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Abstract— We present a method for the recovery of
partially occluded 3D geometric primitives from range
images which might also include non-primitive objects. The
method uses a technique for estimating the principal curva-
tures and Darboux frame from range images. After estimat-
ing the principal curvatures and the Darboux frames from
the entire scene, a search for the known patterns of these
features in geometric primitives, is performed. If a specific
pattern is identified then the presence of the corresponding
primitive is confirmed using these local features. The fea-
tures are also used to recover the primitive’s characteristics.
The suggested application is very efficient since it combines
the segmentation, classification and fitting processes, which
are part of any recovery process, in a single process, which
advances monotonously through the recovery procedure.
We view the problem as a robust statistics problem and
we therefore use techniques from that field. A mean shift
based algorithm is used for robust estimation of shape
parameters, such as recognizing which types of shapes in
the scene exist and after that full recovery of planes, spheres
and cylinders. A RANSAC based algorithm is used for
robust model estimation for the more complex primitives,
such as cones and tori. As a result of these algorithms
a set of proposed primitives is found. This set contains
superfluous models which can not be detected at this stage.
To deal with this problem a minimum description length
method has been developed which selects a subset of models
which best describes the scene. The method has been tested
on series of real complex cluttered scenes, yielding accurate
and robust recoveries of primitives.

keywords: 3D object recognition, Range Data, Mean
Shift, RANSAC, pbM Estimator, Principal Curva-
tures, Darboux Frame

I. INTRODUCTION AND RELATED WORK

Three major processes are usually involved in tasks
of primitive recovery from range images of a complex

scene: segmentation, classification and fitting. During the
segmentation process an attempt to associate between a
set of scene points and a common primitive or a patch of
a primitive’s surface is made. The classification process
attempts to classify the primitive as a specific type of
primitive. To complete the recovery, a fitting process
attempts to fit each set of points within its type of
primitive, as classified by the previous process, a unique
primitive in a formulated representation. These three
processes interact among themselves back and forth,
iteratively. Recovery algorithms in 3D scenes differ
by the methods they use for segmentation and fitting,
and by the set of objects used for the classification.
Our suggested recovery scheme is much more efficient
since all three processes advance simultaneously and
monotonously within a single process.

Two main approaches appear in the literature in regard
to the segmentation of range images, the edge-based and
face-based approach. The edge-based approach attempts
to bound patches of surfaces, by revealing edge curves. It
assumes that edge curves (moderate edges as well) are
the borders between different types of surfaces which
therefore have to be segmented separately. Such an
approach is used in [29], [23], [18]. On the other hand,
the face-based approach attempts to group scene points
which have special common features that indicate that
the points belong to a common surface or object [2], [3],
[12], [35]. A survey comparing many of these methods
is presented in [21]. The segmentation component of
our combined scheme is more related to the face-based
approach but while all previous face-based methods start
with seed regions that grow in an iterative procedure of
hypotheses and validations, our approach segments the
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scene points simultaneously. We do not even require that
the patches of a single object be connected to each other.

Fitting primitives to segmented areas has nearly al-
ways been based on least-squares fitting. Least-squares
fitting is usually tailored to the specific type of sur-
face being fit. Examples for that can be found in
[22], [25], [34], [27]. The least-squares fitting proce-
dure is performed iteratively and is strongly tied with
the segmentation. Each proposed segmentation is val-
idated using a least-squares fitting. When validating
an object, methods have to be developed to determine
the most probable model [9]. If the validation fails,
the segmentation is modified accordingly and another
validation is performed. Therefore, whatever type of
fitting is made, bi-quadratic, B-spline or other least-
squares fitting, these methods impose an inconvenient
procedure. Least-squares fittings are also very sensitive
to outliers and to noise in the range data. Our scheme for
primitive recovery has an advantage in regard to these
two difficulties described above, since it only uses least
squares fitting as a last step after the points belonging
to the primitive have been determined by the algorithm.

Our approach for primitive recovery is based on
estimating the principal curvatures and the Darboux
frame (an orthogonal triplet of vectors consisting of the
surface’s normal and the two principal directions at a
surface’s point) for each range point. We use the method
developed in [19] to estimate these values from range
data. Curvatures were also used in [32] for range data
segmentation. Since the characteristics of the principal
curvatures of geometric primitives are known for all
types of primitives and are distinguishable among the
different types, primary segmentation and classification
can be made by the principal curvature values alone. But
furthermore, from the values of the principal curvatures,
associated with the segmented scene points, primary
assumptions regarding the fitting is already being made
as well. At this stage we use the local data stored in
the Darboux frame of each scene point to refine the
segmentation and classification and at the same time
complete the fitting.

We consider this problem as a robust statistics task. In
this framework, the points are divided into inliers which
fit the model and outliers which do not. In our case the
model is a geometric primitive and the outliers are all
the points which do not belong to the primitive being
recognized.

In our algorithm we use two robust statistics tools. The
first one is mean shift [8], [13], [36]. This tool enables
us to recover the feature values, which are the modes
of their distributions, without modeling this distribution

(it does not need to be a Gaussian distribution) and it
also deals very well with outliers in contrast with least-
squares methods. A statistical analysis of a mean shift
based method for plane recovery was presented in [28].
This method is used to recover the simpler primitives.
This method is fast and simple but it does not scale up
for more complex primitives.

For the more complex primitives the local features
extracted for a single point are not sufficient to esti-
mate all the parameters of the primitive. Thus, a more
elaborate algorithm from the RANSAC [17] family of
algorithms has been developed. This algorithm is based
on the modified pbM method [5], [26], [6]. This method
robustly estimates all the parameters of the primitive in
one step. A RANSAC based algorithm which uses only
points and normals to the surface for the recovery of
simple primitives using Gauss maps was presented in [4].

The only problem with this stage is that quite a few
superfluous models are recovered by it. Therefore in
the final stage a method for removing these models is
described. The method is based on the concept that the
goal is to find the minimal number of models which best
describe the point set. The final result of the algorithm is
a set of primitives and for each primitive a set of points
associated with it.

Once an approximate model of the primitive has been
recovered the outlier points are eliminated. Only then
can a standard least squares optimization procedure be
applied to the inliers to generate a more accurate model.

We tested our method on real scenes which contain
different types of primitives, in a variety of sizes and
orientations, while some of them were partially occluded.
The application proved to be very robust and accurate
in its recoveries, even when clutter was added to the
scene. Almost no false recovery occurred and as long as
enough sampled scene points belong to a primitive, it
was recovered quite accurately.

The paper continues as follows. In Section II we
review several robust statistics methods that will be
used in our recovery algorithm. Section III gives a short
description of the geometric and differential properties
of the geometric primitives recovered by our system.
A general overview of our recovery system is given
in Section IV and the details of the mean shift based
algorithm and the RANSAC based algorithm are given
in Sections V and VI respectively. The final classification
stage which removes the superfluous models is described
in Section VII. Representative examples of our tests are
presented in Section VIII. We end with Section IX which
summarizes our conclusions from this work.
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II. ROBUST METHODS

We regard the problem of recovering geometric prim-
itives from a scene consisting of several partially oc-
cluded primitives and non-primitive objects as a task
which requires tools from the field of robust statistics. In
this framework a set of points is given to the program.
Each point is either an inlier or an outlier. The inliers can
be described as points belonging to a model corrupted
by noise and the outliers can not be described this way.
The task is to separate the inliers from the outliers and
to estimate the model.

