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Dense mirroring surface recovery from 1D
homographies and sparse correspondences

Stas Rozenfeld, Student Member, IEEE, Ilan Shimshoni, Member, IEEE, and Michael Lindenbaum, Member, IEEE

Abstract— In this work we recover the 3D shape of mirrors,
sunglasses, and stainless steel implements. A computer monitor
displays several images of parallel stripes, each image at a
different angle. Reflections of these stripes in a mirroring surface
are captured by the camera. For every image point, the direction
of the displayed stripes and their reflections in the image are
related by a 1D homography matrix, computed with a robust
version of the statistically accurate heteroscedastic approach. By
focusing on a sparse set of image points for which monitor–image
correspondence is computed, the depth and the local shape may
be estimated from these homographies. The depth estimation
relies on statistically correct minimization and provides accurate,
reliable results. Even for the image points where the depth esti-
mation process is inherently unstable, we are able to characterize
this instability and develop an algorithm to detect and correct
it. After correcting the instability, dense surface recovery of
mirroring objects is performed using constrained interpolation,
which does not simply interpolate the surface depth values but
uses the locally computed 1D homographies to solve for the depth,
the correspondence, and the local surface shape. The method
was implemented and the shape of several objects was densely
recovered at sub-millimeter accuracy.

Index Terms— Mirroring objects, 3D Shape reconstruction, 1D
homographies, stability

I. INTRODUCTION

The problem of 3D shape reconstruction has been the focus of
extensive study for many years. Many methods were developed
for nonspecular objects such as structured light or stereo vision.
Unfortunately, all those methods are inapplicable to both specular
and to mirroring surfaces. As such surfaces are common in
everyday life, this is a serious drawback, one that motivated a
number of research efforts over the last few years.

The problem of specular surface reconstruction was first ad-
dressed by Blake and Brelstaff [3], who proposed a system that
can recover the depth map and orientation of a specular surface,
when enough Lambertian reference points exist on it. Several ap-
proaches focus on the reconstruction of surface curves. Zisserman,
Giblin, and Blake [20] track the motion of specularities to obtain
information on the surface. Oren and Nayar [10] show how to
discriminate between Lambertian and specular (virtual) features.
They track the specular features and, using known camera motion,
recover the depth values of the surface at their traces (but not the
whole surface). Known camera motion has also been used by
Solem et al. in [17], where the full surface is reconstructed using
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a level-set based energy minimization technique that relies on
surface smoothness. Park and Cho [11] proposed a system based
on multiple reflections of a laser beam between the examined
object and a reflecting sphere containing it. The 3D points are
recovered one point at a time. Zheng and Murata [19] recover
the whole shape of a rotating specular object by tracking the
specularities created by a toroidal light source.

Several approaches focus on particular object classes. Ripsman
and Jenkin [13] recover planar specular objects using a three cam-
era system. Halstead et al. [5] recover roughly symmetric surfaces
from the reflection of a light pattern containing concentric circles.
A medical application for shape recovery of the human cornea
was also demonstrated.

Other approaches attempt to recover a general object without
moving it. In [2], Baba et al. proposed a laser scanning system
which is able to scan specular surfaces as well as Lambertian
ones. Unfortunately, the system works very slowly (it takes about
20 minutes to acquire 100 measurements). Bonfort and Sturm [4]
introduce a local and effective process which recovers the shape
of the surface using two cameras that observe the distorted reflec-
tions of images displayed on a monitor. A similar experimental
setup was used by Knauer et al. in [6], where normals to the
surface are recovered first and then used to recover the depth
map. The calibration necessary for this technique is challenging.
A method proposed by Tarini et al. [18] uses a single camera that
observes the reflection of several images displayed on a monitor.
It establishes dense correspondence between the image and the
monitor using a color based process that relies on the uniformity
of certain photometric properties. This correspondence provides
local constraints on the depths and the surface normals. They are
then integrated into a full surface estimate by global optimization,
using smoothness assumptions. Recently, approaches have been
proposed to estimate the shape of specular objects from optical
flow generated by changes in the object’s position with respect
to the environment [1], [8] or from known camera motion where
the object remains stationary [14].

The method we propose is closest to the approach suggested by
Savarese, Chen, and Perona [16], and uses some of their results.
Relying on a single pattern containing intersecting lines, they
recover the surface depth as well as its higher order properties at
a sparse set of points where at least three lines intersect and for
which correspondence is available. Their process is fully local:
using differential geometry to analyze the curve distortion leads
to the construction of a matrix parameterized by the unknown
depth. This matrix becomes degenerate for the correct depth.

In the proposed system a computer monitor displays several
images of parallel stripes, each image at a different angle.
Distorted reflections of these stripes in a mirroring surface are
captured by the camera. For every image point, the directions
of the displayed stripes and their reflections in the image are
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related by a 1D homography, which differs for every image point.
The direction of the stripes on the monitor are known and the
direction of the reflected distorted stripes are estimated from the
captured images. The homography is estimated using robust and
statistically valid (heteroscedastic) methods (see [7] for related
work), without any knowledge about correspondence between the
monitor point and the camera points. Such correspondence is
extracted only for a sparse set of points using the pseudo-random
color pattern proposed by Morano [9]. Focusing on this sparse
set and relying on the corresponding homography, we calculate
the depth and first-order local shape by minimizing a statistically
correct measure. Then dense surface recovery is performed using
constrained interpolation, which does not simply interpolate the
surface depth values, but rather uses the locally computed 1D
homography to solve for the depth, the correspondence, and the
local surface shape.

