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Abstract

In this work we recover the 3D shape of mirroring ob-
jects such as mirrors, sunglasses, and stainless steel ob-
jects. A computer monitor displays several images of par-
allel stripes, each image at a different angle. Reflections
of these stripes in a mirroring surface are captured by the
camera. For every image point, the directions of the dis-
played stripes and their reflections in the image are related
by a 1D homography which can be computed robustly and
using the statistically accurate heteroscedastic model, with-
out monitor–image correspondence, which is generally re-
quired by other techniques. Focusing on a small set of
image points for which monitor–image correspondence is
computed, the depth and the local shape may be calculated
relying on this homography. This is done by an optimization
process which is related to the one proposed by Savarese,
Chen and Perona[10], but is different and more stable. Then
dense surface recovery is performed using constrained in-
terpolation, which does not simply interpolate the surface
depth values, but rather solves for the depth, the correspon-
dence, and the local surface shape, simultaneously at each
interpolated point. Consistency with the 1D homography is
thus required. The proposed method as well as the method
described in [10] are inherently unstable on a small part of
the surface. We propose a method to detect these instabili-
ties and correct them. The method was implemented and the
shapes of a mirror, sunglasses, and a stainless steel ashtray
were recovered at sub-millimeter accuracy.

1. Introduction

The recovery of specular and particularly mirroring sur-
faces has been considered for the last few years. It seems
however, that the current algorithms are not practical yet for
commercial use.

The problem was first addressed by Blake and Brel-
staff [2], who proposed a system that can recover the depth
map and the orientation of a specular surface, when enough
reference Lambertian points exist on it. Several approaches
focus on the reconstruction of surface curves. Zisserman,
Giblin and Blake [15] track the motion of specularities to
obtain information on the surface. Oren and Nayar [8] show
how to discriminate between Lambertian and specular (vir-
tual) features. They track the specular features and, using
known camera motion, recover the surface at their traces
(but not the whole surface). The known camera motion has
also been used by Solem et al. in [12], where the proposed
framework uses level-set based energy minimization. The
minimization provides a smooth surface, that fulfills a rela-
tively small number of constraints that can be motivated by
both secular and lambertian properties of the surface. The
calibration of the system can be challenging. Also, increas-
ing the density of the depth map can be time consuming,
and will mainly base on a smoothness of the surface. In [9]
Park and Cho proposed a system which contains a retrore-
flective hemisphere and a specular object placed in it. The
first point is recovered using two laser beams. All other
points are recovered through propagation. Zheng and Mu-
rata [14] recover the whole shape of a rotating specular ob-
ject by tracking the specularities created by a toroidal light
source.
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Several approaches focus on particular object classes.
Ripsman and Jenkin [10] recover planar specular objects
using a three camera system. Halstead et al. [4] recover
roughly symmetric surfaces from the reflection of a light
pattern containing concentric circles. A medical applica-
tion for the shape recovery of the human cornea was also
demonstrated.

Other approaches attempt to recover a general object
without moving it. In [1] Baba et al. proposed a laser scan-
ning system which is able to scan specular surfaces as well
as Lambertian ones. Unfortunately the system works very
slowly (it takes about 20 minutes to acquire 100 measure-
ments). Bonfort and Sturm [3] introduce a local and effec-
tive process which recovers the shape of the surface using
two cameras which observe the distorted reflections of im-
ages displayed on a monitor. Similar experimental setup
was used by Knauer et al. in [5], where normals to the sur-
face are recovered first and then they are used to recover
the depth map. The calibration necessary for this technique
is challenging. A method proposed by Tarini et al. [13]
uses a single camera which observes the reflection of sev-
eral images displayed on a monitor. It establishes dense
correspondence between the image and the monitor using a
color based process which relies on the uniformity of cer-
tain photometric properties. This correspondence provides
local constraints on depths and the surface normals. They
are then integrated into a full surface estimate by global op-
timization using smoothness assumptions.

Like [13], we use a single camera and a monitor dis-
playing several known patterns. The algorithm we propose,
however, is inspired by the work of Savarese, Chen and Per-
ona [11]. Relying on a single pattern containing intersecting
lines, they recover the surface depth as well as its higher or-
der properties at a sparse set of points where at least three
lines intersect and for which correspondence is available.
Their process is fully local: analyzing the differential curve
distortion leads to the construction of a matrix parameter-
ized by the unknown depth. This matrix becomes degener-
ate for the correct depth. See Figure 3 for a plot of their cost
function as a function of depth.

