentified stars.
• False Stars Tolerance. The number of false stars with

which the algorithm can still perform successfully.
• Bore-sight Error. The angle between the original and the

detected camera view axis direction. We do not measure
the roll error (the rotation error around the camera view
axis direction).

• Self-quality Assessment. The ability of the algorithm to
detect its own failures.

• Success Rate. The fraction of successful LIS runs.
1) Centroid Estimation Accuracy: The goal of this pro-

cedure is to detect all star-like objects and estimate their
centroids (exact center locations) with sub-pixel accuracy. For
a satellite-based camera, stars are point sources of light. The
optical defocus causes a star to be smeared over a 3 × 3
pixel neighborhood. The center of this neighborhood is called
the centroid and its shape is called the camera Point Spread
Function (PSF). Any object in the space lying far enough from
the camera may be considered a point source and misclassified
as a star. Recognition of spurious objects is executed in the
later stages of the algorithm.

Optimal centroid estimation is achieved by matching the
camera PSF to the star pixel values. As the PSF is often
assumed to be a Gaussian with a known variance, it has only
one free parameter – the mean value of the centroid (after the
real data PSF variance has been estimated). We compared two
centroid estimation methods:

Center of mass. The simplest method, and the one
that is used in many works [26]. The centroid (cx, cy)
of PSF is defined as the center of mass of the pixels
values in the PSF 3× 3 neighborhood:

cx =
1
N

1∑
x,y=−1

I(x, y)x

cy =
1
N

1∑
x,y=−1

I(x, y)y,

where I(x, y) is the image value at pixel (x, y) and
N is the star norm over the 3 × 3 neighborhood:
N =

∑
x,y I(x, y).

Table method. A star model is simulated on a 3× 3
grid-function F (u, v, x, y) that given the exact star

center (u, v) returns the value of the pixel (x, y).
The star intensity is normalized, x and y are integers
in [−1, 0, 1], and u, v ∈ [−0.5, 0.5]. The centroid
(cx, cy) is found by minimizing

(cx, cy) = arg min
∑
x,y

(F (cx − c0x, cy − c0y,

x− c0x, y − c0y)− I(x, y)/N)2,

where (c0x, c0y) are the coordinates of the central
star pixel. Because of the Gaussian structure, the
minimization can be done independently for each
dimension. The speed is increased by using pre-
stored values of F (u, v, x, y).

We tested star center estimation only for slowly spinning
satellites. When the camera is on a fast spinning satellite,
the image is blurred and star shapes are stretched into long
ellipses. Dealing with this problem is not in the scope of this
paper.

Centroid accuracy influences both LIS and Tracking perfor-
mance. The probability of correct star identification as well
as the overall accuracy of the star tracker depend on it. The
star detection and centroid estimation are the first steps of the
algorithms. We explored two centroid estimation methods: the
simple center of mass method and a PSF table method based
on comparison of normalized image pixel values with the
theoretical pixel values that would be obtained by a noiseless
PSF. The results for the two methods are presented in Figure 3.
The location errors associated with different true star locations
(centroids) were averaged. The centroid x and y coordinates
changed with steps of 0.01 in the interval [−0.5, 0.5]. The
SNR was set by changing the noise level and leaving the
star brightness constant. As expected, the PSF table method is
slightly more accurate, especially for high SNR. However, it
is much slower: 0.002 and 0.05 msec for a single star centroid
on Pentium IV, 1.6GHz for the center of mass and the PSF
table methods respectively.

Fig. 3. Single star center detection accuracy for center of mass and tables
method.