The cost function used for the proposed local shape recovery
method as well as the one described in [16] may be insensitive
to depth on a small part of the surface. This makes both methods
inherently unstable there. We quantify the instability by measuring
the derivative of the cost function and use it as a weight for a
smoothing process. In addition, an algebraic constraint sufficient
for the instability is formulated and a simple geometrical inter-
pretation is given to this constraint for the case of planar and
spherical surfaces.

The method was implemented and the shapes of a mirror,
sunglasses, and a stainless steel ashtray were recovered. For the
planar mirror, the estimated depths were consistent with a plane
to sub-millimeter accuracy.

In short, this paper proposes a new method for shape recovery
of mirror-like objects. The main innovations of the proposed
method are:

1) A clear characterization of the information provided by the
optical distortion about the surface depth and local shape
using 1D homographies.

2) A statistically correct error measure that is used for local
depth estimation. This criterion replaces the algebraic ex-
pression suggested in [16]. Besides being more statistically
justified, this criterion is numerically stable and avoids the
phantoms reported in [16]. Moreover, the new method is
easier to minimize due to the cost function shape.

3) A method for dense depth estimation which uses the lo-
cally computed homographies and is therefore much more
accurate than simple depth interpolation.

4) A characterization of the inherent limitations of depth
recovery, a description of the loci of instability, and a
practical method to circumvent this difficulty.

5) A robust and statistically correct technique that uses the
heteroscedastic model [7].

This paper continues as follows. A basic mathematical analysis
of the problem is presented in Section II. The detailed local
recovery algorithm is described in detail in Section III. The
instability problem is characterized and treated in Section IV. The
second part of the algorithm, which provides the dense depth
map, is described in Section V. A specific simpler algorithm
for the special case of a planar mirror surface is provided in
Section VI. Experimental results are presented in Section VII
and some conclusions are suggested in Section VIII. Some of
the more technical derivations are deferred to the appendices. A
short version of this paper was presented in [15].

II. NOTATIONS AND MATHEMATICAL BACKGROUND

We start with notations and some previous results (from [16]) to
be used in this paper. Consider a monitor that displays a known
image and a camera that captures its reflection in a mirroring
surface; see Figure 1 (left).

�� ���� ��
������������ ���� ��	
 � ������ �� �� �� ���� �� ��

Fig. 1. Optical reflection geometry (left), and surface normal and depth
correspondence (right).

Let pi be an image point corresponding to the point pm on
the reference plane (monitor) and to its reflectance point ps (on
the surface to be reconstructed). Our goal is to estimate the depth
s at this point, such that sp̂i = ps, where p̂i = pi/‖pi‖.

A basic rule of optics states that ns, the normal at ps, lies
in the plane specified by pi, pm, and the camera’s optical center
Oi. Moreover, ns is the bisector of the angle ∠Oipspm. Denote
half of this angle as θ. Let V be the normal to this plane.
Let {Oi, [Xi, Yi, Zi]}be the camera coordinate system specified
relative to the camera’s optical center, {pm, [Xm, Ym, Zm]}the
monitor coordinate system, and {ps, [U = V × ns, V, W =

ns]} the (local) reflective surface coordinate system. The first
coordinate system is chosen as our reference frame. The second
coordinate system is estimated using an external calibration
process that finds the coordinates’ transformation from the camera
to the monitor. The point pm is specified by a correspondence
process, which specifies V and a one-to-one relationship between
s and ns, as illustrated in Figure 1 (right). For a known s, the
third coordinate system is also fully specified. Let p0 = pm−ps,
be the vector from the reflecting point to the original monitor
point. Most of our calculations are done in the surface coordinate
system.

Consider a line in the monitor plane emanating from pm,
pm(t) = pm + tδpm, t ∈ R where δpm = cos αmXm +

sin αmYm. The line pm(t) induces, in a natural way, a curve
ps(t) on the mirroring surface and another curve pi(t) in the
image plane. Note that if the mirroring surface is a plane, then
ps(t) and pi(t) are straight lines and not curves. Clearly, ps(0) =

ps and pi(0) = pi. Let δps = ṗs(0) and δpi = ṗi(0) be the
derivatives of ps(t) at ps and of pi(t) at pi, respectively. Let
αi be the angle for which δpi = ‖δpi‖(cos αiXi + sin αiYi).
The vector δps lies in the tangent plane of the surface at ps.
Therefore, there is an angle αs such that δps = ‖δps‖(cos αsU+

sin αsV ). Finally, let a, b and c be the parameters describing the
second order approximation w = 1

2au2 + cuv + 1
2 bv2 of the

mirroring surface close to ps in its local coordinate frame.
The following expression, specifying a linear transformation

between tangent vectors, follows from the results described in
[16]:

‖δps‖
[

cos αs

sin αs

]
= AB

[
cos αm

sin αm

]
, (1)
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where

∆ = (Ju − 2a cos θ)(Jv − 2b cos θ)− (2c cos θ)2,

Ju = cos2 θ
s+‖p0‖
s‖p0‖ ,

Jv =
s+‖p0‖
s‖p0‖ ,

A = 1
∆

[
Jv − 2b cos θ 2c cos θ

2c cos θ Ju − 2a cos θ

]
,

B = 1
‖p0‖

[ − cos2 θ 0 cos θ sin θ

0 −1 0

]
×

[(Xm)s, (Ym)s] ,

(2)

and (Xm)s and (Ym)s are the column vectors Xm, Ym ex-
pressed in the surface coordinate system.

III. LOCAL SHAPE FROM 1D HOMOGRAPHIES

The linear transformation (1), denoted Tms, clearly induces
a 1D homography between the monitor angles and the corre-
sponding surface angles. Denote this homography Hms. Consider
another 1D homography between the local surface tangent-plane
angles and the image plane angles. This homography, Hsi, can
be computed from U and V as follows:

Hsi
∼=




Ux − (pi)xUz Vx − (pi)xVz

Uy − (pi)yUz Vy − (pi)yVz .


 (3)

(see Appendix II). The combined homography

Hmi = HsiHms ∼= HsiAB (4)

relates the monitor angles and the image plane angles. The
components of this homography (and thus the homography itself)
can be computed from the depth s, the image-monitor correspon-
dences between pi = [(pi)x, (pi)y]T and pm, and the local shape
parameters a, b and c. The same homography Hmi may also be
computed empirically, without knowing any of these parameters,
but using only angle correspondences. Let Hemp

mi denote this
estimated homography. Comparing the two versions of the same
homography provides a constraint that can be used to estimate
the depth.

To estimate Hemp
mi at some image point, we need to establish

monitor–image angle correspondences at this point. A straight-
forward approach would rely on first establishing correspon-
dence between monitor and image points. We take a different
approach, which provides the homographies at any point in the
image without location correspondences. We use a sequence
of K displayed images, each associated with a single tangent
direction αk

m, common to all points in the displayed image; see
Figure 2. Let {αk

i }K
k=1 be the sequence of corresponding tangent

angles associated with a particular image point. Now, using the
sequence of angle correspondences {αk

m, αk
i }K

k=1, Hmi can be
estimated by combining a robust method with the heteroscedastic
technique that we developed for 1D homography estimation; see
Appendix III. This method provides results superior to standard
linear regression techniques such as SVD. Note that Hemp

mi may
be calculated independently for every point in the image.

A. Local depth recovery

We now describe how to estimate the depth s at a point by
using the empirical homography estimate Hemp

mi and the analytical
constraints 1,3, and 4 on Hmi.

Fig. 2. Typical displayed images (top), and their corresponding captured
images (bottom). Such pairs are used for the 1D homography estimation.

A straightforward approach would be to estimate s, and the
local shape parameters a, b and c, in one optimization process.
Instead, we will define a simpler optimization process where the
score function depends on s only and relies on the symmetry of
A (2).

Given a suggested value of s, the homography Hmi(s) is
constrained to be of the form

Hmi(s) ∼= Hsi(s)AB(s), (5)

where Hsi(s) and B(s) are known because they are functions of
s only. The matrix A associated with Hemp

mi may be estimated by

Â(s) = H−1
si (s)Hemp

mi B−1(s) =

[
a11 a12

a21 a22

]
. (6)

A depends on the unknown parameters a, b, and c and may
be considered as an arbitrary symmetric matrix. Imposing this
constraint yields

Â(s)sym =

[
a11 (a12 + a21)/2

(a12 + a21)/2 a22

]
.

Â(s)sym is closest to Â(s) in the Frobenius norm sense. When
the suggested value of s is close to the correct one, we expect
that Â(s) is close to A (up to a multiplicative constant), and that
the symmetrization improves the accuracy of Â(s).

Using Â(s), we may now calculate the corresponding image
plane angles tangent to the stripe:

[
cos(α̂i

k(s))

sin(α̂i
k(s))

]
∼= Ĥmi(s)

[
cos(αk

m)

sin(αk
m)

]
,

where Ĥmi(s) = Hsi(s)Â(s)symB(s).
The penalty f(s) is now specified as the sum of squared

differences between the angles measured in the image and the
depth dependent estimates:

f(s) =

K∑

k=1

(α̂i
k(s)− αk

i )2. (7)

Note that this function compares two estimates of the same
meaningful quantities and should therefore perform well. If we
make the common assumptions that the errors in the angle estima-
tions are independent and identically normally distributed, then
minimizing (7) is equivalent to solving a maximum likelihood
problem. An alternative approach, proposed in [16], relies on
similar constraints but does not use a geometrically meaningful
interpretation (i.e., the effect of the 1D homography on the
monitor angles). Instead these constraints lead to a set of homoge-
neous equations. The proposed penalty function relies on the rank
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deficiency of the coefficient matrix. In an earlier version of this
work [15], we improved the method for estimating Ĥmi(s). More
importantly, we proposed an alternative criterion that measured
the angle between Hemp

mi and an improved estimate of Ĥmi(s),
when they are regarded as vectors. This is an improvement
over [16], as the penalty function measures a geometrically
meaningful distance between Ĥmi(s) and Hemp

mi but does not
have a clear statistical meaning as the function suggested here.
Two typical examples of the three penalty functions are shown in
Figure 3. Note that unlike the rank deficiency criterion, the penalty
functions we propose have a single minimum. A single basin
of attraction covers the whole range, eliminating the phantom
solutions phenomenon reported in [16].

