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A non-parametric unsupervised method for analyzing changes in complex datasets is
proposed. It is based on the mean shift clustering algorithm. Mean shift is used to
cluster the old and new datasets and compare the results in a non-parametric manner.
Each point from the new dataset naturally belongs to a cluster of points from its dataset.

The method is also able to find to which cluster the point belongs in the old dataset
and use this information to report qualitative differences between that dataset and the
new one. Changes in local cluster distribution are also reported. The report can then

be used to try to understand the underlying reasons which caused the changes in the
distributions. On the basis of this method, a transductive transfer learning method for
automatically labeling data from the new dataset is also proposed. This labeled data
is used, in addition to the old training set, to train a classifier better suited to the

new dataset. The algorithm has been implemented and tested on simulated and real (a
stereo image pair) datasets. Its performance was also compared to several state-of-the-art
methods.
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1. Introduction

Consider a general process which among other things produces datasets. The pro-

cess could be, for example, a production and inspection procedure or a survey

conducted on consumer buying habits. This data can then be analyzed and, if some

of the examples are labeled, classifiers can be trained on them. Under the näıve as-

sumption that the process does not change over time, the new datasets produced by

the process will be drawn from the same distribution, the analysis performed on the

initial dataset will remain valid, and the classifiers will maintain their performance.

The problem, however, is that processes vary over time and the distribution

of the data may change. The change might be an indication that the underlying

production process is not working correctly, requiring manual intervention by the

operator to fix the problem. In order for the domain expert to be able to diagnose the

problem, it is not enough to state that the distribution has changed. It is important

to give a qualitative description of the nature of those changes. When a classifier

has been trained on the initial dataset, changes in the distribution will diminish
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its performance on the new dataset. Estimating the decrease in performance is

important for deciding whether a new classifier has to be trained and whether

that can be done automatically without requiring a large number of new manually

labeled data points.

To address this problem we propose the following approach. A clustering algo-

rithm is run on the dataset. The parameters of the algorithm are automatically set

so that the results of the clustering will not change when the algorithm is run on

different datasets drawn from the same distribution. It is possible that more than

one set of parameters can be used, each representing a different aspect of the data

by a different number of clusters.

For a given set of parameters two datasets are compared. Our technique com-

pares the clusters in a non-parametric manner. It can detect whether a cluster has

been split into several clusters or, conversely, whether several clusters merged into

one. Newly created or eliminated clusters can also be detected, as can those that

have moved or whose dispersion has changed. All these results are reported to the

user, who can use them to try to understand the cause of the change in the distri-

bution. The expert can then decide which if any corrective action should be taken

to return the process to an adequate state. In some cases classifiers trained on the

initial dataset can be retrained automatically for the new dataset without human

intervention.

The basis of our algorithm is the mean shift clustering algorithm (MSC) 9,14.

This algorithm is used for several reasons. First, it is closely related to the non-

parametric estimation of the distribution (kernel density estimation). Second, as the

parameter of the algorithm (bandwidth) changes continuously, so does the cluster

structure. This is not true, for example, for other clustering algorithms such as

k-means or Gaussian mixture models. We propose a natural extension to MSC that

compares two datasets in a non-parametric fashion.

The main contributions of the paper are as follows. The algorithm operates on

large complex high dimensional datasets. Each dataset can be composed of several

clusters of arbitrary shape. The algorithm is able to analyze the changes the clusters

underwent from one dataset to another. Contrary to other algorithms it does not

produce a single number that measures the global change between the datasets,

rather it gives a description of the local changes that occurred between the datasets.

This description can then be used by a higher level process or a domain expert to

try to explain the reasons for the changes between the datasets.

The paper continues as follows. In the next section related work will be reviewed.

A short description of the MSC algorithm and its important characteristics will

also be given. Section 3 will describe our method for analyzing a single dataset,

as a function of the bandwidth, yielding a tree structure of clusters. One of its

main results is a set of bandwidth values which produce stable clustering results on

datasets drawn from the same distribution. In Section 4 the more general technique

for comparing two unlabeled datasets will be presented. The method can also be

used in the transductive transfer learning setting. Initial results showing how our
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method can be used in that setting are given in Section 5. There we are able to use

the results of our algorithm to automatically train a classifier for the new dataset

using the one trained for the old dataset. Experimental results on simulated and real

data will be presented in Section 6. We use a stereo image pair as an example of two

datasets that underwent some change and will apply the algorithm to them. In this

section we will also compare our method to several other methods for comparing

clusterings and distributions. Finally, in Section 7 we will draw some conclusions

from our work and suggest future research directions.