In our case the models are simply the geometric
primitives described by a small number of parameters,
the inliers are range points measured on the surface of
the geometric primitive and the outliers are the rest of the
points. In a complex scene the role of inlier and outlier
changes from primitive to primitive. The final goal is to
recover the model parameters for each primitive and find
the set of points belonging to it.

For this reason we turn to methods from this field. The
three methods that will now be reviewed were developed
for computer vision applications but they are general
methods and can be used for solving problems in many
different fields.

A. Mean Shift

Mean shift[8], [13], [36] is a technique for finding
modes of empirical distributions defined by a set of n
points xi, 1 ≤ i ≤ n in Rd. This technique has several
applications. One of the major applications is to estimate
robustly parameters from the points. The assumption is
that the inliers are noisy measurements (or a result of a
computation from noisy measurements) of a parameter
θ ∈ Rd and the outliers are not. Thus, looking at the set
of points as originating from an empirical distribution,
this distribution will have a mode close to θ.

Mean shift is a hill climbing technique to the nearest
stationary point of the density, i.e., a point in which
the density gradient vanishes. The initial position of the
kernel, the starting point of the procedure is chosen as
one of the data points xi. The points of convergence of
the iterative procedure which represent the clusters are
the modes (local maxima) of the density.

The classic method for performing this task is the
Hough Transform. There, the parameter space is tesse-
lated into cells, the frequency of parameter values in
each cell is computed. The cell with the largest number
of votes is chosen. There are several major drawbacks of
this method compared to mean shift. First, the accuracy
of the estimated parameter is limited by the size of the

cell and all that can be said is that the parameter lies
somewhere within the cell. Second, the tessellation may
cause aliasing. For example when the mode lies close
to the boundary of a cell the votes for the mode will
be distributed between several cells and the mode might
not be detected. We conclude therefore that mean shift
is the preferred method for robust parameter estimation.

B. RANSAC

RANdom SAmple Consensus (RANSAC) [17], [20] is
a robust method for model estimation. This is a general
method which we will now illustrate with a simple
example. Consider a set of points in the plane which
are divided into points lying close to a line (the inliers)
and many other points at random positions. The task of
the RANSAC algorithm is to estimate the parameters of
the line (the model) and separate the inliers from the
outliers.

At each iteration of the procedure a pair of points
is randomly selected and the equation of the line going
through them is computed. Then the quality of the line is
estimated by the number of points lying within distance
dist (the scale parameter) from the line. This procedure
is repeated a number of times and the line for which
the largest number of points “voted” for is selected. In
the last step of the algorithm a more accurate estimate
of the line is computed using all the points which are
suspected to be on the line.

The number of iterations, N , that ensures with prob-
ability, p, that at least one of the random samples of s
points (two in this example) is free of outliers is

N =
log(1− p)

log(1− (1− ε)s)
(1)

where ε is the probability that a selected data point is an
outlier. Thus, the fraction of outliers has a major effect
on the runtime of the algorithm.

In a variant of the RANSAC method known as
PROgressive SAmple Consensus (PROSAC) [10] the
algorithm exploits the linear ordering defined on the
set of correspondences by a similarity function used
in establishing tentative correspondences and uses it to
perform a non-uniform sampling in the RANSAC pro-
cess speeding it up. The method of maximum likelihood
estimation by sampling consensus (MLESAC) [31] is
an improvement of RANSAC. Instead of counting the
number of matches agreeing with the model, evaluates
the likelihood of the hypothesis representing the error
distribution as a mixture model of a Gaussian distribution
for inliers and a uniform distribution for outliers.
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In our algorithm we make use the LO-RANSAC
method [11]. During the iterations of the algorithm,
whenever a new best result is found an inner iteration
loop is performed. In these iterations more than two
points are selected in order to yield a more accurate
estimate for the line. The points selected for generating
the line are chosen only from the suspected inliers. This
modification speeds up the algorithm and yields more
accurate results.

This general method has been applied to many other
types of models. This is done by setting the minimal
number of points needed to estimate the model and by
defining a distance function from a point to a suggested
model.

C. Projection Pursuit Based M-Estimator(pbM)

The pbM [5] and its variant the modified pbM [26],
[6] are algorithms from the RANSAC family. A similar
method was suggested independently in [33]. We will
give here a short review of the modified pbM method.

Consider the problem of estimating a hyperplane [θ, α]
in Rd such that a point x lying on the hyperplane satisfies

xT θ − α = 0,

where θ is the normal and α is the distance of the
hyperplane from the origin. The RANSAC algorithm
can be easily applied to solve this problem. However, in
order for this algorithm to work well the scale parameter
dist (points which lie at distance less than dist from the
hyperplane are considered inliers) has to be supplied by
the user. This causes many practical problems because
the optimal value of dist changes considerably from run
to run of the algorithm.

The modified pbM algorithm therefore uses a different
function to compute a score for the proposed model.
At each iteration of the RANSAC process a model
is computed from s = d points. Disregarding α the
empirical distribution fθ of {xT

i θ}, 1 ≤ i ≤ n is
computed using kernel smoothing. For a correct θ the
mode of this distribution should be close to the correct
α which is more accurate than the value of α computed
only from the s points. Moreover, the closer θ is to the
correct normal the higher f(α) will be.

Thus, for a given θ

αθ = arg max
α

fθ(α)

and the score of θ is

max
α

fθ(α) = fθ(αθ).

Practically, αθ is found by a uniform scan of the data
and a more dense scan around the maximal value found
in the uniform scan. A bandwidth parameter h has to
be given in order to perform the kernel smoothing. In
the pbM algorithm the value of h is computed from the
data set {xT

i θ}, 1 ≤ i ≤ n using a robust technique.
This value changes for each value of θ and is therefore
denoted hθ.

In the final step of the algorithm the inliers are
separated from the outliers by studying fθ and finding
two local minima one on each side of αθ. All points
with values between these two minima are considered
inliers. This adaptive method is opposed to the standard
RANSAC technique which decides that all points whose
distance from the model is less than the user supplied
dist are considered inliers.

III. CURVATURES OF GEOMETRIC PRIMITIVES

In a previous work we developed two algorithms to
estimate the local differential properties of a point from
range measurements of the points and its neighbors [19].
These are modifications of two previously published
algorithms, originally suggested by Taubin [30] and
Chen and Schmitt [7].

Using this method (or other methods) at each point
the following parameters are estimated.
• P : the 3D point.
• N : the normal to the surface at the point.
• κ1 and κ2: the maximal and minimal principal

curvatures.
• T1 and T2: their corresponding principal directions.

The orthogonal vector triplet N, T1, and T2 are known
as the Darboux frame.

Usually the estimate of the principal curvatures and
directions will be less accurate than the point and the
normal because they involve computing second order
derivatives whose accuracy is reduced due to noise. In
this paper we will be using these local features to rec-
ognize and estimate the parameters of several geometric
primitives.

We will now describe a method to display the principal
curvatures from an entire object or scene, and review the
characteristics of principal curvatures and directions for
several geometric primitives.

Let us assume that we gather the principal curvatures
from a finite number of surface points. We can describe
all these values within a two dimensional and discrete
histogram in which one axis represents the minimal
principal curvature (in this work we use the vertical
axis) and the other axis represents the maximal principal
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curvature. The histogram value at a specific location
reflects the amount of minimal vs. maximal principal
curvature values found in the data. The histogram can
also be displayed as a gray-level image. Thus, for every
object or surface an image of its principal curvatures can
be generated. This image is invariant to rigid transfor-
mations, as long as the same portion of the surface is
analyzed, but it can be altered due to partial occlusion
of the object.