200 400 600 800 1000 200 400 600 800 1000

Fig. 3. The proposed penalty function (thick line) vs. the penalty function
used in [16] (dashed line) and in [15] (solid line). The two plots correspond
to two different image points.

B. Local recovery of the second order surface parameters

We now turn our attention to the estimation of the second order
surface parameters a, b and c. This requires that we estimate
the missing scale parameter to transform Hms into the linear
transformation Tms. We do this with the scale-based method
of [16]. The relationship between the length of a short vector on
the monitor and its projection on the plane tangent to the surface
is used to recover the missing scale parameter. The points on this
plane are inferred by backprojecting the image points. After Tms

has been estimated, A can be recovered, and can then be used
for the estimation of a, b and c.

IV. INHERENT DEPTH RECOVERY INSTABILITY AND ITS

CORRECTION

The surface reconstruction process is initialized by estimating
the depth of a few initial points. These points, denoted {pl

i}L
l=1,

are those for which corresponding monitor points {pl
m}L

l=1 are
available. For each one of these points, the depth s is estimated
using the procedure described in Section III-A.

A typical initial point reconstruction associated with a smooth
surface is shown in Figure 4 (left). Clearly, the reconstruction is
unreliable in the vicinity of some curve. This problem, which
was already observed in [16], occurs in locations where the
homography Hmi is highly insensitive to depth. In such cases,
the inevitable inaccuracy in the image data (image point locations
pi and their corresponding angles αk

i ) is significantly amplified.
See Figure 5 for two examples of the cost function (7) associated
with a stable and an unstable point. We refer to this phenomenon
as the stability problem.

Fortunately, it is easy to identify the unstable points by exam-
ining the absolute value of the numerical derivative of the cost
function at the found minimum s:

ε =
1

2

(∣∣∣∣
f(s + ∆s)− f(s)

∆s

∣∣∣∣ +

∣∣∣∣
f(s)− f(s−∆s)

∆s

∣∣∣∣
)

.

Figure 4 (right) shows that the inaccurately reconstructed points
are exactly those which are associated with low stability measure
values.
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Fig. 4. Depth estimates at the initial point set obtained by the local
optimization (left). The stability measure evaluated at the same points (right).
Note that it is very low for the points where the calculation is inaccurate.
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Fig. 5. The cost function associated with a stable point (left) and a
problematic, unstable point (right).

A. Algebraic and geometric conditions of instability.

In general, the analysis of the loci of instability is quite
complex and depends on the local surface geometry as well as the
camera and monitor locations. We present here a general condition
for instability and show that it leads to a simple geometric
interpretation for loci of instability for the cases of planar and
spherical surfaces.

Recall that in the absence of noise, Â(s) will be symmetric
for the correct value of s. Our depth estimation process relies
on the symmetrization of Â(s). Instability occurs when Â(s) is
symmetric for additional values of s. Technically, in the absence
of noise, when Â(s) is symmetric then Â(s) = Âsym(s), resulting
in Ĥmi(s) = Hemp

mi = Hmi. This implies that the cost function
f(s) = 0 for all values of s where Â(s) is symmetric. Therefore,
when Â(s) is symmetric for all values of s, the depth cannot be
estimated. The presence of noise does not help.

In Appendix I we consider the special case when the second
order parameter c = 0. In this case we show that instability occurs
when the local surface coordinate system axis V is parallel to the
monitor. In general, the value of c depends both on the surface
local geometry and its position relative to the camera. For planes
and spheres, c is identically zero everywhere in all cases.

It is interesting to note that the condition on V is not general
and does not hold when c 6= 0. To illustrate the condition’s
validity, we experiment with three synthetic surfaces: a plane, a
sphere, and a cylinder. For each type of surface, Figure 6 shows a
vertical triplet of images. The top image shows a captured image
of stripes, with the red curve Cparallel indicating points where
V is parallel to the monitor plane. For each image we estimated
the stability measure along three vertical lines. The image in
the middle is a zoomed rotated version of the top image. The
bottom image presents the stability estimates for the points on
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40 60 80 100 120 100 120 140 160 180 40 60 80 100 120

Plane Sphere Cylinder

Fig. 6. A vertical triplet of images for a planar (left column), spherical (middle column), and cylindrical (right column) object. Top row: a typical captured
striped image, with the (thin) red line Cparallel marking all points where the local coordinate axis V is parallel to the monitor. Middle row: a zoomed rotated
version of the same image. Bottom row: the empirical stability measure, calculated along each of the 3 colored lines.

the vertical lines as a function of the image’s y coordinate. The
minimal stability is marked by a black point. A circle indicates
the point where the corresponding line intersects with Cparallel.
As expected, the two coincide for the plane and the sphere, while
for the cylinder they do not.