2) Lost-in-space Performance: The LIS space requirements
depend on the size of the catalogue and the maximal distance.
In our experiments we used a catalogue of size 4936, which
contains all stars brighter than magnitude 6. Each entry in
the catalogue contains three values (two for orientation and
one for brightness), requiring 60kB of memory. Each entry in
the distance table contains three values, two identities of stars
and the distance between them. Table IV gives the memory
requirements for the distance table for different values of the
maximal angular distance D (in degrees).
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TABLE IV
MEMORY REQUIREMENTS OF THE LIS ALGORITHM

D Entries Memory
20◦ 408712 3193kB
15◦ 233475 1824kB
10◦ 105417 824kB
5◦ 27184 212kB

Figure 4 shows the time requirements of the LIS algorithm.
The algorithm’s running time depends only on the number of
detected stars. The median runtime for fifty stars is 3.1 msec
and for thirty stars 1.8 msec. The algorithm does not require
all the detected stars in order to work correctly. If necessary,
the runtime can be decreased by applying the algorithm only
to the brightest thirty stars, with near perfect results. All the
stars can then be used in the tracking step to improve accuracy.
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Fig. 4. Algorithm runtime [msec] vs. number of stars in the algorithm for
the wide FOV on a Pentium IV, 1.6 GHz, 512 MB, Windows XP
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Fig. 5. Histogram of the fraction of correctly identified stars for wide FOV
camera. (a) Simple LIS, and (b) LIS with second (tracking-like) iteration.

(a) (b)
Fig. 6. Histogram of the bore-sight error for wide FOV camera. (a) Simple
LIS, (b) LIS with second (tracking-like) iteration.

In order to test the quality of the algorithm 10, 000 random
simulations were run. Figure 5 shows the histogram of the
fraction of correctly identified stars for the wide FOV camera
for simple LIS (1st step) and LIS with the additional, tracking-
like iteration (2nd step). Table V presents various statistical

measurements of the data for the two steps. As can be seen,
the second step allows us to fully exploit the data in the image.
Stars appearing in the image were not identified only when
they were very weak or very strong (causing overflow). Note
that all stars used in the algorithm were correctly identified.
This fact permits us to effectively run the least mean squares
(LMS) procedure.

Parameter 1st Step 2nd Step
mean 0.75 0.94
min 0.14 0.72
max 1 1
std 0.11 0.04

TABLE V
STATISTICAL INFORMATION ON THE FRACTION OF CORRECTLY

IDENTIFIED STARS FOR BOTH STEPS OF THE ALGORITHM

Figure 6 presents the histogram of the bore-sight error for
the first and second LIS steps. Note that the second step
improves the accuracy of the algorithm, reducing the error
by a factor of at least two.

Tables VI and VII present the performance summary for
both the wide and narrow cameras. Results for the two steps
of the LIS are shown. The relationship between the single
star centroid estimation accuracy, the number of correctly
identified stars, and the expected overall accuracy is the
accuracy of the least mean square solution:

ExpectedMSE =
single member accuracy√

Number of equations - Dimension
. (5)

Figure 7 shows the dependency of the error on the number
of correctly identified stars. The test consisted of 10,000 sim-
ulation runs. The theoretical and simulation results coincide,
except for cases of images with too many stars. This occurs
only in a few images, and there is not enough data to obtain
reliable statistics.

0 20 40 60 80 100
0

2

4

6

8

10

12
Detection errors vs. the number of correctly identified stars

Correctly identified stars

E
rr

or
 [a

rc
se

c]

1/sqrt(number of stars)

Experiment results

Fig. 7. Detection error vs. the number of identified stars

The simulation bore-sight accuracy is slightly better than
the theoretical estimate due to the use of weighted equations.
The theoretical model assumes that every star has the same
centroid accuracy, when in fact brighter stars are estimated
more precisely.