A. Principal Curvature Histograms of Primitives

Exploring the curvature histogram for scene objects
can help to perform an initial segmentation for objects
types. We will now present a short review of the principal
curvature histograms of several geometric primitives.

Planes: In the trivial case of planes, all directional
curvatures equal zero, thus for each point on a plane
κ1 = κ2 = 0. The principal directions in planes are
therefore undefined. All planes have a common gray
level image of their principal curvatures - one bright
point at the center of the image (Figure 1(b)).

Spheres: For a sphere, the absolute value of each
principle curvature is the inverse of its radius. The sign
of the curvatures is negative due to our definition of the
orientation of the normals. The principal directions are
undefined. The curvatures histogram is one bright point
on the negative side of the main diagonal at a distance of
the inverse of the radius of the sphere from both negative
axes (Figure 1(b)).

Cylinders: The cylinder’s bases are considered as
planes. As for the rest of the cylinder’s points, they
all share the same values for the minimal and maximal
principal curvatures. The maximal principal curvature,

T1
T2

N

P

{|k2|
-1

(a) (b)

Fig. 1. (a) Cylinder - principal curvatures and Darboux frame;
(b) Principal curvature typical histogram: 1 - plane, 2 - sphere,
3 - cylinder.

κ1 = 0, and its related tangent direction, T1 is aligned

with the main axis of the cylinder. The minimal principal
curvature, κ2 = −1/R, where R is the cylinder’s radius.
The direction related to the minimal principal curvature,
T2, is the tangent to the circular normal section at P .
The principal curvatures histogram is one bright point
on the negative vertical axis at a distance of 1/R from
the origin (Figure 1).

Cones: All points lying on a cone (except for its apex
and base) share the same maximal principal curvature -
κ1 = 0. T1 always points from P to the apex (Figure
2). T2, is the tangent to the elliptical normal section
contained in the plane which is tilted by the half opening
angle of the cone, α, relative to the plane containing the
circular cross section that passes through P . The minimal
principal curvature at point P is given by (−r−1 ·cos α),
where r is the radius at point P .

N

P

T
1

T
2

á

á

r

(a) (b)

Fig. 2. Cone: (a) Darboux frame; (b) Typical histogram of
principal curvatures.

The histogram of the principal curvatures is theo-
retically a half infinite straight line along the negative
vertical axis which starts at (0,−R−1 · cos α) where R
is the radius of the base. Practically, if we look at a
finite number of data points then the histogram is a finite
straight line from (0,−R−1 · cosα) to (0,−R̂−1 · cos α)
(Figure 2) where R̂ is the cone’s radius at the closest
analyzed point to the cone’s apex.

Tori: For all points on a torus, the minimal principal
curvature equals −r−1 where r is the minor radius of
the torus. The minimal principal direction at point P
is the torus tangent at P that is also contained in the
plane which is perpendicular to the center circle of the
torus (Figure 3(a)). The maximal principal curvature at
P varies from (R− r)−1 to −(R+ r)−1 where R is the
major radius of the torus. The corresponding principal
direction is the radial tangent. Analytically, the principal
curvatures are:

κ1 = − cos(α)
R+r cos(α) κ2 = − 1

r
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(a) (b)

Fig. 3. Torus: (a) Darboux frame; (b) Typical histogram of
principal curvatures.

The principal curvature histogram is a horizontal straight
line from (−(R + r)−1, −r−1) to ((R − r)−1, −r−1)
crossing the negative vertical axis at (0,−r−1) (Figure
3(b)).

IV. THE RECOVERY STRATEGY

As described in Section III, every type of primitive
has its unique “signature” in the principal curvatures
histogram of the entire scene. For most types of prim-
itives there is even a different signature for primitives
of different dimensions within the same type. All parts
of the geometric primitive have the same signature as
the entire primitive. Therefore, it is possible to discover
the presence and characteristics of a specific geometric
primitive by analyzing the curvatures histogram of the
entire scene, even if the object is partially occluded.
This stage of the process, in which we examine the
principal curvatures histogram, will be termed as the
first stage of the recovery process. At the end of the
first stage, hypotheses for the presence of specific types
of primitives, or even for specific primitives, already
emerge.

The second stage of the recovery process involves the
Darboux frames which were extracted from the scene.
For the second stage we have developed two different
types of algorithms for primitive recovery. One for the
simpler objects (planes, spheres and cylinders) and the
other for the more complex primitives (cones and tori).
A method of the second type has also been developed
for the simpler types.

The main difference between the two types of prim-
itives which warrants two different types of algorithms
is that when given a point and its extracted parameters
belonging to a simple primitive, all the parameters of
the primitive can be extracted. The extracted values are
very noisy but using mean shift the parameters of the

primitive can be extracted and the inliers separated from
the outliers.

This is not the case for cones and tori. Here more
than one point is needed to estimate the shape of the
object and therefore the mean shift method can not be
applied in a straight forward manner. Instead, we use
a modification to the RANSAC/pbM method. There a
small set of randomly selected points is used to estimate
most of the shape parameters of the object and the value
of the last parameter of the shape is recovered using the
distance value which yields the maximal density.

In the next two sections we will describe the specific
methods for primitive recovery.

V. MEAN SHIFT BASED PRIMITIVE RECOVERY

We begin with the estimations of normals, principal
curvatures and principal directions for each point in the
scene as explained in [19]. The recovery procedure is
performed by a quick search for peaks in n dimensional
(nD) histograms of the features and/or of their func-
tions. The first stage involves only the 2D histogram
of the principal curvatures and the second stage uses
histograms of higher dimensions.

The peak extraction procedure is straight forward. At
first the multidimensional histogram is searched for cells
with a large number of votes and then mean shift is
started from points within those cells. The histogram is
only used to speed up the process and is not an essential
part of mean shift.

We will now elaborate on the specific methods devel-
oped for the simple primitives: the planes, the spheres
and the cylinders.

A. Planes

A peak in the 2D curvatures histograms at a point
where κ1 = κ2 = 0 indicates one or more planar
elements. Let N · P + D = 0 be the equation of the
plane where N is the plane’s normal, P is a point on the
plane and D a scalar. All points on a specific plane share
the same surface normal. Another common feature is
D = −N ·P . Now, if a planar element is indeed present
in the analyzed scene there must be a set of scene points
which share the same values for N and for −N ·P . We
therefore expect to find a local peak in the histogram of
N and −N ·P . When we locate a local peak we actually
get a confirmation for the presence of a planar element
and also reveal its parameters according to the specific
location of the local peak. Thus by locating one or more
local peaks we can separate between different planes
and find for each one of them its parameters. Figure 5
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demonstrates segmentations initiated from a local peak
located at the center of a curvatures histogram of the
real scene presented in Figure 4. Note that many points
which lie on planes, as well as some points that do not
are included within the segmentation at the end of the
first stage. However, at the end of the second stage only
planar points are segmented as planes. Although it does
not affect the recovery, in some planes the segmentation
covers less of the original plane’s area due to higher level
of imaging noise resulting in less accurate estimations of
curvatures. Also note that one local peak of the first stage
is refined into four distinct local peaks at the second
stage, yielding four different planes.

(a) (b)

Fig. 4. Real scene of partially occluded primitives and free-
form objects: (a) Range image; (b) Local peaks at the end
of the first stage illustrated upon the center of the principal
curvatures histogram.