B. Correcting instability

We propose to correct the depth estimate of the unstable points
using the accurate depth estimates of their stable neighbors.
The neighborhoods associated with the initial set of points are
specified via a Delaunay triangulation of these points (Figure 7).
The neighborhood Nl of the point pl

i is the set of direct neighbors
of pl

i in this triangulation as well as the point pl
i itself.

Let sl be a depth variable, associated with the initial point pl
i.

Initialize sl to the initially estimated depth. Let sl←l′ be a depth
estimate at pl

i obtained by a first order surface approximation
relying on a neighbor pl′

i . The estimate is calculated from the
depth sl′ and the corresponding normal to the surface at that point.
Clearly, sl←l = sl. Let εl be the stability measure associated
with the point pl

i. We update the depth estimation at every point,
using the depth estimates associated with its neighbors and their
stability, by minimizing the MSE. That is,

{ŝl} = arg min
{sl}

∑

l

∑

l′∈Nl

εγ
l′(sl − sl←l′)

2, (8)

where γ is a constant. The optimal estimated depth satisfies

sl =

∑
l′∈Nl

εγ
l′sl←l′∑

l′∈Nl
εγ
l′

, (9)

which is clearly the weighted average. This way, less stable
neighbors contribute less to the depth estimate.

To minimize the MSE, we repeat this weighted smoothing
iteratively. In each iteration all the initial points are traversed
in descending stability measure order. The depth of each point
is updated immediately after it is calculated, making the process
similar to the Gauss-Seidel method. Note that updating the depth

Fig. 7. Image triangulation

induces an updated surface normal as well. Initially we set γ = 10

and decrease its value after a few iterations until it reaches zero.
Then the process continues with γ = 0 until convergence.

Initially, when γ gets high values, the depth at the highly
unstable points is actually replaced by the interpolated depth,
using their stable neighbors’ depth and normals. Then, as γ

decreases, the noise induced variation is reduced by a smoothing-
like process. Note that this smoothing process is constrained by
the correspondences between monitor points and image points,
yielding a one-to-one correspondence between the depth and the
surface normal. Therefore the process does not converge to a
trivial planar surface solution. See Figure 8 for typical results.
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Fig. 8. The depth estimate before (blue stars) and after one smoothing
iteration (red dots) (left). The final depth estimation of the initial points (right).
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V. INCREASING THE DENSITY OF THE DEPTH MAP

We now augment the initial points with additional points,
leading to a dense surface reconstruction. Additional points are
added by an iterative process that does not change the existing
points.

At the beginning of each iteration, we Delaunay triangulate the
image plane using all the points recovered so far; see Figure 7.
For each triangle we add one surface point that corresponds to
its center of mass. For every point we now aim to calculate the
depth, the surface normal, the corresponding point on the display,
and the second order parameters a, b and c. All these parameters
are required for the next iterations. The estimation of a, b and
c for the initial set of points is described in Section III-B.
Depth - A (second order) estimate of the depth at the new point
is obtained using the three vertices of its triangle. Every such
vertex yields an estimate of the depth at the new point from its
depth, its normal, and the second order shape parameters a, b and
c, associated with it. The depth of the new point is estimated as
the average of these three (Figure 9 (top)).

����
�������� �����

� ���������
� ������ ����� ���	
��������

Fig. 9. Adding a single point within a triangle: estimating the depth of
the new point (top) and testing depth consistencies as part of estimating the
second order parameters (bottom).

Correspondence - The point pm, corresponding to the new
image point pi, should satisfy the homography condition: the 1D
homography, which depends on this corresponding point, should
coincide with the empirical 1D homography available at every
image point up to measurement errors. We found empirically that
the angle between the two monitor-image homographies when
treated as vectors in <4 yields an error which is bounded by a
value of λ = 2◦. As shown in Figure 10, points satisfying this
constraint form a strip around a smooth curve. Let pinit

m be the
center of mass associated with the monitor points corresponding
to the vertices of the triangle. The monitor point corresponding
to pi is chosen:

p̂m = arg min
pm|dang(Hemp

mi ,Han
mi)<λ

‖pinit
m − pm‖2. (10)

Note that pinit
m is the natural choice, which would indeed be

accurate if the surface was locally planar and the camera’s
projection model was affine.

The minimization is performed using the Nelder & Mead
simplex derivative-free method [12]. Finally, the surface normal
follows from the correspondence and the depth.

The second order surface parameters a, b and c - Given the
correspondence and the depth, these parameters may be calculated
up to an unknown scale parameter τ on the matrix A; see (2).
Given an hypothesized value for τ , the depths at the three triangle
vertices may be estimated from the implied second order surface
estimate and compared with the known depths at these points
(estimated in earlier iterations). Thus, the sum of the three squared
differences is used as the cost function for the 1D optimization
process for finding τ (Figure 9, bottom). This method is much
simpler than the one described in Section III-A for estimating
the second order surface parameters for the initial points and
does not require additional monitor-image correspondences. Note
that this estimate is not a simple interpolation but relies on the
empirically estimated homography (calculated at the new point)
to set a powerful constraint on a, b and c. The correspondence
estimate above is similarly constrained.

