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Abstract

Archaeological artifacts are of vital importance in ar-
chaeological research. We propose a new approach for au-
tomatic processing of scanned artifacts. It is based on the
definition of a new direction field on surfaces (a normalized
vector field), termed the prominent field. We demonstrate
the applicability of the prominent field in two applications.
The first is surface enhancement if archaeological artifacts,
which helps enhance eroded features and remove scanning
noise. The second is artificial coloring that can replace
manual artifact illustration in archaeological reports.

1. Introduction
Man-made artifacts are a major source of our knowledge

about the past. Archaeologists who study assemblages of
artifacts seek to identify distinctive patterns in them, which
can be used for analysis and comparison. In order to dis-
seminate the information about artifacts, these are either il-
lustrated in reports or scanned by 3D scanners. Nowadays,
3D representations are becoming more popular, since they
provide more information by allowing the archaeologist to
view the artifact from different viewpoints at various scales
and perform comparative measurements. Therefore, this pa-
per focuses on 3D representation of artifacts. Specifically,
we concentrate on artifacts with reliefs, which consist of a
detailed surface, the relief, which resides on top of a smooth
surface.

The main task facing the archaeologists is the analysis
of these artifacts. This is done in several ways – accurately
illustrating them by highlighting the surface edges, com-
paring artifact styles, classifying them etc. All these tasks
can be facilitated by applying computer vision and com-
puter graphics techniques [3, 11, 14, 21]. However, the 3D
representation is often flawed, either due to noise added in
the scanning process or due to defects in the original arti-
facts, such as erosion.

This paper addresses this problem by proposing a novel
framework for processing the artifacts. It is based on a def-
inition of a new direction field (a normalized vector field),

(a) Bilateral filtering [8] (b) Our filtering
Figure 1. Enhancement of a late Hellenistic oil lamp from the first
century BCE

termed the prominent field, defined for every point on the
surface. This field is constructed to be smooth on the
surface. Intuitively, the direction of this prominent field,
termed the prominent direction, is perpendicular to the sur-
face features. In this paper we consider the surface edges as
its features.

Since this prominent field is closely related to the fea-
tures of the relief surface, it is beneficial for a variety of
processing applications. We demonstrate its effectiveness
in two applications: adaptive filtering and artificial color-
ing. The goal of adaptive filtering is to enhance the features
while keeping the surface intact. This may also help to re-
move the scanning noise. We propose to smooth the surface
using the prominent field along the features and enhance
it in the prominent direction (Figure 1). As a second ap-
plication, we present a method for artificially coloring ob-
jects. The key idea is to color the surface according to its
normal curvature in the prominent direction. This coloring
increases the color contrast on the features, thus enhancing
them.

The contribution of this paper is hence threefold:

• We define the prominent field and show how to com-
pute it in interactive time (Section 2).



• We demonstrate how to employ the prominent field for
surface smoothing and enhancement (Section 3).

• We propose a new method for artificial surface color-
ing that emphasizes the object features (Section 4).

2. Prominent field

This section presents a novel direction field – the promi-
nent field. The prominent field should satisfy two require-
ments. First, it should be perpendicular to the surface edges.
Second, it should be smooth on the whole surface, includ-
ing the featureless regions. A field satisfying these require-
ments can enable us for example to enhance features in the
direction of the field, while removing noise in the perpen-
dicular direction.

Below, we first present the background required for
the definition of the prominent field, the assumed surface
model, and the surface curves. Next we define the promi-
nent directions on the features. Finally, we define the
smooth prominent field on the whole surface and present
an algorithm that computes it.

2.1. Surface model

We assume that we are given a relief surface, which con-
sists of a smooth, low frequency base and a high frequency
image [12]. The image is represented as a function defined
on the base, i.e., every point on the base corresponds to a
single point on the image. In practice, this surface is given
as a triangular mesh.

Formally, given a surface S(u, v) : R2 → R3, we as-
sume that it consists of a smooth base B(u, v) : R2 → R3

and a function (image) I(u, v) : R2 → R defined on B:

S(u, v) = B(u, v) + n̄(u, v)I(u, v), (1)

where u and v are the coordinates of a parameterization and
n̄(u, v) : R2 → S2 is the normal of B (S2 being the unit
sphere). We assume that B is locally a manifold and that
its curvature has a smaller value than the curvature of I .
Note that the image I can obtain both positive and negative
values. (see Figure 2)

A relief surface can be viewed as a terrain having ridges,
valleys, and relief edges, as illustrated in Figure 3. Ridges
(valleys) are defined as the maximum (minimum) of the
normal curvature in the first principal direction [6]. Relief
edges run on the slopes between ridges and valleys and are
parallel to them. They are shown to correspond to the im-
age edges of the local image I [12]. Equivalently, they are
defined as zero crossings of the curvature in the direction
of the step edge model that best approximates the surface
locally in the L2 norm.