B. Spheres

Spherical elements appear in the curvatures histogram
as peaks along the main diagonal where κ1 = κ2 6= 0.
Each peak represents one or more spherical elements
of a specific radius and therefore it is more efficient to
analyze each peak separately. A peak at (κ, κ) suggests
that one or more spherical element of radius |κ−1| exists
in the scene. We can recover their characteristics and
distinguish between them by recovering their centers.
For every point P lying on a sphere, the sphere’s center

N

P

C

NK
-1

Fig. 6. The common features in the sphere case

is located at a distance of the radius, i.e. |κ−1|, in the
direction opposite to the normal N at P (Figure 6). Thus,
we search for peaks in the 3D histogram of P −|κ−1|N .
In addition to getting a conformation to the presence of
spherical elements of radius |κ−1|, we also recover their
centers. Note that if the first stage of the recovery, locates
a false local peak which was generated from arbitrary
scene points that do not lie on a common sphere (or
primitive in the general case), then the second stage will
not confirm the hypothesis because these points will fail
to generate a local peak in the histogram of the second
stage. A demonstration of such a process with a real
scene is presented in Figure 7 where we can see several
steps of the first stage. At each iteration of the mean shift
process, more and more points which lie on the sphere
are found. As can be noticed, some points that do not
lie on the sphere are also included in that segmentation
but these points do not pass the criteria of the second
stage, and thus only the sphere’s points are included in
the final segmentation at the end of the second stage.

C. Cylinders

A local peak in the curvatures histogram located at
κ1 = 0, κ2 6= 0 is an indication for the existence
of one or more cylinders of radius |κ2

−1|. We deal
with each “cylinder peak” separately, but still each peak
might indicate several cylinders of the same radius but of
different orientations and/or locations within the scene.

We use the direction of the cylinder’s main axis and a
point on one of the main planes through which the main
axis passes as common features. Let P be a 3D scene
point contributing to the peak in the histogram. The main
axis direction is given by the maximal direction at P
denoted by T1 (Figure 8).

T1
T2

N

P

Nk2

-1

Q

x
y

z

Fig. 8. The common features in the cylinder case
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Segmentation results of planes during the first and second stages of the recovery process: (a) and (b) are the segmentations
at two different iterations of the first stage which searches for the local peak located at the origin of the curvatures histogram
of the real scene presented in Figure 4. (c) (d) (e) and (f) illustrate the segmentations at the end of the second stage after the
first stage’s peak was refined to four different local peaks of the second stage. Note that after the second stage all points not on
the recovered planes have disappeared.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Segmentation snapshots of the first and second stages of the algorithm related to a single local peak of the curvatures
histogram of the scene in Figure 4. The peak has the (κ, κ) form implying a sphere. (a) (b) (c) (d) and (e) illustrate the
segmentation during the first stage of the algorithm; (f) The segmentation results at the end of the second stage. Note that in
the second stage all points which do not belong to the sphere have disappeared from the segmentation.

A point on the cylinder’s main axis can be found at
a distance of the radius |κ2

−1| from P in the direc-
tion opposite to the normal, N . Now we can find the
intersection points of the axis with the main planes (at
least one exists). As a result a local peak in the 4D
histogram of the two features will be found confirming
the existence of the hypothesized cylinder as well as

distinguishing between them and revealing the equations
of their main axis. A complete process of recovering a
single cylinder in a real complex scene is demonstrated
in Figure 9. Along the first stage’s illustrations we can
see the accumulated segmentation of the smaller cylinder
(there are two different cylinders in the scene). The
segmentation includes some points that do not lie on
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Segmentation along the first and second stages which is related to a single local peak of the curvatures histogram of the
scene in Figure 4. The peak has the (0, κ) form implying a cylinder.(a) (b) (c) (d) and (e) illustrate the segmentation along the
first stage; (f) Segmentation at the end of the second stage. Note that in the second stage all points not on the smaller cylinder
have disappeared. Also note that less scene points which lie on the smaller cylinder were segmented in the second stage in
comparison to the end of the first stage. Some points failed to pass the criteria of the second stage although enough of them
were left to enable the cylinder’s recovery.

the cylinder as well. At the end of the second stage
only points of the smaller cylinder are left although
less of them are included when compared to the last
iteration of the first stage. This phenomenon is caused
by inaccuracies in the curvatures and Darboux frame
estimations due to noise and its extent also depends
on the adjustments of the mean shift parameters. This
phenomenon however, does not affect the recovery since
enough points are still included in the final segmentation.

VI. RANSAC STRATEGY FOR SHAPE RECOGNITION

Now we present a different strategy for extracting
shape parameters from raw data designed for more
complex primitives. It uses an adaptation we performed
to the modified pbM method to deal with geometric
objects. Algorithms of this type can be developed for
all parametric primitives. To demonstrate this general
technique we will present algorithms for cylinders (for
which an algorithm of the previous type has already been
presented), cones and tori.

At the first stage after mean shift on the curvatures
has been performed, the scene is divided into groups of
points by the curvature values of the modes. The goal of
this operation is to place in a single group most of the
points belonging to a primitive and to remove most of the
outliers. For example, we look for cones and cylinders
only in modes where κ1 has a value close to zero. For

the cylinders the value of κ2 is a constant and estimates
1/R, where R is the radius of the cylinder. For a cone, its
points are divided arbitrarily to several modes. Therefore,
all the modes are merged and models are searched using
all the points belonging to these modes. For tori detection
we explore modes that are not plane and sphere modes.
In this case κ2 is a constant and estimates 1/r, where r
is the minor radius of the torus.

In the second step a variant of the modified pbM
technique is applied. Two (for cylinders and cones) or
three (for tori) points are chosen at random. These points
are used to estimate a shape whose characteristic is that
all points on the primitive are equidistant from it. For
example in the case of the cylinder, the central axis is
estimated. The change with respect to the modified pbM
is that the density is not measured as the distance from a
hyperplane but as the geometric distance from the point
to the shape estimated from the 2-3 points. In order to
eliminate most incorrect models its correctness is tested
with respect to the local differential features of the points
used to create it. Only for models that pass this initial
test, we compute their score using all the points.

As in modified pbM, the score of the model is the
density value of the mode. The distance for which the
mode was found is used in conjunction with the central
axis to estimate the parameters of the primitive. Consider
for example the case of the cylinder. There the major axis
combined with the distance from it to the range points
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which is the radius of the cylinder yields the complete
set of parameters. The reason for estimating the radius
using the pbM and not from the pair of points is because
this estimate is more accurate as it is generated from all
the points suspected to belong to the cylinder and not
only from the two points used to generate the central
axis. This principle is used for all models to yield a
more accurate estimate of one of the parameters.

For a given estimate of the axis, the distribution of the
distance of the points to the axis is estimated. In addition,
the normal of the surface at the point and the vector from
the point on the shape to the closest point to it on the
axis should be parallel. Therefore, the distribution of the
angle between these two vectors is also estimated. Thus,
a point is considered an inlier when its distance to the
axis lies between the two local minima around the mode
found by the pbM procedure and when the angle is less
than the first local minimum which is greater than the
mode of the second distribution.

This process is performed N times, where N is
computed using Eq. 1 in order to guarantee with high
probability that an axis will be found. Whenever an axis
is generated whose score is higher than found before it is
chosen as the new best axis. Then a LO-RANSAC step
is performed. In it another set of RANSAC iterations is
performed. This time more than the minimal number of
points are used but they are chosen only from the points
characterized as inliers by the axis found. This way the
probability of choosing an inlier is increased and the
chance of choosing a set of inliers is non-negligible. The
advantage of this second step is that the axis recovered
will be more accurate than the axis recovered from only
two points.