2. Related work

When considering data change analysis, techniques can be divided into parametric

and non-parametric tests. Parametric methods can be considered when the distri-

butions from which the datasets were drawn can be approximated as belonging to a

specific distribution. In this case there exist statistical methods which compare two

datasets generated at different times. These methods can determine for example

whether there has been a change in the mean or the variance of the distribution.

When the distribution is complex applying these methods on the whole dataset

the results might not be meaningful. They can be applied however on each cluster

separately. We however, concentrate on non-parametric methods. We divide these

methods into types based on the information known when the test is performed.

The first setting that should be considered is the supervised setting in which

both datasets are labeled. In this paper we will not be considering this setting.

In the semi-supervised setting the initial dataset is labeled but we are not famil-

iar with the new dataset. In this case we try to determine whether our knowledge is

useful for the new dataset. In Section 5 we give an example on how our algorithm

can be used in the semi-supervised setting but this is not the main focus of the

paper.

A more relevant setting which is relevant for our case is when changes and dif-

ferences between the datasets may be considered for discovering truly unexpected

phenomena such as outliers. There are several research directions in outlier de-

tection, as it was defined in 36. Distribution-based techniques consider outliers as

points which have low distribution density values. These techniques use a para-

metric distribution model of the old dataset estimated from it 3,32. Density-based

methods estimate the density in the old dataset using non-parametric methods such

the Parzen window method 6. Distance-based methods test whether there exist a

certain number of points in the old dataset within a certain distance from a point

in the new dataset. Points for which this condition does not hold are considered

outliers 21,1. Finally, the clustering-based approach applies a clustering algorithm to

the data and considers clusters with significantly fewer points than other clusters as

clusters of outliers 23,11. Clustering data with outliers is in itself a challenging task.

In 29 for example, a robust neural gas algorithm is proposed. It is able to deal with

data with outliers. It then automatically decides which points are outliers using a
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minimum description length (MDL) measure. Our work also performs clustering

as a first step and analyzes the differences between the datasets using a method

based on mean shift, which can be described as a density-based method. We do

not, however, only search for outliers but also look for other types of changes in the

distribution, for which the algorithm produces a qualitative description.

In the unsupervised setting only the two datasets are given, and an important re-

search direction is to compare clustering results on the same dataset. This direction

is related to our work: in the first part of the algorithm we find for which parameter

values the clustering results have changed and then choose values in between them,

for which we expect the clustering results to be stable when the algorithm is given

different datasets generated from the same distribution. In our analysis we are able

to give a qualitative description of the changes in the clustering results between

the two datasets, for each of these values. This is in contrast to a large number of

works which only give a numeric value for the difference between the clusterings.

In 31,17,5,16 measures based on pair counting were suggested. Set matching based

measures are proposed in 22 and in 25,26. Information theoretic based measures

were proposed in 35. In 30 a spatially aware clustering comparison method was pro-

posed. All these types of measures are intended for comparing results of clustering

algorithms applied on the same data base. Such methods cannot be used in our case

when an algorithm is applied to two different datasets. This constraint is lifted in

the methods proposed in 2 and 8 but the algorithm still returns a numerical value

and not a description of the changes.

A different approach is taken by measuring the Kullback-Leibler divergence

between the two datasets. The method measures the difference between the distri-

butions from which the two datasets have been drawn. Thus, any change between

the distributions is measured. As one of the main goals of our algorithm is to de-

termine whether a classifier trained on the first dataset can be used on the second,

we are interested in the structure of the clusterings and the shape and positions of

each cluster, but not, for example, in the number of points in each cluster — which

the KL divergence also measures. As in all the other methods, this one also returns

a single value and not a description of the difference between the datasets.

It is also possible to use classifiers such as a one class SVM to define all the

points of the initial dataset as belonging to one class. Change is detected if the new

points are classified as not belonging to that class. In 24, several one class SVM

classifiers are trained on different representations of the initial dataset. For new

data points (e.g., in the time-series setting), if all the classifiers classify the point

as not belonging to the class, it is declared an outlier or a novelty point.