According to Figure VII, the overall bore-sight accuracy
of the narrow camera is not less than the wide camera. The
decrease in the number of stars is compensated by better single
star accuracy. However there are cases where there are not
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Parameter 1st Step 2nd Step
Average correctly identified stars 27 34
Single star centroid accuracy [”] 12 12

Theoretical bore-sight accuracy [”] 12√
27−3

= 2.4 12√
34−3

= 2.1

Simulation bore-sight accuracy [”] 2.35 2.12
Success Rate 100% 100%
Self Quality 100% 100%

TABLE VI
WIDE CAMERA PERFORMANCE RESULTS

Parameter 1st Step 2nd Step
Average correctly identified stars 8.1 10.1
Single star centroid accuracy [”] 6.4 6.4

Theoretical bore-sight accuracy [”] 6.4√
8.1−3

= 2.8 6.4√
10.1−3

= 2.4

Simulation bore-sight accuracy [”] 2.69 2.32
Success Rate 86.7% 86.7%
Self Quality 99.86% 99.86%

TABLE VII
NARROW CAMERA PERFORMANCE RESULTS

enough stars in the image, and this causes the algorithm to
fail. This problem must be dealt with either by using more
than one camera or increasing the FOV.

3) Self-quality Assessment: An important feature of a star
tracker is its ability to detect when its result is unreliable.
We found that a good indicator of reliability is the number
of matched stars: There were no failures in images containing
more than 10 stars which are 38% of the 10,000 images used
in the simulation of the narrow FOV (Table VII) and 100% of
the images used in the simulation of the wide FOV (Table VI).
The algorithm did not recognize 14 failures but these were all
cases of narrow FOV images which contained a small number
of stars.

Our algorithm proved to be extremely insensitive to false
stars. The wide FOV camera configuration was able to work
successfully in some cases even with 100 false and only 15
true stars! False stars begin to affect the results only when
their number was 3 times larger than the number of true stars.

4) Tracker: As the LIS stage achieved perfect results for
the wide FOV, it is more interesting to show results for the
whole system, LIS and tracker, with the narrow FOV. When
the tracker estimates the orientation correctly, its results are as
accurate as the second step of the LIS, as it is a tracking step.
The time required by the tracker is 30% of the time required
by the LIS. This is slightly more costly than the second step of
the LIS algorithm (see Section IV-A.2) because of the Kalman
filter processing [22], [23].

Figure 8 presents the results of an experiment in which
we used the following motion model to simulate the camera’s
motion: the camera rotates with a constant angular velocity for
the first 50 frames. The angular velocity is then changed to a
different constant. The velocities of the roll, declination and
right ascension were [0.0050 0.0050 -0.0071] rad/frame and
[0.0328 0.0487 0.0125] rad/frame respectively. The random
error in angular velocity is 0.0005 rad/frame in each direction.
The real values are shown as lines on the uppermost three
graphs and the values estimated by the algorithm are shown as
stars. The fourth plot is the number of stars in the image. The

Fig. 8. The various components of the tracking algorithm results as functions
of the image frame number. The uppermost three graphs show the value of the
camera angular velocity with real values shown by blue lines and estimated
values - by red stars. The fourth plot is the number of stars in the image.
The fifth plot has values “first success” when the Tracker succeeds, “second
success” when it fails, recognizes failure, runs the LIS and succeeds; and
“failure” when it fails, recognizes failure, runs the LIS and does not succeed.
The sixth plot is the error between real and predicted location in the Kalman
filter.

fifth plot has values “First success” when the Tracker succeeds,
“Second success” when it fails, recognizes failure, runs the LIS
and succeeds; and “Failure” when it fails, recognizes failure,
runs the LIS and does not succeed. We noted that it always
recognized failures. The sixth plot is the error between real
and predicted location in the Kalman filter. In the first three
frames the LIS procedure has to be run in order to initialize
the Kalman filter. After that, everything works excellently until
step 50 when the velocity changes. Again, three frames are
required to initialize the Kalman filter. At step 50, the sudden
velocity change causes a sudden increase in the prediction
error. The Kalman filter assumes constant velocity and fails
in such cases. The error decreases with time. LIS fails twice,
with 5 and 8 stars in the image. Note that the Tracker’s results
are better when there are more stars.

In conclusion, this experiment demonstrates the ability of
the entire algorithm to produce accurate results over time, use
fast tracking most of the time, and detect failures.