Now, after the depth, point correspondence, and second order
surface parameters have been estimated at every new point, a new
iteration which further increases the sampling density can begin.
This process continues until the desired density is reached.

VI. THE PLANAR CASE

The reconstruction of planar specular surfaces deserves special
attention. It turns out that this case is much simpler, has a
more intuitive interpretation, and can be solved without numerical
search. It is solved instead by solving several second degree
equations.

For planar surfaces, the reflection of the planar monitor is
a planar virtual object; see Figure 11, where the superscript r

denotes the descriptors of this virtual object. The 1D homography
between the virtual object and the image is identical to Hmi. This
is because planar mirrors preserve angles and distances. In par-
ticular, αk

m = αk
m

r
. The directions associated with the coordinate

frame, {pr
m, [Xr

m, Y r
m, Zr

m]}, of the reflected (virtual) monitor
are specified by the three angles of a 3D rotation matrix. The 2×2

1D homography between the virtual object plane and the image
plane is specified up to scale and thus provides three constraints
on these parameters (3). Therefore this coordinate frame may
be estimated directly from the empirical estimate of Hemp

mi . The
solution from a single homography is non-unique; specifically,
two candidate solutions satisfy the constraint. The false candidate
is eliminated as described below.

For planar mirrors, the difference between the normal to the
monitor and the normal to its reflection is the normal to the mirror,

W =
Zr

m −Zm

‖Zr
m −Zm‖ .

Therefore the candidate normals to the mirror can be recovered
at any image point using Hmi, with no need to establish point
correspondence. Repeating this procedure for several image points
yields corresponding pairs of candidate normals. The correct
normals (one from each pair) form a tight cluster, which we
detect. Averaging the normal estimates in this cluster yields a
more accurate estimate of W . To recover the plane displacement
it is sufficient to establish the correspondence {pm, pi} at a single
point.
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Fig. 10. Search for correspondence in the monitor plane (three typical examples). The blue triangle is specified by the vertex correspondences. The height
of the red surface represents the value of the homography constraint (in degrees), namely dang(Hemp
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Fig. 11. Planar surface reconstruction. The reflection of the planar monitor
caused by the planar mirror surface yields a reflected virtual plane denoted
by the subscript r.

VII. EXPERIMENTAL RESULTS

A. General setting

We tested the proposed technique on three mirroring objects,
each made from a different material. The objects were a planar
mirror (glass), a pair of sunglasses (plastic), and a spherical
ashtray (stainless steel).

The system consists of a monitor displaying illumination im-
ages, an object, reflecting these images, and a camera which
acquires the illumination images after they have been distorted
and reflected. The monitor-camera (3D) transformation is a bit
tricky to find because the monitor is usually not directly visible
to the camera. To overcome this problem we took an indirect ap-
proach: we replaced the object with a checkerboard and estimated
its position relative to the camera. In addition, another camera
captured both this board and the monitor in the same image, and
we used this image to find the relative transformation between the
two planes. Combining these estimates yields the monitor-camera
transformation.

B. Illumination images

The illumination images displayed on the monitor were de-
signed so that the algorithm can extract the following information:

1) A correspondence between the monitor and the camera
for a sparse set of points, and the local monitor-image
transformation scale at these points; see Section III-B.

2) A correspondence between the orientation at every image
point and the orientation at its corresponding point on the

monitor, {αk
i , αk

m}K
k=1, which is required to estimate Hemp

mi
at every image point.

1) Sparse correspondence: Following Morano et al. [9], the
first correspondence is obtained by a single image containing a
color pattern such as the one shown in Figure 12 (left). In this
pattern, each 3 × 3 neighborhood is unique. Therefore, once we
have identified the colors of the neighborhood of a captured patch,
shown in Figure 12 (right), the corresponding neighborhood in the
displayed image shown in Figure 12 (left) can be found. A second
illumination image, containing a checkerboard with vertices at the
colored patches’ centers, is used to accurately find the positions
of the corresponding points via corner detection, with sub-pixel
accuracy.

The next illumination image is specified so that the scale char-
acterizing the monitor-to-surface transformation Tms, required
for the recovery of the local second order estimate of the shape
around the point, can be estimated. This image contains several
points placed at known distances and directions around each of
the initial points.

Fig. 12. Finding the correspondence of the initial points using a pseudo-
random color template. Left, displayed image; right, captured image.