An important field of research deals with change detection in data

streams 20,28,4,33,13,12. Even though they are also interested in change detection,

the setting and emphasis is different. In stream analysis at each point in time a

new data point is generated while in our setting all the points of a dataset are

received at once. One of their main goals is to detect change as fast as possible
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(i.e., with the smallest number of points), where in our case the two point sets are

given. Our main goal is to analyze complex multi-cluster distributions and produce

a description of the change. Thus, even though techniques might be shared between

the methods designed to solve the two problems, the goals and the emphases are

different.

2.1. Mean shift clustering

There exist many clustering algorithms, such as k-means clustering, spectral clus-

tering, agglomerative clustering, and more, each with its strengths and weaknesses.

We chose to use mean shift clustering as the basis of our algorithm. Mean shift has

been used in hundreds of applications, among them mean shift segmentation 7 and

mean shift tracking 10. We will therefore give a short description of this algorithm

and its main characteristics. For a complete description of the algorithm please

refer to 9.

Given n d-dimensional data points xi, i = 1, . . . , n, the kernel density estimator

method approximates the density f at point x as

f(x) =
1

nhd

n∑
i=1

k

(
||x− xi||

h

2
)
, (1)

where k() is the profile of a kernel function K(). A d-variate kernel is a bounded

function with compact support satisfying

K(x) ≥ 0 and

∫
ℜd

K(x)dx = 1.

h is the bandwidth value. The bandwidth parameter h acts as a smoothing param-

eter. The larger the value, the smoother the estimated density function. The mean

shift clustering method applies a simple gradient ascent of the density function

starting from every data point. The gradient is computed by taking the derivative

of eq.1. The process is applied to all the points in the dataset. For each data point

in the dataset it starts with y1 equals to that point. At each iteration yj+1 is

computed as follows:

yj+1 =

n∑
i=1

xig
(

||yj−xi||
h

)
n∑

i=1

g
(

||yj−xi||
h

) j = 1, 2, . . . , (2)

where g(x) = −k′(x). The process converges to a local maximum of the density

function (a mode). All points which converge to the same mode are declared as

belonging to the same cluster. Points which converge to very small clusters are

defined as not belonging to any cluster. These points will belong to a special cluster

called Cluster 0. The user selects the value of the bandwidth parameter h. This

value indirectly determines the number of clusters. As h increases in value, the

density function estimate becomes smoother, which results in fewer clusters.
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Under the assumption that the kernel function K has a limited support, each

iteration of the mean shift algorithm can be computed efficiently using approximate

nearest neighbor techniques 14.

The main characteristics of the mean shift algorithm are:

(1) The algorithm is closely related to the kernel density estimation function. For

each value of the bandwidth h, clustering is performed, which finds for each

mode the points belonging to its basin of attraction.

(2) The number of clusters is not given by the user; rather, it is determined by the

algorithm as a function of h.

(3) Continuous changes in the value of h yield continuous changes in the clustering

results.

These important characteristics will be used by our change detection algorithm.

3. Single dataset analysis

In this section we will describe our method for the analysis of a single unlabeled

dataset. As mentioned above, the outcome of MSC is influenced by the bandwidth h,

which determines the smoothness of the calculated density function. As h changes,

so does the underlying density function. It is therefore important to develop a

method for selecting the appropriate bandwidth or bandwidths. For a given dataset

we can use several h’s that represent different aspects of the structure of the data.

The bandwidth value should be within a range where the cluster structure is stable.

I.e., for different datasets drawn from the same distribution, the algorithm should

return the same number of clusters in approximately the same places in space. We

want to avoid using bandwidth values where phase changes occur. In other words,

we do not want to use an h value where around that value the cluster structure of

the data changes. At these values two datasets drawn from the same distribution

might yield different cluster structures, causing us to mistakenly detect a change in

the distribution. We denote this bandwidth value set as CP (change points).

In order to demonstrate the importance of choosing stable h values, consider

the dataset shown in Figure 1. For this dataset, for values of h greater than 8.9

three clusters are generated. Around the bandwidth value h = 8.9 one of the three

recovered clusters splits into two. At h = 2.9 one of the four clusters splits again

into two clusters. We generated 10 datasets drawn from the same distribution and

ran MSC on them using the unstable bandwidth h = 8.9 and the stable bandwidth

value in between the two unstable values, h = (8.9+ 2.9)/2 = 5.9. In the first case,

for 7 datasets 3 clusters were found, whereas for the rest 4 clusters were found. In

the second case, 4 clusters were found for all 10 datasets. Thus, the h values which

lie at the midpoint between two distant change points can be selected as stable

representatives to describe the dataset.