5) Comparison with Other Methods: We compared our
results with the methods described in [24]. Camera config-
uration 1 was used for this purpose because it has the same
average centroid accuracy and probability of detection as in
[24]. Our method obtained better results: 98.1% of the stars
were correctly identified as opposed to 92.8% in [24]. Because
the attitude accuracy depends on the number of correctly
identified stars (see Figure 7), our overall attitude estimation
accuracy is slightly higher. [24] demonstrates that the presence
of false stars has a strong bearing on the success rate and on
the fraction of correctly identified stars. With 10 false stars,
the fraction of correctly identified stars drops to 50%. In our
algorithm, the presence of 10 false stars did not effect the
number of correctly identified stars. Only when the number of
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false stars was 3 times larger than the number of true stars, did
the percentage of correctly identified stars start to decrease.

When comparing our method to the method developed by
van Bezooijen [19], both methods have the same first step. The
difference is in how the putative correct matches are chosen
and verified. In this work, a group of matches which supports
a kernel star is chosen together, whereas in our algorithm for
each image star the catalogue star with the maximal number
of votes is chosen. As this match has a higher probability to
be correct our method is more robust. Moreover, when the
maximal angular distance between stars D is smaller than the
size of the image (reducing considerably the running time)
then choosing the group with the maximal number of stars
is not necessarily the only good group and therefore quite a
few of the correct matches whose distance from the kernel
star is larger than D will not belong to the match group and
then will not be chosen. Our verification stage is also more
robust because it is global whereas van Bezooijen tries to
detect incorrect matches in each match group.

The method suggested by Lee [20] is similar to van Be-
zooijen’s method. There the matching between image and
catalogue stars is repeated several times where in each iteration
image stars which do not receive a high enough score are
discarded and not used in the subsequent steps. This method
is slower than ours as the matching results of the previous step
are discarded and recalculated whereas we use them to verify
their correctness. In addition, removing image stars which
might be correct can reduce the score of other image stars and
might cause them also to be discarded. To summarize, even
though there exist methods which also used pairs of stars, the
methods we use to choose the matches and to remove incorrect
matches are more robust enabling our method to deal better
with false stars.

In conclusion, in comparison to all previously published
methods, our method is as efficient as the fastest methods and
more robust to false stars as was shown in the experiments.

B. Real images

In addition to synthetic images, we tested the algorithm on
real images as well. We used a consumer off-the-shelf (good
quality) camera: a Nikon D100 (CCD size is 3000 × 2000
pixels) with an AF 50mm f/1.4D lens yielding a 38◦ × 26◦

FOV. We took pictures near an urban environment, which
yields some light pollution. We did not perform any extensive
fine tuning of the algorithm for this specific camera. Our task
was only to test the algorithm on real images. Conditions
in space would actually be better. There we would expect
less light pollution, no atmospheric effects, and better lenses,
yielding more accurate single star direction estimations.

1) Calibration: Camera calibration was performed in two
steps. The first step was to use the standard calibration toolbox
described in [5]. It is relatively fast and simple, and can
serve as a good initialization point for the finer calibration
that follows. The output of the standard calibration was the
camera principle point, focal length, and radial and tangential
distortions. As our algorithm requires sub-pixel accuracy of
star center estimation, very high calibration is required as well.

Fig. 9. Image Distortions. The shown values are five times larger than the
real ones. Arrows represent the distortions and the circles show distortion
size.

Experience showed that the camera distortion model estimated
by the toolbox does not conform precisely to actual camera
distortion. Therefore, we assumed a more general model:
the approximation of the distortion with a second degree
polynomial. We used star position, rather than a chessboard, as
a reference. A similar approach was employed in [27], but with
a different type of function for estimating the distortion. Our
calibration procedure estimates the lens distortion as follows.
First it takes N images (N ≈ 500) of the sky. Each image
is divided into cells of 30× 20 pixels. N is chosen such that
every cell has at least one star. The error function is defined
as follows:

F1 =
1

SN

∑
ij,i 6=j

(CDij − angK(x′i + ∆x′i, x
′
j + ∆x′j))

2,

where SN is the number of stars; CDij is the angular distance
between 3D normalized catalogue vectors of stars i and j; x′i
is the position of star i in the image; ∆x′i is the position
distortion vector of star i; ang(x, y) is the angular distance
between normalized vectors from camera center to pixels x
and y; K is the camera calibration matrix, which influences
the ang calculation.