Figure 2. The surface S (magenta) is composed of a smooth base
B (black) and a function I (blue). Function I at point p can be
locally viewed as an image defined on the tangent plane (orange)
of the base. Point p is a relief edge point if it is an edge point of
this image. The normal np (brown) is the normal of S and n̄p

(green) is the normal of B corresponding to p.

Figure 3. A 3D smooth step model. The green line is a relief
edge, the red line is the corresponding ridge, and the blue line is
the corresponding valley.

2.2. The prominent direction on the features

The prominent direction on the step edge is defined as
the direction perpendicular to the ridge, valley, and relief
edge. In practice, surfaces are not ideal step edges and thus
we need to define the prominent field more carefully.

Let p be a point on the surface, gp be the direction per-
pendicular to the relief edge, and tp be the first principal
direction. On the step edge model, gp is meaningful only
on the relief edge and tp is well-defined everywhere else,
since the relief edge points are umbilical points. Therefore,
to define the prominent direction rp, we take a weighted
combination of both directions, where the weight αp is 1
near relief edges and 0 at ridge/valley points.

Definition 2.1 The prominent direction is defined as

rp = αpgp + (1− αp)tp,

where αp ∈ [0, 1] is a scalar weight that determines the
relative distance of p from the relief edge.

Let κ1 and κ2 be the principal curvatures, k their ratio,
and l the median length of mesh edges. Empirically, we
observed that good results are obtained when

αp =


0 |k| > 4 or max(|κ1|, |κ2|) < 3/l
1 |k| < 2

4−|k|
2 otherwise.

(2)



2.3. The prominent direction on the whole surface

In the previous section we defined the prominent field on
the features. To extend the definition to the whole surface,
we search for the smoothest direction field that satisfies the
values of the prominent field on the features.

Utilizing the Laplacian as the smoothness measure, we
define the prominent field as the solution of the Poisson
equation. The values of the prominent field on the features
serve as boundary conditions for the equation.

Formally, we want to compute the prominent field
sp = [sup, s

v
p], such that the Laplacian [∆sup,∆s

v
p] of the

field components is equal to zero and sp = rp on the fea-
tures. Let βp ∈ [0, 1] be our confidence that p is a feature
point (explained below). Hence, at each point p, the follow-
ing should hold:

βpsp = βprp,

(1− βp)∆sup = 0, (3)
(1− βp)∆svp = 0.

Thus, on the features (βp ≈ 1), the first equation enforces
the boundary conditions and elsewhere, the two other equa-
tions enforce the smoothness of the solution.

We approximate the confidence value βp such that it is
close to one when the point is near an edge and zero oth-
erwise. Recall that the points on the edge are characterized
either by a high ratio between the principal curvatures (near
ridges and valleys) or by a small difference between the sur-
face S and its approximated step edge εr [12, Equation 7].
Specifically,

βp =

 1 (|k| > 2 and max(|κ1|, |κ2|) > 3/l) or
εr > 2/l

0 otherwise,
(4)

where l is the median length of the mesh edges.
To compute the prominent field sp we need to solve

Equation 3. We do it by first deriving a linear approxima-
tion of the Laplacian [∆sup,∆s

v
p] of the components of the

prominent field and then solving the set of linear equations
in sp.

To compute the Laplacian of a scalar function f on a
surface, we follow [13]:

∆f(p) =
1

2A

∑
j∈N(p)

(cot(γj) + cot(δj))(f(p)− f(pj)),

≡ 1
2A

∑
j∈N(p)

wj(f(p)− f(pj)),

(5)
where N(p) is the set of the neighbors of point p, A is the
area of the Voronoi cell of p, and γj and δj are the angles
opposite the edge [p,pj ] of the triangles sharing this edge.

[∆sup,∆s
v
p] cannot be computed directly using Equa-

tion 5, since the components [sup, s
v
p] of the prominent field

are defined in the local tangent plane, which differs from
point to point. To address this problem, we calculate the
transformation between the local coordinate systems of the
neighboring points and utilize it in the computation of the
Laplacian.