In order to find the appropriate bandwidth values, we run the finding h algo-

rithm shown in Algorithm 1, as follows. We run MSC for bandwidth values between
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(a) Unstable bandwidth h = 8.9
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(b) Stable bandwidth h = 5.9

Fig. 1. When given two datasets drawn from the same distribution for bandwidth value h close
to the phase change (h = 8.9), clustering results can be different as seen in (a). In some cases
three clusters are produced while in others four. For a stable value of h (h = 5.9), mean shift
consistently produces the same number of clusters (b).

finding h(hmax,hmin,∆,Data)

res[h]←MSC(hmax, Data)

CP ← hmax

for h← hmax to hmin do
h← h−∆

res[h]←MSC(h,Data)

if structure changed(res[h+∆], res[h]) then

CP ← CP
∪
{h};

end

end
Algorithm 1: finding h(hmax,hmin,∆,Data)

hmax and hmin at a resolution of ∆h. Each consecutive pair of results is compared

by putting the results in a confusion matrix. Each point is placed in the cell in the

matrix representing the cluster it belonged to in the first run and the cluster it

belonged to in the second run. We use a membership test to match clusters from
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the first run to clusters of the second run. If, for example, most of the points be-

longing to cluster A in the first run belong to cluster B in the second run, the

clusters match. In addition, we are able to detect cases in which a cluster from the

first run splits into several clusters in the second run or disintegrates into a set

of points that do not cluster (denoting such points as belonging to cluster 0). A

cluster tree is created as a result. The clusters are also named in order to represent

the tree structure. The clusters generated for h = hmax are named 1,2, etc. When,

for example, cluster 1 splits into two clusters, they will be named 1.1 and 1.2. The h

values at which the cluster structure change occurred are stored in a list of change

points termed CP .

As mentioned above, stable points on which to perform comparisons to other

datasets are chosen to be at midpoints between consecutive change points—as far

as possible from the change points themselves. Such points are only selected if the

distance between the change points is larger than k∆h. In our implementation we

used k = 2. The set of stable bandwidth values is denoted by SB. The stability of

the clustering can also be verified using methods such as 18. For unsupervised data

all SB values can be used to analyze the data and represent the different aspects of

its structure. When additional knowledge is available about the dataset —labeled

data, for example—a meaningful subset of SB can be chosen. Details of this case

will be discussed in Section 5.

The values of hmax and hmin are obviously data dependent. The value of hmax

is selected such as the minimal (maybe only one) number of clusters is generated,

while hmin has to be set so as the maximal number of clusters is generated. The

resolution of the scan is set by ∆h. If it is not set small enough several changes in

clusters structure will be detected together.

Results of the analysis of a dataset are shown in Figures 2 & 3. Figure 2

shows how the clustering results change as a function of h. In this experiment

hmax = 40.0, hmin = 1.3, and ∆h = 0.3 were used. For h = 40 only one clus-

ter exists. At h = 17.2 the cluster splits into two. The splitting process continues

for several other values of h. At h = 6.7 one of the clusters disintegrates. The

results are also shown in a tree structure in Figure 3. The CP of the dataset is

CP = {40, 17.2, 16.3, 15.4, 13.9, 13.6, 11.2, 10, 6.7, 2.5, 1.6}. The SB for this dataset

is: SB = {40, 28.6, 16.75, 15.85, 14.65, 12.4, 10.6, 8.35, 4.6, 2.05}.

4. Data set comparison

The main challenge that we address in this paper is how to compare two datasets.

These sets will be denoted D and D′. This problem is more challenging than the one

we faced in the previous section where we analyzed the difference in the clustering

results of a single dataset when the bandwidth value changed. Here we are given two

different datasets consisting of different points and thus a different method must be

devised to compare the different clustering results. There are two main differences

between the two cases. First, the datasets are different and thus a simple set mem-
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Fig. 2. MSC results with decreasing h values. The mode of each cluster is marked by a +.

bership test is not possible. Second, the cluster structure in this case can change in

various ways, whereas in the previous case clusters could only split or disintegrate.

Now they can split, merge, disintegrate or be formed. The distribution of points

within a cluster may also change over time. Clusters can also move, contract or

expand. Our goal is to detect all these changes without making any assumptions

on the distribution of each cluster, in a non-parametric manner.