When the whole RANSAC process has been com-
pleted, all the points considered inliers by the pbM pro-
cedure are given to the Nelder-Mead simplex optimiza-
tion procedure [24] to yield the least squares estimate
of the shape. The starting position of the optimization
process is the shape recovered by the RANSAC process.
At this stage we are sure that no outliers are left in our
point set and the most accurate estimate of the shape can
be recovered. This final optimization step is performed
for all types of primitives.

The models recovered by the process may contain
spurious models, i.e, models recovered several times
or incorrect models whose points actually belong to
other models. The reasons why this happens and the
solution for this problem are described in Section VII.
This solution is general for all shape types which are
recognized in the scene.

This general technique has been applied to all three

types of primitives. We will now elaborate on the specific
details for each primitive type concentrating on how their
central axes are computed and how the distance value at
which the mode has been found is used.

A. Cylinder

In Section V-C we described a mean shift based
method for cylinder recovery. Here we will show the
RANSAC based method.

The geometric definition of a cylinder is a set of points
of radius R from a central axis. Using this definition
the axis is estimated in the following manner. Select at
random two points P 1 and P 2. For each point compute

Qi = P i −N i/|κi
2| ≈ P i −N iR. (2)

The points Qi lie close to the central axis of the cylinder.
Thus, the axis ĉN = Qi − Qj can be estimated. The
initial test that is applied to the two points is that this
direction is orthogonal to T2 and to N i.

For each point in the point set the distance to the
model is computed. The mode of the distribution of
distances will usually be found close to distance R. The
angle between the normal N i estimated at point P i and

the vector
−−−→
P iQ̃i connecting P i to the closest point Q̃i to

it on the axis should be close to zero. Thus, as mentioned
above both the distance R from the axis and the angle

between the normal N i and vector
−−−→
P iQ̃i are used to

detect inliers.
In the inner RANSAC loop more than two points are

randomly chosen from the set of suspected inliers. In
this case linear regression [15] is used to estimate the
line closest to the set of points Qi.

B. Cone

The algorithm for the cone is a modification of the
algorithm for the cylinder (as illustrated in Figure 10(a)).
Here we have to estimate the central axis, the apex and
α, the half opening angle of the cone. As before two
points P 1 and P 2 are randomly selected. Points on the
central axis

Qi = P i −N i/|κi
2| (3)

are computed. Here the distance to the axis changes from
point to point as κ2 is not constant. We define the central
axis

ĉN = (Qj −Qi)sign(|κi
2| − |κj

2|) (4)

such that the direction from the apex to the points on
the central axis is positive. The angle α is defined as

α = 6 (N i, ĉN)− π/2, (5)
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the angle between the normal at the point and the
direction of the axis. Finally, the initial position of the
apex is estimated as

apexinit = Qi − ĉN · /(|κi
2| · sin(α)). (6)

The initial test that is applied to the two points is that
the direction of the central axis is orthogonal to T2. The
position of the apex is usually quite far from the correct
position due to noise. When all the other parameters of
the cone are correct, the cone we get is at a certain
constant distance from the correct cone. Computing the
distribution of the distances of the points from the
estimated cone yields a mode at a certain distance dist.
This distance is used to modify the position of the apex
of the cone

apex = apexinit − ĉN · dist/ sin(α). (7)

Now the mode of the distance is at zero. As in the case
of the cylinder, the normal N i to the point should be
parallel to the vector connecting the point P i to the
estimated cone.

In the inner RANSAC iterations, when more than
two points are selected at random, the central axis is
computed in the same way as the central axis of the
cylinder. The other parameters are simply computed by
averaging their values over all the points.

apex

Ni

Pi

apex
init

Nj

Qj

dist

cN

α

Qi

Pj

(a) cone (b) torus
Fig. 10. Illustration of cone and torus algorithms

C. Torus

The algorithm for the torus also works on a central
axis (as illustrated in Figure 10(b)). Instead of looking
for the distance from the line, we look for the distance
from the axle circle. Each point on the torus is at distance
r from its closest point on the circle. Each point on the
central axle is estimated by

Qi = P i −N i/|κi
2| ≈ P i −N ir. (8)

In order to estimate the equation of the central axle
three points are used. The radius of this circle is the

major radius of torus. As in previous algorithms we will
look for the mode of the distance from the computed
circle. The position of this mode is our estimate of
the minor radius of the torus. As in other shapes, the
normal N i should be parallel to the vector connecting
the point P i to the central axle. This characteristic and
that T1 should be orthogonal to the circle plane normal
are checked initially on the three points to eliminate most
incorrect models.

A torus is a very general object and its algorithm can
be used to recover cylinders and spheres also. A cylinder
is a torus with Rtorus = ∞ and rtorus = Rcylinder and a
sphere is a torus with Rtorus = 0 and rtorus = Rsphere.

To illustrate the RANSAC based algorithm consider
the following simple scene of a torus and a plane. In
Figure 11 we show four examples of models suggested
by the RANSAC process starting from a model with
a low score and ending with the best model found
for this example. Looking at the distance density plots
(Figure 11(c)), we can see that the quality of the model
improves with the height of the mode and the narrowing
of its spread. This is well correlated with the number of
points (in blue) which agree with the model. Figure 11(b)
shows the values for which the distribution was evaluated
by the algorithm. Combining the central axle with the
distance which achieved the maximal density yields a
complete model for the torus. The distribution of the
distances from this model is shown in Figure 11(c).
Finally, Figure 11(d) shows the distribution of the an-
gle between the normal and the vector from the point
to the central axle. Only points selected (in blue) by
both Figure 11(c) and (d) are considered inliers by the
algorithm (Figure 11(a)).

VII. THE FINAL CLASSIFICATION STAGE

After the recognition process is over we are faced
with two false-classification cases: the same model can
be detected several times and groups of points may be
classified as belonging to several models.

The reason for the first problem is that after the
scene is separated into mode groups recovered by the
mean shift algorithm from their curvature values we
start looking for models in each group separately. It is
therefore possible that points belonging to one object
will be present in different modes. Therefore, several
very similar models will be recovered from different
mean shift modes.

The second type of problem is demonstrated in Fig-
ure 12. The two red tori were falsely detected. This
is a result of the way the models are detected. While
detecting models by random sampling in the RANSAC
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Fig. 11. Demonstration of the RANSAC method

Fig. 12. Scene classification result with several incorrect models

recognition stage, each found model is verified with
scene points. Therefore the same group of points can

be recognized as different models. One of the reasons
why this happens is because regions of those models
have Darboux frame vectors with similar directions.

Figure 13 shows the detection results of a correct
and incorrect tori. As can be seen from the density
functions, it is impossible to distinguish at this stage
between correct and incorrect models. Both models yield
similar density functions.

In order to eliminate false models we developed a
minimum description length type algorithm to choose
the best subset of models from the set of all proposed
models U . First we evaluate the grade function of fitting
each scene point to each model based on combining dis-
tance, normal and tangency vector direction differences
between the scene point and their closest model points.
Each of those measures has a different distribution,
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therefore these distances have to be normalized when
they are combined. Usually distances are divided by
the standard deviation of their distributions. However,
a single outlier point can change this value significantly.
Therefore, we chose to use the median value as a robust
normalization factor, because all the data we work with
contains many outlier points, and the median’s breaking
point is 50% outliers.