This transformation is computed as follows. First, the
tangent plane of point pj is rotated by aligning the normals
of p and pj . Next, the coordinates systems are aligned in
the tangent plane, by applying a 2D rotation by θ: R =
[(cos θ, sin θ)T , (− sin θ, cos θ)T ] (Figure 4). Finally, the
Laplacian of the prominent field can be written as:

∆sup =
1

2A

∑
j=N(p)

wj(sup − cos θsup − sin θsvp),

∆svp =
1

2A

∑
j=N(p)

wj(svp + sin θsup − cos θsvp).
(6)

(a) (b)
Figure 4. Alignment of the local coordinate systems. (a) First, we
rotate the coordinate system of pj so that the tangent plane of pj

coincides with the tangent plane of p. The rotation is performed
around the cross product of np and npj . (b) Then, the coordinate
systems of pj and p are registered by rotating the rotated tangent
plane of pj by θ.

Using Equations 6 and 4, we now solve the linear system
of Equation 3, yielding the prominent field. Finally, since
the prominent field is a direction field, it is normalized.
Note that after normalization, the Laplacian is not guaran-
teed to remain small. In practice, however, the change is
negligible.

Figure 5 illustrates the construction of the prominent
field on part of the object in Figure 10. It can be seen that
the principal directions are meaningful near the ridges and
valleys, but not between them. Moreover, the relief direc-
tions are meaningful between the ridges and valleys, but not
on them. Our prominent field is meaningful everywhere.

3. Surface enhancement and smoothing
Archaeological objects are often unsuitable for further

processing and visual analysis, either due to erosion that
they underwent during the ages or due to scanning noise.



(a) Feature curves (b) First principal direction (c) Relief direction (d) Prominent field
Figure 5. Construction of the prominent field. The prominent field (d) is a smooth combination of the first principal direction (b) and the
relief direction (c). In contrast to its components, it is well-defined and smooth everyehere.

(a) The given object (b) Standard bilateral filtering (c) Our bilateral filtering (d) Our final result
Figure 6. Enhancement of a late Hellenistic oil lamp from the first century BCE

This section describes how to enhance and smooth these
objects, to enable effective processing and analysis.

One way to address these problems is by using adap-
tive filtering algorithms, which smooth (or denoise) the sur-
face, while keeping the features intact or enhancing them.
Existing approaches for adaptive filtering on meshes op-
erate either on the mesh vertices [5, 8, 22], the mesh nor-
mals [2, 17], or the curvatures [7]. The techniques differ in
the energy functional they attempt to minimize.

While these approaches perform well preserving and en-
hancing ridges and valleys, they are not designed for re-
lief objects. In particular, there are a couple of cases in
which they may produce inferior results. The first case oc-
curs when no distinct ridges or valleys can be detected on
the surface. These approaches will simply smooth the ob-
jects, diminishing the 3D features, as seen in Figure 6(b).
The second case occurs when there exist distinct valleys
and ridges, but the slope of their step edge is shallow, as
illustrated in Figure 7. In this case, these approaches aim
at enhancing each of these features separately, but do not
enhance the step edge model between them. Our goal is to
preserve and enhance this step edge by steepening the slope
of the step edge.

We propose a novel approach that solves these problems.

Figure 7. The cyan curve is the local image defined on the black
base. Since this surface has sharp ridges and valleys, it will not
be enhanced by standard adaptive filtering. The desired result,
illustrated in orange, enhances the 3D feature.

It consists of two steps – bilateral filtering and inverse cur-
vature flow – each makes use of our prominent field to guide
the smoothing and enhancement directions. Though we de-
scribe a specific bilateral filtering, our prominent field can
be combined with many other adaptive filtering techniques.

Bilateral filtering: A bilateral filter sets the position of a
vertex to a weighted average of its neighbors. The weights
depend both on the distance between the points and on their
similarity. We propose to base the similarity component on
the distance between the points along the prominent direc-
tion.

Let p be a point on the surface, N(p) be the set of its
neighbors, dj = ‖p − pj‖ be the Euclidean distance be-
tween p and pj , and np be the normal at p. In [8] it is
proposed to define the similarity as the distance between pj



(a) The given object (b) Standard bilateral filtering

(c) Our bilateral filtering (d) Our final result
Figure 8. A Hellenistic handle stamped by a Greek official, from the first century BCE

and p’s tangent plane: hj = |〈np,p−pj〉|, so that smooth-
ing is performed when pj is close to the tangent plane of p.
We propose to add to this definition a term that depends on
rj , the projection of p − pj along the prominent direction.
Thus, smoothing will not be performed in the prominent di-
rection. This is done by multiplying the weights suggested
in [8] by the term e−r

2
j/2σ

2
p .