Here again we will use mean shift as the basis of our algorithm. The general

idea is that each point p′ ∈ D′ will be associated with a cluster of points from D

and a cluster of points from D′. Analyzing these associations enables the algorithm

to determine whether there has been a significant change between the datasets and

give a qualitative description of the change.

4.1. Two-set mean shift clustering

The first step of the algorithm is to choose a set of h′s which are stable for both

datasets. This is done simply by running the single dataset process on both datasets,

yielding the two change point lists, CPD (Figures 2 and 3) and CPD′ (Figures 4

and 5), which are then merged. From it the list of stable points, SBD,D′ , is com-

puted.

For each h ∈ SBD,D′ we apply the two-set mean shift clustering comparison
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Fig. 3. The cluster structure tree of the dataset

procedure, TSMSC(D,D′, h) (shown in Algorithm 2), which will be described

shortly. The basic function that we will be using is MSCp(p, h,D) that runs the

mean shift procedure starting from point p, on dataset D, using bandwidth value

h. The gradient ascent procedure is run until the process converges to a mode of

the distribution of D and returns the ID of the cluster associated with that mode.

In the standard mean shift procedure, it is assumed that p ∈ D. This assumption

will be lifted in TSMSC(D,D′, h).

We will now describe the TSMSC(D,D′, h)

procedure. At first, MSCp(p
′, h,D′) is run starting from each point p′ ∈ D′. In

addition, MSCp(p
′, h,D) is also run, starting again from each point p′ ∈ D′, seek-
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Fig. 4. MSC results with decreasing h values D′

TSMSC (D,D′,h)

foreach p′ in D′ do
C ←MSCp(p

′, h,D)

C ′ ←MSCp(p
′, h,D′)

table(C ′, C)← table(C ′, C) + 1

end
Algorithm 2: TSMSC (D,D′,h)

ing modes in the D dataset (estimating the density using the points from dataset

D). As a result, each point in D′ is associated with two clusters: C ′, which is a

cluster of D′, and C, which is a cluster of D. Taking the results obtained for all the

points, a confusion matrix (table) is generated and analyzed.

The running time of a TSMSC(D,D′, h) function is practically equivalent to

running mean shift clustering twice. Mean shift is currently being used in many

applications on large datasets. In a previous work we developed a mean shift al-

gorithm which is able to deal with high-dimensional data 14 using approximate

nearest neighbor data structures 19.

The analysis of the confusion matrix is performed as follows. Consider, for ex-
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Fig. 5. The cluster structure tree with decreasing h values (D′)

ample, that a new cluster has been formed in D′ which did not exist in D (and

which might later be discovered to be a cluster of outliers). Points belonging to this

cluster converged to this new cluster when the regular mean shift process was run

on D′. When, however, the process was run on those points on the distribution of

D, the process did not converge to any mode (cluster 0) as there are no points in

that region. Inspecting the confusion matrix we can conclude that a new cluster has

been formed. In a similar fashion we can detect whether a cluster has disintegrated,

whether a cluster has split into two clusters, or whether two clusters were merged

to form a single cluster.

Clusters may also change their local distribution. In this case some of the points

belonging to the cluster in D′ will belong to cluster 0 in D. In addition, points

which lie on the boundary of the cluster for one dataset may lie in the core of

the cluster in the second. We therefore provide a non-parametric definition of a

boundary point in the next section and use it in order to refine the analysis of this

case. Thus, the confusion matrix we produce differentiates between points which lie
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in the core of the cluster C ′ and points which lie on the boundary C ′
b.

4.2. Analyzing the cluster boundary

When there are no significant changes between the datasets D and D′, the clusters

from D′ will correspond to clusters from D. Nonetheless, despite this correspon-

dence, some of the changes in the dispersion may not be detected. We want to be

able to detect whether one of the cluster’s positions or its dispersion has changed.

Changes in the dispersion can be discovered by detecting whether the boundary

of the cluster has changed. To that end, we want to define which points lie on

the boundary of the cluster. We will refer to those points as boundary points. The

boundary points of cluster C will be denoted as Cb. We can analyze the changes

in the boundary in two ways: by checking whether points from cluster C ′ in D′

that converged to cluster C in D lie on C ′s boundary, and by discovering to where

C ′s boundary points converge. By integrating the results of this analysis into the

comparison process, we can detect changes in a cluster’s dispersion and position.