First, for each point P i we compute the distance
between it to the closest point Si

j on model j. Define
the distances between scene points and their appropriate
models points by:

distij = ||Si
j − P i||2. (9)

(a) correctly detected torus

(b) incorrectly detected torus
Fig. 13. Robust detection of torus points

Define the differences between scene points normal
directions N i and their appropriate models points normal
directions N i

j by angleN i
j :

angleN i
j = 6 (N i

j , N
i). (10)

Define the differences in tangent directions between
scene points T i

1 or T i
2 and their appropriate models points

directions T i
1j or T i

2j as:

angleT i
1j = 6 (T i

1j , T
i
1) or angleT i

2j = 6 (T i
2j , T

i
2).
(11)

In our implementation we compare the T1 directions for
cone models, and T2 directions for tori models.

Second, we compute the distribution histograms of
distance, normal and tangency vector direction differ-
ences between scene points and their appropriate models
points that were detected as inliers in the previous stage
of the algorithm and evaluate their median values.

∆dist = med
∀j∈U : i is inlier of j

(|distij |),
∆angleN = med

∀j∈U : i is inlier of j
(angleN i

j),

∆angleT = med
∀j∈U : i is inlier of j

(angleT i
j ).

(12)

Third, we define si
j as the score of point i belonging

to a recognized model j

si
j =

1
3
(
|distij |
∆dist

+
angleN i

j

∆angleN
+

angleT i
j

∆angleT
). (13)

The best score of point i is:

σi
U = min

j∈U
(si

j) (14)

and the best fitted model for point i is:

U i = arg min
j∈U

(si
j). (15)

To evaluate the score of the scene we use the sum of the
score function over the entire scene:

σU =
n∑

i=1

σi
U . (16)

This score will now be used to find an optimal subset of
models from U . This is done by removing one model at
a time. We evaluate the classification grade for the scene
without one of the models. If the grade does not change
significantly - it indicates that all points of the removed
model can be easily associated with other models and
therefore we can assume that this model was falsely
detected. When the grade changes significantly this hints
that for the points belonging to this model there is no
other candidate model to take its place. This means that
the model was correctly detected. Define J as a group of
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points that prefer model j before it was removed from
the group of models U . The quality of the model could
be defined by the average grade alteration per point:

∆σj =
σU\{j} − σU

|J | . (17)

The weakest model will receive the grade of:

∆σcandidate = min
j∈U

∆σj , (18)

and its respective model is removed.
We stop the algorithm when the minimal grade al-

teration is larger than the maximal value of the grade
computed in the initial classification guess

∆σMAX = max
∀j∈U : i is inlier of j

(si
j). (19)

It is evident that if the model score changed by more
than this score their points were incorrectly classified by
their new chosen models.

The complexity of this final classification stage is:

O(|U |2n), (20)

where n is the number of points in the scene, and the
|U | is the number of detected models.
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Fig. 14. Demonstration of the final classification algorithm.

We will now illustrate the algorithm using the same
example used before. The results are shown in Figure 14.
The algorithm ran four iterations. Each row shows one
iteration and the columns demonstrate what happens in
each iteration. Between iterations the points are moved
to the next closest model according to its grade value.
Each model is shown in the same color in all the figures,
and in the score graphs.

(a) (b)
Fig. 15. Final classification algorithm results; (a) The correct models
are detected; (b) For each model the points belonging to it are detected.

The first column shows the classification grades for
all the models. The shape of the markers represents the
type of the model: a cone is represented by a triangle,
a torus by a circle and a plane by a square. The second
column shows the model to be removed, and the third
column shows the remaining models after the iteration.
In the first iteration model number 3, the small red-
orange torus was chosen to be removed, and all its
associated points happen to move to model number 4,
the small orange torus. This is actually an example of
two very similar models that were recognized from the
same group of points and one of them remained after the
classification stage. In the second iteration 9, the blue
torus was chosen to be removed, and all its associated
points happen to move to model number 2, the red
colored cone. In the third iteration model number 8, the
cyan torus, was chosen to be removed, and its points
moved to model number 7, the closest green torus. In the
fourth iteration no model was removed because the ∆σ
of all the remaining models was larger then ∆σMAX .
Therefore the algorithm terminated. In Figure 15(a) the
final result is presented. In this figure the five tori and
two cones were detected and their associated points are
colored in different colors. It can be seen that all false
detected models were removed and all models were
detected correctly.

After these stages are completed only the correct
models remain. In the final stage we verify that the
points chosen by the grade function actually belong to
the model. Using the density function of the grade, points
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between the two local minima are identified as belonging
to the model. Figure 16 shows the detection of the cone
points. Figure 15(b) shows the final result of whole
algorithm. The main difference between the two results
is that the cones’ plane cross sections (which is not part
of the our definition of a cone) are now not associated
with the cone models because even though these points
are closest to the cone the algorithm detected that they
not part of the model.

Fig. 16. Final point association to cone model.

VIII. EXPERIMENTAL RESULTS

We have tested our application on a large number of
range images in different scenes of partially occluded
geometric primitives and non-primitive objects. Our ap-
plication succeeded to recover accurately every primitive
as long as a minimal number of its points (relatively
to other objects or other primitives of its type) were
sampled in the range image. All the range images used in
our experiments were acquired by the Cyberware Laser
Scanner, Model 3030 (1993 model)[14]. The scanning
process captures an array of digitized points, with each
point represented by X, Y, and Z coordinates. The
sampling pitch in the X direction is 500µm, in the Y
direction is 350µm, and in the Z direction is 75-300µm.

A. Mean Shift Based Technique

We present here two typical results of running the
mean shift based algorithm. The first scene, consists
of two identical spherical objects placed on the same
horizontal plane, two different cylinders in different
orientations and one box which was placed such that
three of its facets are visible (Figure 17). The ground
truth of the cylinders and spheres radii was obtained
by physical measurements. The error of these measure-
ments is ±0.01cm. Quantitative recovered results are
summarized in Table I: for radii of primitives, when it is

(a) (b)

Fig. 17. Real scene of partially occluded primitives: (a) Range
image; (b) Local peaks at the end of the first stage illustrated
upon the center of the principal curvatures histogram.

relevant, a comparison of the recovered to the measured
values is presented. The units are in centimeters.

At the end of the first stage, four local peaks were lo-
cated at (-0.394332, -0.394332) with 6669 scene points,
(-0.003446, -0.334160) with 14,843 points, (0.000462, -
0.677247) with 4068 points and ( -0.002089, -0.003453)
with 2484 scene points (Figure 17). The four local
peaks reflect the scene as expected. All primitives were
detected correctly and there were no false alarms. The
box was recovered as 3 planes. Although we did not
make any accurate measurements of the features of the
scene, all the checks we have performed agreed with
the recovery results. For example, the inner product of
the normals of the three recovered planes are 0.012438,
0.000241 and 0.000965 - as expected since the planes are
orthogonal to each other. The centers of the two identical
spherical elements have almost the same value for their
vertical coordinate. Again, this was expected since they
were placed at the same vertical height. The smaller
cylinder’s main axis is practically horizontal and indeed
this was its orientation as can be seen in the scene’s
illustration.

The second presented scene contains free-form objects
together with several primitives (Figure 4). We placed in
this scene two different cylinders (with different radii and
orientations), one box, one sphere and two general and
non-primitive objects. The configuration of the objects
creates partial occlusion of some of the primitives. In
Figures 5, 7 and 9 the mean shift process is demonstrated
with the second scene.