For every image, the following iterative optimization pro-
cedure is executed. At first a constant calibration matrix is
assumed and F1 minimized according to distortion vectors
∆x′i and ∆x′i. Next, constant distortion vectors are assumed
and the optimal calibration matrix K is searched for. The
process is repeated until convergence. The initialization values
are zero for distortion vectors, and are equal to the output of
the toolbox for the calibration matrix. Distortion vectors from
all images are approximated with a second degree polynomial
in x and y, and calibration matrices are averaged. The image
distortion map is shown in Figure 9.

2) Experiment: Once the camera was calibrated, the star
locations were extracted and the LIS algorithm run. To reduce
the effects of lens distortion, only the central 28◦×20◦ region
of the image was used. The results were obtained with ≈ 500
images of the sky taken in one night. 90% of the images
were chosen at random and used for calibration, and the
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(a) (b)

(c) (d)
Fig. 10. Examples of true night sky image with inverted colors. (a) is the full
night sky image. The rectangle marked in (a) is zoomed-in (b). The circle in
(b) is a true star and is shown in (c). The rectangle in (b) is a false star/image
noise and is shown in (d).

remaining 10% for the estimation of the camera orientation
error. Catalogue stars of magnitude as weak as 6.5 were used.
Image thresholds were updated accordingly.

Figure 10 shows a real night sky image with inverted
colors (white to black). The colors are inverted to make the
image more comprehensible. Figure 10(a) is the full image. A
zoomed-in part of Figure 10(a) is shown in Figure 10(b). The
relatively high noise values appear because the image was shot
near an urban environment. Two black spots from Figure 10(b)
are enlarged in Figure 10(c) and Figure 10(d). Figure 10(d)
(marked by a rectangle in Figure 10(b)) is a false star (or noise
artifact), while Figure 10(c) is a true star . The false object
is obviously distinguishable by its PSF – its width is smaller
than the width of the PSF of a star.

As the correct orientation was not known, the algorithm
results were tested by the reprojection of the catalogue stars on
the image. This was done using the estimated orientation and
measuring the distances between measured and reprojected
locations. Assuming that the algorithm does not have bias
errors, the MSE bore-sight error can be estimated applying
Equation 5. Table VIII summarizes the results of LIS on real
images. The accuracy is not as good as in the simulations, but
still acceptable for ground-based measurements. This is due
to lens distortions and atmospheric disturbances reducing the
accuracy of the results. There were no cases of LIS failure.

V. CONCLUSIONS

We presented a new method for recovering the attitude of
a satellite-based camera. The algorithm was tested on both
simulated and real images. The experiments show that our
method is as accurate and more robust than other methods. It
is almost completely insensitive to false stars (other satellites,
meteorite showers, and so on). It is at least as fast as other
algorithms, and could run in real time even at video rate. The

Parameter Value
Fraction of Identified Stars 0.55

Mean Number of Identified Stars 28
Single Star Accuracy [arcsec] 52

Overall Estimated Accuracy [arcsec] 10.4

TABLE VIII
SUMMARY OF LIS RESULTS ON REAL IMAGES

algorithm can be optimized for specific camera configurations,
further improving the results.

There are many topics open for future research. First,
tracking was not deeply investigated and tested on real images.
Various tracking methods can be applied to obtain better re-
sults. Another future direction is to relinquish our assumption
of slow rotation. Initially, the satellite can rotate very fast,
causing the image to blur. In this case the stars are weaker
and exact star centers are harder to detect. Specific algorithms
have to be developed to deal with this case. Finally, the real
challenge is to test this algorithm in a real satellite setting.
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