In our system a computer monitor displays several im-
ages of parallel stripes, each image at a different angle.
Distorted reflections of these stripes in a mirroring surface
are captured by the camera. For every image point, the
directions of the displayed stripes and their reflections in
the image are related by a 1D homography. This homog-
raphy is estimated using robust and statistically valid (het-
eroscedastic) methods (see [6] for related work), without
any knowledge about correspondence. Focusing on a small
set of points for which correspondence is extracted using a
pseudo-random color pattern proposed by Morano [7], the
depth and the local shape may be calculated relying on this
homography. This is done by an optimization process which

is related to the one proposed in [11], but is different and
more stable.

Dense surface recovery is performed as an iterative pro-
cess which constructs a Delaunay triangulation at every step
and adds a new point at the center of each triangle. For ev-
ery new point the depth, the correspondence, and the local
surface shape are estimated locally, using the pre-computed
homography and the vertices of the triangle.

The proposed method as well as the method described in
[11] are inherently unstable on a small part of the surface
where both cost functions are insensitive to the depth. We
quantify the instability by measuring the derivative of the
cost function and use it as a weight for a smoothing process.

The method was implemented and the shapes of a mirror,
sunglasses, and a stainless steel ashtray were recovered. For
the planar mirror the estimated depths were consistent with
a plane with sub-millimeter accuracy.

2. Notations and mathematical derivations

We start by presenting some notations and results de-
scribed in [11]. Consider a monitor that displays a known
image and a camera that captures its reflection in a mirror-
ing surface; see Figures 1 (left) and 11 (left).
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Figure 1. Optical reflection geometry (left), and Surface normal
and depth correspondence (right).

Let pi be an image point corresponding to the point pm

of the reference plane (monitor) and to its reflectance point
ps. The depth recovery goal is to estimate the depth s, such
that sp̂i = ps, where p̂i = pi/‖pi‖.

A basic rule of optics is that ns, the normal at ps, lies
in the plane specified by the camera’s optical center Oi, pi

and pm. Let V be the normal to this plane. Moreover, ns

is the bisector of the angle ∠Oipspm. Denote half of this
angle as θ. Let {Oi, [Xi,Yi,Zi]} be the camera coordi-
nate system specified relative to the camera’s optical cen-
ter, {pm, [Xm,Ym,Zm]} the monitor coordinate system,
and {ps, [U = V × ns, V, W = ns] the (local) reflective
surface coordinate system. The first coordinate system is
known. The second coordinate system is estimated using
an external calibration process. The point pm is specified
by a correspondence process, which defines V and a one-
to-one relationship between s and ns as illustrated in Fig-



ure 1 (right). For a known s, the third coordinate system
together with p0 = pm − ps are specified as well. Most of
our calculations are done in the surface coordinate system.

Consider a line pm(t) = pm + tδpm, t ∈ R where
δpm = cos αmXm + sin αmYm. Clearly, pm(t) lies
in the monitor plane and passes through pm = pm(0).
Let [pu, pv, pw]T be the coordinates of vector δpm in
the {pm, [Xm,Ym,Zm]} coordinate system. The line
pm(t) induces, in a natural way, a curve ps(t) on the
mirroring surface and another curve pi(t) in the image
plane. Note that if the mirroring surface is a plane, then
ps(t) and pi(t) are straight lines and not curves. Clearly,
ps(0) = ps and pi(0) = pi. Let δps = ṗs(0) and
δpi = ṗi(0) be the derivatives of ps(t) at ps and of
pi(t) at pi, respectively. Let αi be the angle for which
δpi = ‖δpi‖(cos αiXi + sin αiYi). The vector δps lies
in the tangent plane of the surface at ps. Therefore, there is
an angle αs such that δps = ‖δps‖(cos αsU + sinαsV ).
Finally, let a, b and c be the parameters describing the sec-
ond order approximation w = 1

2au2 + cuv + 1
2bv2 of the

mirroring surface close to ps in its local coordinate frame.
The following expression, specifying a linear transfor-

mation between tangent vectors, follows from the results
described in [11]:

‖δps‖
[

cos αs

sin αs

]
= AB

[
cos αm

sin αm

]
, (1)

where

∆ = (Ju − 2a cos θ)(Jv − 2b cos θ) − (2c cos θ)2,
Ju = cos2 θ

s+‖p0‖
s‖p0‖ ,

Jv = s+‖p0‖
s‖p0‖ ,

A = 1
∆

[
Jv − 2b cos θ 2c cos θ

2c cos θ Ju − 2a cos θ

]
,

B = 1
‖p0‖

[ − cos2 θ 0 cos θ sin θ
0 −1 0

]
[(Xm)s, (Ym)s],

and (Xm)s and (Ym)s are the column vectors Xm, Ym

expressed in the surface coordinate system.
We observe that this linear transformation, denoted Tms,

also induces a 1D homography between the monitor angles
and the corresponding surface angles. We denote this ho-
mography Hms. The camera observes the surface tangent
plane, implying that there is another 1D homography be-
tween the surface tangent plane angles and the image plane
angles. This homography, Hsi, can be computed from U
and V as follows:

Hsi
∼=


 Ux − (pi)xUz Vx − (pi)xVz

Uy − (pi)yUz Vy − (pi)yVz.


 . (2)

The homography Hmi = HsiHms relates the monitor
angles and the image plane angles. Therefore the combined

homography, as well as its components, can be computed
from the depth s, the image-monitor correspondences be-
tween pi = [(pi)x, (pi)y]T and pm, and the surface local
shape characterization parameters a, b and c.

On the other hand, the same homography Hmi may be
computed empirically, without knowing the depth, the cor-
responding point, and the surface parameters. Comparing
the two versions of the same homography provides a con-
straint that can be used to estimate the depth.

To estimate Hmi, monitor–image angle correspondences
are needed. For that we use a sequence of displayed images,
each associated with a constant tangent direction, defining
the monitor angles {αk

m}K
k=1 for all the points in the dis-

played image. Let {αk
i }K

k=1 be the sequence of tangent an-
gles associated with a particular image point. See examples
of such images in Figure 2. With this sequence of angle
pairs, Hmi can be estimated combining a robust method
with the heteroscedastic technique that we developed for 1D
homography estimation. This method provides results supe-
rior to standard linear regression techniques such as SVD.
Let Hemp

mi denote the estimated homography. Note that it
may be calculated independently for every point in the im-
age.

Figure 2. Typical displayed images (top), and their corresponding
captured images (bottom). Such pairs are used for the 1D homog-
raphy estimation.

The next subsection describes, following [11], how the
various components of the analytical homography Hmi are
calculated.

2.1. Calculating Hmi analytically

Consider a sequence of corresponding angle pairs
{αk

i , αk
m}K

k=1, a correspondence {pi,pm}, and a suggested
depth s. The surface coordinate system, as well as the angle
θ, may be calculated, leading to B and an estimate of Hsi.
Now, angles αk

s are estimated as follows:

[
cos αk

s

sin αk
s

]
∼= H−1

si

[
cos αk

i

sin αk
i

]
. (3)



The K × 3 matrix

M = M(s,pi,pm, {αk
i , αk

m}K
k=1) =



B1
v −B1

u tan α1
s B1

u − B1
v tan α1

s

. . . . . . . . .
Bk

v −Bk
u tan αk

s Bk
u − Bk

v tan αk
s

. . . . . . . . .
BK

v −BK
u tan αK

s BK
u − BK

v tan αK
s


 , (4)

where [
Bk

u

Bk
v

]
= AB

[
cos αk

m

sin αk
m

]
, (5)

has rank 2. Its kernel is ν/‖ν‖, where
νT = [Ju − 2a cos θ , Jv − 2b cos θ , 2c cos θ]. This
kernel specifies A up to a scale factor.

The product Han
mi = HsiAB is an estimate of Hmi.

Therefore, the depth s can be estimated by comparing Han
mi

with Hemp
mi . This method is an alternative to the process de-

scribed in [11], which builds only on the rank 2 property of
M and does not use the alternative empirical estimate Hmi.
For stable points the depth estimates were roughly the same.
One advantage of our optimization criterion is its geomet-
ric interpretation. Another advantage is the larger basin of
attraction as can be seen in Figure 3.
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Figure 3. The cost function used in [11] (dashed line) vs. the pro-
posed cost function (solid line). The two plots correspond to two
different image points.

We would now like to turn our attention to the estima-
tion of the second order surface parameters a, b and c. This
only requires that we estimate the missing scale parameter
to transform Hms into the linear transformation Tms. In our
implementation this is done using the scale based method
of [11]. The relationship between the length of a line on the
monitor and its projection on the image is used to recover
the missing scale parameter. From Tms, A can be recov-
ered, leading to the estimation of a, b and c.