The results are summarized in Table II. Again all
primitives were detected correctly. The inner product
between the normals of the 3 orthogonal plane’s are
0.00214, 0.00039 and 0.01062. The visible base of one
of the cylinders was recovered as an additional plane



16

TABLE I
SCENE (FIGURE 4 AND 18 (A)) WITH 49626 POINTS OF PRIMITIVES ONLY - RECOVERED RESULTS VS. MEASURED FEATURES.

Cylinders number of
points radius[cm] Normal Center[cm]

a
Mean Shift 16249 2.993 -0.303 0.952 -0.028 3.459 0.000 -3.995
optimization 16259 2.915 -0.230 0.960 -0.023 4.620 -4.246 -3.836
Measured – 2.98 – –

b
Mean Shift 7191 1.477 0.999 -0.010 -0.014 0.000 -0.960 1.277
optimization 7098 1.431 0.999 0.000 0.005 1.006 -0.994 1.366
Measured – 1.41 – –

Spheres number of
points radius[cm] Center[cm]

a
Mean Shift 6609 2.536 -1.572 -4.556 -2.768
optimization 6609 2.573 -1.562 -4.527 -2.806
Measured – 2.52 –

b
Mean Shift 8850 2.536 4.195 -4.529 1.387
optimization 8849 2.520 4.202 -4.520 1.402
Measured – 2.52 –

Planes number of
points Normal D[cm]

a
Mean Shift 2431 -0.637 0.661 0.396 -2.107
Measured – – –

b
Mean Shift 2749 -0.018 -0.540 0.841 -4.180
Measured – – –

c
Mean Shift 2083 0.770 0.529 0.355 5.067
Mean Shift – – –

TABLE II
A SCENE WITH 60330 POINTS (FIGURES 17 AND 18(B)) OF PRIMITIVES AND FREE-FORM OBJECTS - RECOVERED RESULTS VS. MEASURED

FEATURES.

Cylinders number of
points radius[cm] Normal Center[cm]

a
Mean Shift 15854 3.070 0.757 -0.650 -0.009 0.000 2.662 -4.205
optimization 15671 2.970 0.826 -0.563 -0.017 0.000 2.560 -3.994
Measured – 2.98 – –

b
Mean Shift 3123 1.443 0.899 -0.320 0.297 0.000 0.992 -1.878
optimization 5085 1.413 0.944 -0.166 0.285 0.000 1.887 -1.780
Measured – 1.41 – –

Sphere number of
points radius[cm] Center[cm]

Mean Shift 6330 2.575 3.374 -3.251 0.443
optimization 6261 2.457 3.357 -3.256 0.560
Measured – 2.52 –

Planes number of
points Normal D[cm]

a
Mean Shift 2099 0.343 0.825 0.447 1.451
Measured – – –

b
Mean Shift 3760 -0.803 0.014 0.596 -2.795
Measured – – –

c
Mean Shift 1511 0.494 -0.564 0.661 -3.594
Measured – – –

d
Mean Shift 530 0.914 -0.291 0.282 4.215
Measured – – –
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and indeed its normal is very close to the direction of
cylinder’s axis.

Finally, in Figure 18 we show results of these two
scenes together with two other scenes. For each prim-
itive we show its wireframe model and which points
have been selected by the mean shift procedure to be
inliers. These points are then given to a least squares
optimization procedure which improves the quality of
the recovered model. Points which are selected as inliers
using the improved model are shown in the second
figure. In all scenes the primitives are partially occluded
but in Figure 18(d) the large green cylinder is not even
contiguous. Even so the algorithm is able to recover it
as a single cylinder.

Mean Shift results post-optimization results

(a)

(b)

(c)

(d)

Fig. 18. Mean shift classification results

B. RANSAC based technique

We present here three results of running of the
RANSAC based algorithm. Pairs of scenes were merged
to generate more difficult inputs for the algorithm by
increasing the percentage of outliers. This was done to
make the example more challenging for the algorithm.
This results of course in an increase in runtime.

The first scene which was used to illustrate the al-
gorithm in Section VII is shown in Figures 19 and
20 consists of five tori and two identical cones, which
were all detected by our system. Figure 19(a) shows
the distribution of the modes in the (κ1, κ2) space.

The tables in the figures show the modes which were
found by the mean shift algorithm. Each colored point
represents points belonging to a mode. For modes with
κ1 ≈ 0 the cone recovery process is run.

At this stage most of the points on both cones belong
to the same cluster. Only in the RANSAC stage they are
separated. Once one of the cones is detected, the points
belonging to it are removed from the data set and the
algorithm is run on the remaining points. This process
is repeated until no models are left. For torus detection
only modes with κ1 6= 0 are selected. As can be seen in
Figure 19(b) most of the points lying on the cones have
been removed. For all of the points belonging to the
modes shown in this figure the torus recovery RANSAC
process is run.

To demonstrate the quality of the result we drew the
recovered shapes on the scene. Figure 20(a) shows the
best result achieved by the RANSAC process. As can
be seen a few points have not been classified as belong-
ing to any object. After the least squares optimization
(Figure 20(b)), this problem has been solved and the
quality of the models has also improved. The results
are especially striking for the small tori for which only
a small fraction of the points were recovered by the
RANSAC process but after optimization the results have
improved considerably. Figure 20(c) shows the grades
of all model after applying the final classification stage
and Figure 20(d) shows the final result without the false
models. In all the experiments the results are close to the
ground truth as can be seen in Table III. For example, in
this experiment the two small orange and yellow tori are
detected with similar radii. The angle of the two cones
is also similar. The two green tori were detected with
the same radii also. The angle between the directions of
central axes of the blue torus which is placed on the red
cone and the red cone is 5.34◦. The brown and red cones
are partially occluded and not even contiguous. Even so
the algorithm is able to recover them as a single cone.

(a) modes of (κ1, κ2) (b) modes for tori (with κ1 6= 0).
Fig. 19. First scene curvature map

The second scene contains six tori, a cone, and a plane.
Figure 21 shows the curvature map. The recovery and
classification results are shown in Figure 22. As in the
previous example the optimization stage improves the
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TABLE III
FIRST SCENE WITH 105934 POINTS (FIGURES 12-16, 19 AND 20) RESULTS

Cones number of
points Center [cm] Normal α [o]

1

RANSAC 18663 -4.78 -0.89 15.49 0.868 0.157 -0.472 4.330
optimization 18856 -3.62 -0.87 15.14 0.8620.164 -0.479 4.419
measured – – – 4.93

2

RANSAC 10139 63.78 37.28 9.25 0.793 0.601 0.099 1.202
optimization 16011 25.58 7.58 5.79 0.807 0.564 0.176 4.566
measured – – – 4.93

Tori number of
points Center [cm] Normal R [cm] r [cm]

4
RANSAC 3202 21.59 2.56 8.01 0.244 0.769 0.591 2.314 0.465
optimization 6053 21.60 2.52 8.05 0.247 0.750 0.613 2.301 0.496
measured – – – 2.30 0.43

5
RANSAC 1086 7.35 -9.32 8.03 0.229 -0.752 -0.618 2.416 0.609
optimization 2096 7.34 -9.33 8.01 0.229 -0.742 -0.630 2.381 0.578
measured – – – 2.30 0.43

6
RANSAC 6356 16.34 -7.90 6.93 -0.291 -0.941 -0.174 4.798 1.267
optimization 12190 16.35 -8.14 6.50 -0.281 -0.942 -0.185 4.780 1.693
measured – – – 4.85 1.65

7
RANSAC 11942 4.30 5.30 4.15 0.066 -0.688 -0.722 3.732 2.133
optimization 15335 4.45 3.32 2.66 -0.091 0.983 0.162 4.328 1.990
measured – – – 4.85 1.65