2) Orientation images: Achieving correspondence between all
image orientations and the corresponding orientations at the
monitor points generally requires dense correspondence of lo-
cations. To circumvent this requirement, we use only images
with uniform orientation. That is, we display images of parallel
black and white stripes, where the orientations are the same
over the entire image. See Figure 2 (top). In the corresponding
images (Figure 2 (bottom)), the corresponding local orientations
are naturally nonuniform and are computed as the local tangent
directions at the edges of the stripes. Localizing these edges is
hard because the intensity of the stripes is highly nonuniform
over the image, implying that every selected threshold would
induce some bias in the edge’s location and in the measured angle;
see Figure 13a and b. Both the nonuniform orientation and the
nonuniform intensities are due to the complex imaging process,
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Fig. 13. Using negative images to improve tangent direction recovery.

which includes, among others, the foreshortening by the curved
mirror. To overcome the nonuniformity of the intensity, we display
not only the striped image but also its inverted version. The zero
crossing of the difference between the two reflected images serves
now as the edge; see Figure 13. Moreover, to get a good estimate
of the tangent direction all over the image, we display three shifted
versions of each image. This results in angle estimates for all
points on the curves. A multi-grid process is then used to provide
an estimate of the tangent angle by interpolation at every image
point. In most experiments we used 20 orientations which require
20 × 2 × 3 = 120 images. As we show later, fewer orientations
will often suffice. Given the tangent angles from several images
as well as their corresponding (known) angles on the monitor, the
homography may be estimated at any image point.

C. Results

The local and dense depths are estimated as described in
sections IV-V. The results of the three experiments are shown
in Figures 14-16. For each experiment, we show an image of the
object, an intermediate reconstruction using only the sparse set of
points, and two views of the final, dense reconstruction, obtained
by three iterations of adding points.

We were able to evaluate the method’s accuracy for two of
the objects. For the planar mirror we fit a plane to the recovered
points and compute the residuals. Figure 17 (left and middle)
shows the residuals associated with the depths of the initial points,
obtained by the local, homography based method, and after the
constrained smoothing process. The third plot in Figure 17 shows
a histogram of the residuals for a dense set of points obtained by
the full algorithm. Clearly these residuals are very low and are
bounded by [−0.1, 0.05] millimeters. For planes, the second order
parameters should be zero. The estimated values were indeed very
low, with values smaller than 2 · 10−4.

We perform a similar analysis for the spherical ashtray. First,
we fit a sphere to the recovered sparse point set. The residuals are
presented in the left-hand side of Figure 18 (blue), together with
the stability measure (red, shifted down by 10). Note that many
of these points are of low stability. Clearly, high residuals occur
for these points. Following the constrained smoothing, the gross
residuals are eliminated (Figure 18, middle). The residuals of the
dense reconstructed points with respect to the sphere fitted to them
is shown in Figure 18 (right). Note that the estimated depth is
almost as good as the estimates obtained for the planar mirror. The
second order parameters were estimated accurately as well. The
radius of the ashtray (recovered from the parametric fit) is 44.64

mm. For an ideal spherical ashtray, the second order parameters
should be a = b = −1/r = −0.0224 and c = 0 at every
point. Figure 19 shows the high accuracy of the reconstructed
second order parameters. To remove any doubt, we would like
to emphasize that the process is local and does not assume any
parametric shape.

The existence of the gross residuals demonstrated above can
be explained by the stability problem of the cost function (7) and
is discussed in Section IV. We would like to investigate the effect
of the stability problem on the optimization of the cost functions
from [16] and [15]. For that purpose we reconstruct the spherical
ashtray again twice, once replacing the cost function (7) with
the cost function from [15] and once replacing it with the cost
function from [16]. Up to the cost function replacement, the two
reconstruction processes are identical to the one described above.
For both cases we build the residual graph of the local shape
reconstruction results, similar to the one presented in Figure 18,
left. Now we are only interested in gross residuals; therefore we
count the number of locally reconstructed points with a residual
larger then 10 millimeters. The results are 17, 11 and 16 for
the cost function (7), the cost function from [15], and the cost
function from [16] respectively. As can be seen, the numbers
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Fig. 14. Recovering the surface of a planar glass mirror. An image of the mirror (upper-left). A reconstruction using only the sparse (blue) point set (upper
right). The bottom images are two views of the densely reconstructed surface. The camera location is included in one of them as well.

Fig. 15. Experimental results: recovering the surface of a pair of plastic sunglasses.

are similarly small, but (7) does not outperform its opponent.
This should not bother us since the gross errors are eliminated
at the smoothing stage, and it is much more important to have
consistent convergence of the cost function optimization process,

where the superiority of (7) was demonstrated. To emphasize
this superiority, we would like to mention that while the correct
depths were around 220 millimeters for this experiment, the initial
solutions for (7) and [15] were chosen to be 500 millimeters for
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Fig. 16. Experimental results: recovering the surfaces of a stainless steel ashtray. The sphere drawn in the images is the one that best approximates the
recovered surface.
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Fig. 17. Residuals in millimeters for planar surface reconstruction: (left) for the initial points after local depth estimation computation; (middle) after
smoothing; (right) the residual histogram for the densely reconstructed surface.
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Fig. 18. Residuals in millimeters for ashtray approximated by a sphere: (left) for the initial points before smoothing, plotted together with the instability
measure (red). Note the correlation (middle) for the initial points after smoothing. (Right), the residual histogram for the densely reconstructed surface.

all initial points and the optimization converged for all 84 of
them. Moreover, to ensure convergence for all the initial points
in the case of [16], we had to choose the initial solution to be
260 millimeters, which is much closer to the generally unknown
correct solution.