2.2. The planar case

In the final part of this section we would like to describe
a simple method that allows planar mirroring surfaces to be
recovered. We would like to emphasize that this method is
not a component of the general algorithm and is not even a
special case of it. It just provides a simpler, intuitive, recov-
ery method for a limited case.

For planar surfaces the reflection of the planar mon-
itor is a planar virtual object as illustrated in Figure 4.
The superscript r denotes the properties of the reflection.
In addition, the 1D homography between the monitor and
the image, Hmi, is also a 1D homography between the
monitor’s reflection and the image. This is because pla-
nar mirrors preserve angles and distances. In particular,
αk

m = αk
m

r
. The directions associated with the coordinate

frame, {pr
m, [Xr

m,Y r
m,Zr

m]} , of the reflected (virtual)
monitor are specified by three parameters. The 2 × 2 1D
homography is specified up to a scale and thus provides
three constraints on these parameters (eq. 2) and enables
their recovery. For planar mirrors the difference between
the normal to the monitor and the normal to its reflection is
the normal to the mirror W :

W =
Zr

m − Zm

‖Zr
m − Zm‖ .

Note that the normal can be recovered at any image point
using Hmi only, as described above. Thus, an accurate es-
timation of W can be computed by averaging over several
points in the image. There is however, more than one so-
lution satisfying eq. 2, but only one of the solutions consis-
tently yields the same normal for every point on the plane
and thus can be recognized. In order to recover the plane
displacement it is sufficient to establish the correspondence
{pm,pi} at a single point.
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Figure 4. Surface reconstruction. Planar case.

3. Depth estimation for initial points

In this section we explain how to initialize the surface re-
construction process by estimating the depth of a few initial
points. We select these points, denoted {pl

i}L
l=1, as those

for which corresponding monitor points {pl
m}L

l=1 are avail-
able. For each one of these points, the depth s is estimated
using the following optimization process:



ŝ = arg min
s

dang( Hemp
mi ({αk

i , αk
m}K

k=1),

Han
mi(s,pi,pm, {αk

i , αk
m}K

k=1))
(6)

where dang(·, ·) is the distance between the two 1D homo-
graphies. The distance is defined by placing the entries of
the two matrices into 4D vectors and computing the angle
between them. Note that as Hemp

mi is known and Han
mi is

only a function of s, we can denote dang(H
emp
mi ,Han

mi) as
d(s).

Typical initial point reconstruction associated with a
smooth surface and recovered using this 1D optimization
is shown in Figure 5 (left). Clearly, the reconstruction is
problematic around some curve. This problem, which was
already observed in [11], occurs in locations where the ho-
mography Han

mi is highly insensitive to depth. In such cases,
the inevitable inaccuracy in the image data (image point
locations pi and their corresponding angles αk

i ) is signifi-
cantly amplified. Fortunately, this insensitivity is simple to
detect. Figure 6 shows the cost function associated with a
stable and an unstable point near the correct depth. We refer
to the above phenomenon as the stability problem.

To detect regions associated with instability, we calculate
a stability measure, ε = ∂d(s)

∂s . Figure 5 (right) shows the
stability measure computed for each initial point. Points
resulting in a reconstruction discontinuity are exactly those
corresponding to a low stability measure values.
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Figure 7. Image triangulation

3.1. Correcting instability

In contrast to [11], which only detected the unstable
points, our goal is to fully reconstruct the shape. Thus,
we correct the unstable depth estimates using a two stage
smoothing process: First we perform a Delaunay triangula-
tion on the set of initial image points, to specify each point’s
neighbors (Figure 7). The neighborhood Nl of pl

i is the set
of direct neighbors in the triangulation and pl

i itself.
Let sl be a depth variable, associated with the initial

point pl
i. Initialize sl to the initially estimated depth. Let

sl←l′ be a depth estimate at pl
i obtained by a first order sur-

face approximation relying on a neighbor pl′
i . The estimate

is calculated from the depth sl and the corresponding nor-
mal to the surface at that point. Clearly, sl←l = sl. Let εl

be the stability measure associated with the point pl
i. We

update the depth estimation at every point, using the depth
estimates associated with its neighbors and their stability,
by minimizing the MSE. That is

sl := arg min
s

∑
l′∈Nl

εγ
l′(s − sl←l′)2, (7)

where γ is a constant (γ = 10 was used in most experi-
ments). The optimal estimated depth is clearly the weighted
average

sl :=

∑
l′∈Nl

εγ
l′sl←l′∑

l′∈Nl
εγ
l′

. (8)

This way, less stable neighbors have a lower contribution
to the depth estimate. We repeated this weighted smoothing
iteratively. In each iteration all the initial points are tra-
versed in descending stability measure order. The depth is
updated after each iteration, making the process similar to
the Gauss-Seidel method. Note that updating the depth in-
duces an updated surface normal as well. We repeat these
iterations until the process converges. See Figure 8 (left) for
typical results.