Hence, our similarity-based change of p in its normal
direction is

δp = C
∑

j∈N(p)

e−d
2
j/2σ

2
c · e−h

2
j/2σ

2
s · e−r

2
j/2σ

2
p · hj , (7)

yielding a new position for p:

p′ = p + δpnp, (8)

where, C is the normalization coefficient. In the implemen-
tation, σs = 0.5σc, σs = 0.4σc, and σc is a user-supplied
parameter that determines the amount of smoothing. It is
common to slightly smooth the object prior to computing
the distances.

Figures 6(c) & 8(c) show the results obtained by apply-
ing our bilateral filtering to scans of real archaeological ar-
tifacts. In comparison to [8] (Figures 6(b) & 8(b)) it can be
seen that the features are more pronounced.

Inverse-curvature flow: The inverse-curvature flow is a
high frequency filter [1, 18, 19], which updates the position
of a vertex so as to increase the absolute value of its curva-
ture. It can be based on the mean, maximum, minimum, or
any other type of curvature.

While the inverse-curvature flow manages to enhance
features, it suffers from two drawbacks. First, it is an itera-
tive process that does not have a well-defined stopping cri-
terion. Second, it often creates spurious features on the sur-
face, in addition to the enhanced features. This is so since
in near-flat regions, points with locally higher-curvature val-
ues are enhanced.

We propose a new inverse-curvature flow, which is based
on two modifications to the standard flow. First, the curva-
ture is computed in the prominent direction, enhancing only
the real features. Second, a new stopping criterion is sug-
gested, which is based on the intuition in which a feature
point should not exceed the maximum of the feature with
respect to the base. Figure 9 illustrates the problem. The
exaggerated edge (red) exceeds the original height of the
feature (green). It is also possible to let the user decide in-
teractively when to stop the process.

Figure 9. Inverse-curvature flow. The initial surface in cyan;
the standard inverse-curvature flow in magenta, and our inverse-
curvature flow in orange.

To do this, at each point the normal to the base surface is
estimated [12]. Since the height is now locally defined with
respect to the base, the local maximum (minimum) can be



(a) The given object (b) After our bilateral filtering (d) Our final result
Figure 10. A late Hellenistic oil lamp from the first century BCE

(a) The given object (b) After our bilateral filtering (d) Our final result
Figure 11. Ottoman pipe

tested. Hence, the stopping criterion can be enforced.

Results: Figures 6,8,10-11 illustrate some of our results.
It can be seen that the inverse-curvature flow indeed en-
hances the features obtained after applying bilateral filter-
ing, which removed the noise from the original surface.

4. Prominent coloring
Traditionally, archaeological artifacts are drawn by hand

and printed in the reports of archaeological excavations, as
illustrated in Figure 12. The artists utilize artificial coloring
in order to enhance the three-dimensional features. Several
kinds of computerized artificial coloring (shading) methods
have been proposed in the literature [4, 9, 10, 15, 20], in
which the object is colored according to its geometric prop-
erties. For instance, it is proposed in [10] to color the shape
according to its mean curvature.

Figure 12. Manual illustration of an archaeological artifact [16]

We propose a new method for artificial coloring, termed
prominent coloring. The color of a vertex is set according
to its curvature in the prominent direction. The lower the
curvature, the darker its color. Formally, given a vertex with



(a) The object (b) Max-curvature shading (c) Mean-curvature shading (d) Prominent coloring
Figure 13. Comparison of various coloring methods. Top: complete artifact; bottom: partial profile. Note that the maximal-curvature
shading is noisy; the mean-curvature shading is blurred; our shading is crisper and less noisy. This is visible, for instance, on the eye,
crown, and hair.

curvature prominent κp, its color is defined as

color = arctan(λκp), (9)

where λ is a parameter.
Figures 13-14 show that indeed the prominent coloring

emphasizes the transition between areas of positive and neg-
ative prominent curvature, i.e., the transition between ridges
and valleys. It can be seen that the maximal-curvature
shading is noisy and the mean-curvature shading is blurred,
while the prominent coloring is crisper.

5. Conclusions
This paper addressed the problem of automatic process-

ing of scanned artifacts. The processing is based on a def-
inition of a new field – the prominent field. The prominent
field is computed in interactive time (a couple of seconds
for 100,000 vertices). We demonstrated how to employ the

prominent field for surface smoothing and enhancement and
for artificial surface coloring, which emphasizes the object
features. In both cases, the methods were applied to archae-
ological artifacts, which are typically noisy and suffered
erosion over time.

In the future, we intend to apply our prominent field to
other applications, such as shape matching and reconstruc-
tion.
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(b) Maximal-curvature shading (c) Mean-curvature shading (d) Prominent coloring
Figure 14. Comparison of various shading methods
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