10
RANSAC 6892 7.50 -4.97 2.15 0.792 0.477 0.381 2.772 1.355
optimization 8240 7.18 -5.51 1.44 0.859 0.490 0.148 3.361 1.350
measured – – – 3.24 1.47

(a) best RANSAC results (b) post-optimization results
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(c) final classification grades (d)final classification result
Fig. 20. First scene segmentation and recognition

quality of the results and the final classification stage
removes the false models. Figure 22(c) shows the classi-
fication grades in the first iteration of final classification,
Figure 22(d) shows the grades in the last iteration, and
Figure 22(e) shows the grades of the models that were
classified as false models during the algorithm. At the
end of classification algorithm all initially detected plane
models which were actually patches of other tori were
classified as false models and the points were transferred
to the tori on which they lie. In this experiment the

results are also close to the ground truth as can be seen in
Table IV. For example in this experiment tori 19 and 18
are placed on plane 13 thus the normal to the plane and
the directions of the central axes of the two tori should
be similar. The results show that the angles between the
three vectors are at most 3.6◦. The radii of the same
torus pairs are very close: 16 and 17, 18 and 20, and
19 and 22, respectively.

The third scene contains five tori and one cone.
The recovery and classification results are shown in
Figure 23. In this experiment the results are also very
close to the ground truth as can be seen in Table V.
This scene contains two small tori: an orange torus 2

Fig. 21. Second scene curvature map k1- k2 modes
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TABLE IV
SECOND SCENE WITH 137714 POINTS (FIGURES 21 AND 22) RESULTS

Planes number of
points Normal D [cm]

13
RANSAC 3992 0.0019 0.9029 0.4287 2.44
optimization 4924 0.000 0.905 0.425 2.389
measured – – -

Cones number of
points Center [cm] Normal α [o]

14

RANSAC 7439 -6.12 1.84 -3.53 0.974 0.064 0.218 4.218
optimization 8162 -3.63 1.69 -2.87 0.974 0.075 0.215 4.548
measured – – – 4.93

Tori number of
points Center [cm] Normal R [cm] r [cm]

16
RANSAC 2317 22.84 -5.85 10.11 -0.213 -0.688 -0.694 2.320 0.457
optimization 4423 22.84 -5.87 10.05 0.214 0.694 0.687 2.296 0.520
measured – – – 2.30 0.43

17
RANSAC 2982 21.58 2.54 8.16 0.260 0.742 0.618 2.402 0.478
optimization 6119 21.60 2.56 8.05 0.248 0.746 0.618 2.306 0.505
measured – – – 2.30 0.43

18
RANSAC 13960 18.91 -3.05 5.30 0.042 0.881 0.471 2.937 0.918
optimization 17019 18.92 -3.38 5.12 0.041 0.881 0.472 3.119 1.324
measured – – – 3.24 1.47

19
RANSAC 25719 8.01 -3.28 7.16 0.007 0.902 0.432 4.861 0.971
optimization 30055 7.90 -3.56 6.97 -0.004 0.889 0.458 4.843 1.363
measured – – – 4.85 1.65

20
RANSAC 16777 12.90 3.52 8.81 0.063 0.885 0.462 3.040 1.028
optimization 18691 12.81 3.29 8.64 0.080 0.881 0.467 3.118 1.298
measured – – – 3.24 1.47

22
RANSAC 12554 4.58 3.49 2.81 0.052 -0.980 -0.193 4.802 1.376
optimization 13758 4.52 3.31 2.61 0.006 0.984 0.177 4.756 1.685
measured – – – 4.85 1.65

and a blue torus 9, their recovered parameters are quite
close. The radii recovered for the green torus 10 and
the cyan torus 13 are similar also. In this example there
are groups of tori which were detected several times
by the RANSAC algorithm and at the end of the final
classification algorithm from each group only the best

0 5 10 15 20
0

50

100

150

candidate models

∆σ
 [g

ra
de

 u
ni

ts
]
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results
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(c) first iteration
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Fig. 22. Second scene segmentation and recognition

fitted one torus remained.
The algorithm was implemented in Matlab. The run-

times of each part of algorithm are summarized in
Table VI. Note that most of the runtime was consumed
by the standard least squares algorithm. The algorithm’s
runtime can be improved by converting the code to C
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Fig. 23. Third scene segmentation and recognition
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TABLE V
THIRD SCENE WITH 98208 POINTS (FIGURE 23) RESULTS

Cones number of
points Center [cm] Normal α [o]

RANSAC 10975 28.81 -6.40 12.43 -0.805 0.085 -0.587 6.281

1 optimization 11176 31.39 -6.69 13.78 -0.823 0.089 -0.561 4.870
measured – – – 4.93

Tori number of
points Center [cm] Normal R [cm] r [cm]

RANSAC 2389 2.04 -4.34 3.05 0.735 -0.566 -0.373 2.372 0.513

2 optimization 2352 2.04 -4.32 2.93 0.750 -0.571 -0.334 2.296 0.580
measured – – – 2.30 0.43
RANSAC 5341 21.58 2.34 7.87 -0.260 -0.784 -0.564 2.270 0.611

9 optimization 5728 21.58 2.38 8.02 0.241 0.759 0.604 2.249 0.553
measured – – – 2.30 0.43
RANSAC 19958 7.96 -3.50 2.79 0.199 -0.750 -0.631 3.391 1.786

10 optimization 20008 7.74 -3.27 3.03 0.147 -0.774 -0.616 3.145 1.395
measured – – – 3.24 1.47
RANSAC 18884 12.85 3.28 9.16 0.095 0.812 0.575 2.867 1.180

13 optimization 18982 12.80 3.14 8.64 0.079 0.882 0.464 3.105 1.308
measured – – – 3.24 1.47
RANSAC 13599 4.42 4.03 2.42 0.008 0.958 0.285 5.495 1.288

14 optimization 13735 4.50 3.13 2.66 0.001 0.986 0.169 4.695 1.697
measured – – – 4.85 1.65

and by running it on only a sub-sample of all the scene
points.

TABLE VI
ALGORITHM RUNTIME RESULTS IN SECONDS

Scene1 Scene2 Scene3 Average
number of points 105934 137714 98208 113952
Figures 12-16,

19-20
21, 22 23

Curvature classification 17 23 14 18
RANSAC recovery 83 104 98 95
post-recovery
optimization

275 248 209 244

final classification 11 23 8 14
Total 386 398 329 371

IX. CONCLUSIONS

We have presented a robust and accurate method for
the recovery of 3D geometric primitives from complex
cluttered range scenes. The application presents a new
recovery approach based on robust statistics methods.

It maintains accurate recoveries even when the range
images include partially occluded objects or contain in
addition free-form objects. The application was tested
on range images of various scenes. All primitives, in
all scenes, were recognized and their parameters were
recovered very accurately. We presented two types of
algorithms: a fast mean shift based algorithm for robust

recovery of the geometric primitives which was used
for the more simple primitives. For the more complex
primitives a more elaborate RANSAC/pbM based algo-
rithm was presented which robustly estimates the model.
In the final step of our algorithm a new method to
remove false detections has also presented. This method
can be extended to deal with more complex parametric
surfaces. The recovery application also demonstrates
the possibilities in using curvature and Darboux frame
estimators within a practical application.

Although our method deals only with geometric prim-
itives its results can be used to recognize more complex
objects which can consist of primitive and non-primitive
components as shown in [16], [1].
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