With the relatively high γ value, the contribution of the
initial large depth errors is negligible. However, with high
γ, the number of values which are effectively averaged is
low. Therefore, after the first smoothing stage the depth es-
timate is relatively rough, especially near the low stability
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curve. In a second smoothing stage, the estimated depths
are further uniformly averaged, creating a smooth, more ac-
curate reconstruction. For results see Figure 8 (right).

Note that both smoothing processes are constrained by
the correspondences between monitor points and image
points, yielding a one-to-one correspondence between the
depth and the surface normal. Therefore the process does
not converge to a trivial constant solution.

4. Increasing the density of the depth Map

We now augment the initial points with additional points,
leading to a dense surface reconstruction. Additional points
are added by an iterative process that does not change the
existing points.

In the beginning of each iteration, we triangulate the im-
age plane using the already recovered points {pl

i}L
l=1; see

Figure 7. We add a new image point at the center of mass
of each triangle. Every point will be calculated using a lo-
cal process. For every such point we now aim to calculate
the depth, the surface normal, the corresponding point on
the display, and the second order parameters a, b and c. All
these parameters are required for the next iterations.
Depth - A second order estimate of the depth at the new
point is obtained from every vertex of its triangle. This esti-
mate uses the depth and the second order shape parameters
a, b and c, associated with them. The average of these three
estimates serves as the estimate of the depth of the new point
(Figure 9 (left)).
Correspondence - The point pm, corresponding to the new
image point pi is initially set (pinit

m ) to be the center of
mass associated with the monitor points corresponding to
the vertices of the triangle. A final estimate p̂m is found by
relating the 1D homography, which depends on this corre-
sponding point, to the empirical 1D homography available
at every image point.

p̂m = arg min
pm|dang(Hemp

mi ,Han
mi)<λ

‖pinit
m − pm‖2 (9)

The limit λ on the distance between the homographies is

set to account for discretization and homography estima-
tion error. In our experiments λ was set to 2◦. This process
extracts the surface normal as well.
The second order surface parameters a, b and c - Given
the correspondence, these parameters may be calculated up
to an unknown scale parameter τ . Given an hypothesized
value for τ , the depths at the three triangle vertices may be
estimated from the implied second order surface estimate
and compared with the known depths at these points (esti-
mated in earlier iterations). The difference is used as the
cost function for the 1D optimization process for finding
τ (Figure 9 (right)). This method is much simpler than the
one described in Section 2.1 for estimating the second order
surface parameters for the initial points and does not require
additional monitor–image correspondences.
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Figure 9. Adding a single point within a triangle: estimating the
depth of the new point (left) and testing depth consistencies as part
of estimating the second order parameters (right).

Now, after we have estimated the depth, the point corre-
spondence and the second order surface parameters at each
new point, we can start a new iteration and further increase
the sampling density. This process continues until we reach
the desired density.

5. Experimental results

We have implemented our technique and tested it on
three mirroring objects, each made from a different mate-
rial. The first one was a planar mirror, which allowed us to
quantify the quality of the estimate. For the other objects,
a pair of sunglasses and a stainless steel ashtray, which are
general non-planar surfaces, no ground truth was available.

The images displayed on the monitor were designed so
that the algorithm can extract the needed information:

1. A correspondence between the monitor and the camera
for a sparse set of points, and

2. a correspondence between the orientation at every im-
age point and the orientation at its corresponding point
on the monitor, {αk

i , αk
m}K

k=1, which is required to es-
timate Hemp

mi at every image point.

The first correspondence is obtained using the approach
proposed by Morano et al. [7]. In this approach the mon-
itor displays a color pattern such as the one shown in Fig-
ure 10 (left). This pattern is characterized by the fact that
each 3 × 3 neighborhood is unique. Therefore, once we



have identified the neighborhood of a captured patch, shown
in Figure 10 (right), the corresponding neighborhood in the
displayed image shown in Figure 10 (left) can be found.