In the next experiment we checked the dependence of the
local depth estimation accuracy on the number of angle corre-

spondences used to estimate the homography. For a given point,
we plot the depth deviation from a reference depth specified to
be the one estimated using a maximal number (20) of angle
correspondences. This is repeated for 5 different points. See
Figure 20. Clearly, 8 − 10 angles could have been used without
any significant decrease in accuracy.

In the following experiment we compared the general algorithm
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to the special algorithm designed to deal with planar objects (Sec-
tion VI) by applying them to the planar mirror. The algorithms
yield quite accurate results, although the more general algorithm
is somewhat better. The planar object method is, however, faster.
The algorithms were run on 114 points on the surface, recovering
the surface normal at each point. In Figure 21 we plot the
histogram of the angle differences between each pair of normals
for both algorithms in degrees. Both algorithms estimate the
normal with an average dispersion of less than 0.8◦. No smoothing
was done in this experiment.
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Fig. 21. Histogram of differences between the normals estimated at the initial
points of the general algorithm: using the general algorithm (left); using the
plane specific algorithm (right).

In our final experiment, we wanted to verify that the pro-
posed constrained interpolation is indeed advantageous relative
to the commonly used unconstrained one. We consider, again,
a reconstruction of the spherical ashtray. Starting from a small
initial set of 7 points, we use 5 iterations of our constrained
interpolation to add 258 new points (Figure 22). Then, for
comparison, we estimate depth at these points by two different
unconstrained interpolation methods: linear and second order.
For both types of unconstrained interpolation, we first perform
a Delaunay triangulation of the initial points (Figure 22, right).

In the linear interpolation, the Delaunay triangulation of the initial
points also induces the triangulation of the surface and specifies
the depths of the additional points (Figure 23, left). The second
order unconstrained interpolation is somewhat similar to our
constrained interpolation. Every new point lies within a Delaunay
triangle (Figure 22, right). A second order approximation of the
surface is available at the vertices of this triangle and is used
to produce three independent depth estimates at the new point.
These estimates are weighted proportionally to the distance to
the opposite edge of the triangle (Figure 23, right), resulting
in the combined depth estimate. Note that in contrast to the
proposed method, in this unconstrained interpolation we cannot
use additional image information to estimate the second order
surface parameters at the new point.

To compare between the results of the interpolations, we fit a
sphere to the reconstructed points and look at the dispersion of
the points around this sphere. For the constrained interpolation,
the average residual is 0.022 millimeters, while the linear and the
second order unconstrained interpolations yield average residuals
of 0.091 and 0.062 millimeters respectively. The standard devia-
tions of the residuals in the three considered cases were 0.0226,
0.0713 and 0.0492 respectively. This demonstrates the superiority
of the constrained interpolation.

Fig. 22. Choosing points for comparing between the different interpolation
methods. Left: a small set of 7 initial points (green dots). The red and the
green dots were used in the shape reconstruction experiment of the ashtray.
Right: the triangles are the results of the Delaunay triangulation. The dots
represent the additional points. Points that belong to the same triangle have
the same color.

VIII. CONCLUSIONS

This paper describes a new method for 3D shape recovery
of mirroring surfaces. The proposed method builds on earlier
approaches [16], [18] but differs from them in several important
aspects. It shows that local surface reconstruction may be achieved
by computing 1D homographies that specify the transformation of
tangent angles. These homographies may be estimated by robust,
statistically valid (heteroscedastic) methods, at any image point.
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l3 ] are proportional to
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Therefore, a dense surface may be recovered, requiring only a
few initialization points where correspondence must be known.

The depth calculation at the initial points is similar to that
described in [16], but uses a different cost function, which,
because it is based on the homography and does not suffer from
“ghost solutions,” usually has a single minimum. Unlike [18],
these calculations use only local information and do not require
photometric calibration.

A special simple algorithm is also presented for planar surfaces.
This algorithm is able to recover the plane normal accurately
using homographies computed at many points, without any cor-
respondence. A single point correspondence is needed to locate
it.

The surface is recovered with high density using constrained
interpolation, which does not simply interpolate the surface,
but rather solves for the depth, the correspondence, and the
local surface shape, simultaneously at each interpolated point,
requiring consistency with the 1D homography. The superiority of
the constrained interpolation was demonstrated empirically. This
process is completely local and does not require a precalculated,
dense correspondence, which may be difficult to obtain.

For a small fraction of the surface points, the ones which
lie on a curve, the reconstruction is inherently unstable. We
characterize these points both by an empirical measure and, for
two special cases, by a simple geometric characterization. A
smoothing process that relies on stability evaluation was able to
overcome this problem.

The proposed method is essentially a structured light approach
for recovering the shape of specular and mirror-like objects. Note
that the method does not rely on photometric measurements.
Therefore, no photometric calibration is needed. This character-
istic, along with the dense, accurate surface recovery, make it
suitable for real-world applications such as specular parts quality
inspection.
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