For each patch, a monitor point pm, in the initial set, is
the center of a monitor patch. Its corresponding image point
pi is estimated as the patch’s center of mass in the image.
In addition, more images, containing several points placed
at known distances and directions around each of the initial
points are displayed as well. This enables the algorithm to
estimate the true scale of A, leading to the recovery of the
local second order estimate of the shape around the point.

Figure 10. Finding the correspondence of the initial points using a
pseudo-random color template. (left) - Displayed image; (right) -
Captured image.

Achieving correspondence between the image orienta-
tions and the corresponding orientations at the monitor
points generally requires dense correspondence of loca-
tions. To avoid this difficulty we display about 100 images
of parallel black and white stripes, where the orientations
are the same all over the image. See Figure 2 (top). In the
corresponding images (Figure 2 (bottom)) the tangent di-
rections are computed at the edges of the stripes. For points
not lying on the edges, the image directions are computed
by interpolation.

The recovered surfaces obtained in the experiments are
shown in Figure 11. For each experiment, the first image in
the row shows an image of the object. The plots in each row
show how the sampling density increases as the algorithm
progresses, resulting in smooth reconstructions.

The results of the planar mirror reconstruction allow us
to quantify the accuracy of the results. First a plane is fit
to the recovered points and the residuals of their depths rel-
ative to the plane are computed. Figures 12 (left and mid-
dle), show the residuals associated with the depths of the
initial points, obtained by the local, homography compar-
ison method, and after the improvement achieved by the
smoothing process.

The third plot in Figure 12 shows a histogram of the
residuals for the much larger dense set of points obtained
by the full algorithm. These residuals are bounded by
[−0.1, 0.05] millimeters. We are aware of the fact that the
planar mirror is a very simple example and thus is likely to
allow accurate estimation. Still, the results are promising.

In the final experiment we compared the general algo-
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Figure 12. Residuals in millimeters for planar surface reconstruc-
tion: (left) - for the initial points after local depth estimation com-
putation; (middle) - after smoothing. (right) - the residual his-
togram for the densely reconstructed surface.

rithm to the special algorithm designed to deal with planar
objects (Section 2.2) by applying them to the planar mir-
ror. The algorithms yield quite accurate results, although
the more general algorithm is somewhat better. On the other
hand, the planar object specific method is faster. The algo-
rithms were run on 114 points on the surface, recovering
the surface normal at each point. In Figure 13 we plot the
histogram of the angle differences between each pair of nor-
mals for both algorithms in degrees. Both algorithms esti-
mate the normal with an average dispersion which less than
0.8◦.
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Figure 13. Histogram of differences between the normals esti-
mated at the initial points of the general algorithm: (left) - using
the general algorithm; (right) - using the simple algorithm.

6. Conclusions

This paper describes a new method for 3D shape recov-
ery of mirroring surfaces. The proposed method builds on
earlier approaches [11, 13] but differs from them in several
important aspects.

Specifically, it builds on a 1D homography evaluated us-
ing robust and statistically valid (heteroscedastic) methods,
at every point in the image. Therefore, it is eventually able
to provide a densely recovered surface, while requiring only
a few initialization points where correspondence is needed.

The depth calculation, at the initial points, is similar to
that described in [11], but uses a different cost function,
which does not suffer from “ghost solutions” [11], and usu-
ally has a single minimum. Unlike [13], these calculations
use only local information, and are, therefore, both faster
and less biased to smooth surfaces.

A special simple algorithm is also presented for planar
surfaces. This algorithm is able to recover the plane accu-
rately using many angle correspondences like in the general
algorithm, but only one point correspondence.
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Figure 11. Experimental results: recovering the surfaces of a planar glass mirror (top), plastic sunglasses (middle), and a stainless steel
ashtray (bottom). From left to right: the object, the final estimation of the initial points, after one density enhancement iteration, the final
surface (four iterations), another view of the final surface.

The surface is recovered with high density using con-
strained interpolation, which does not simply interpolate the
surface, but rather solves for the depth, the correspondence,
and the local surface shape, simultaneously at each interpo-
lated point, requiring consistency with the 1D homography.
This process, is completely local and does not require a pre-
calculated, dense, correspondence, which may be difficult
to obtain.

The proposed method is essentially a structured light ap-
proach for recovering the shape of specular and mirror-like
objects. Note that the method does not rely on photomet-
ric measurements. Therefore, no photometric calibration is
needed. This characteristic, along with the dense, accurate
surface recovery, make it suitable for real-world applica-
tions such as specular parts quality inspection.
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