Several methods have been suggested to determine when a point lies on a clus-

ter’s boundary. In general all these methods define a boundary point as a point with

low probability density. In the parametric case there exists an estimated density

function which can be used to compute the density at that point. For example,

when considering the Gaussian distribution, the Mahalanobis distance can be used.

In the non-parametric approach, methods like the Tukey depth, which is also known

as location or halfspace depth, were suggested 34. For a non-degenerate point set in

space, the Tukey depth of a point p is the minimum number of data points on any

side of a hyper-plane through p.

We can calculate the Tukey depth of each point in the cluster. Points with

Tukey depth less than a threshold T will be considered to lie on the boundary.

There are two main problems with this technique. First, in high dimensions d ≥ 3,

the expected time bound is O(nd−1), which is computationally expensive. Second,

the Tukey depth for a point is influenced also by the shape of the cluster. For

example, points that lie in non-convex areas will not be considered to lie on the

boundary, as the method considers all the data points and does not examine only the

local area. Figure 6 illustrates the problem of using Tukey depth for a non-convex

cluster. Even though both points lie on the boundary, only Pi will be classified as

a boundary point by the Tukey depth, while Pk will not.

To find the identity of each point’s cluster using MSC, we developed the hcount

indicator to test whether the point is on the cluster’s boundary. The hcount is

defined as the number of points within radius h of the examined point that are

associated with the same cluster. If hcount is smaller than a constant K, the point

is considered to be on the boundary of its cluster. K can be set adaptively with

respect to the cluster’s characteristics by setting it as a certain percentage of the

points belonging to the cluster. In addition, if within this ball there exists a point

from another cluster, the point is also defined as a boundary point.
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Fig. 6. Tukey depth on a non-convex cluster. Even though both points are boundary points, Pk

will not be considered a boundary point by the Tukey depth method.
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Fig. 7. Comparison of two clusters with dispersion changes

Integrating this definition in the two dataset comparison process facilitates bet-

ter analysis of the dispersion changes. Confusion matrices for two clusters with

dispersion reduction or increase are shown in Table 1, where X indicates many

points, C1 represents a cluster in D and C2 a cluster in D′. C2c indicates the

points that belong to cluster C2 but do not lie on its boundary, while C2b indicates

points that lie on cluster C2’s boundary. Analyzing the confusion matrix, we can

deduce whether there has been a major change in the dispersion of the cluster and

what change has occurred. Figure 7 illustrates a two cluster comparison with dis-

persion changes whose confusion matrix is given in Table 2. Looking at the result
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we can see that many points from C2 and its boundary belong to cluster 0 in D

indicating that the cluster’s shape has changed. This is also evident from seeing

that the boundaries of C2 and C1 do not coincide anymore.

Minor changes Dispersion reduction Dispersion increase

0 C1 C1 b

C2 X

C2 b X

0 C1 C1 b

C2 X

C2 b X

0 C1 C1 b

C2 X X

C2 b X

(a) Most of the points
from C2c converge to C1c
and points from C2b
converge to C1b.

(b) Most of the points

from C2c and C2b
converge to C1c.

(c) Most of the points

from C2c converge to

C1c and to C1b. Points

from C2b converge to

cluster 0.
Table 1. Confusion matrices with dispersion changes

0 C1 C1 b

C2 229 457 115

C2 b 47 19 6

Table 2. Output of the confusion matrix

4.3. Computational complexity of the algorithm

The algorithm is given as input two datasets D and D′. The algorithm is divided

into two main components, the single dataset analysis component and the dataset

comparison component. The first component consists of running the mean shift

(MSC) algorithm several times, whereas the second component consists of running

the two set mean shift (TSMSC) algorithm. The algorithm also performs analysis

on confusion matrices but the complexity of this part is negligible compared to

the other two. Since as we mentioned above the TSMSC algorithm is equivalent to

running the MSC algorithm twice all that needs to be analyzed is the complexity

of the MSC algorithm. For simplicity we will assume that O(|D|) = O(|D′|).
The mean shift procedure is applied on all points in D. For each such point the

iterative process given in eq. 2 is computed several times. In each iteration yj+1

is computed until convergence. The number of these iterations depends on dataset

D but not on its size. Let It denote this number. Even though eq. 2 is evaluated

on all the points of dataset D, only points xi close to yj contribute to the value of

yj+1. This is because the weight g(
||yj−xi||

h ) decreases rapidly as
||yj−xi||

h increases.

Moreover, for some of the most commonly used kernel functions g() g(a) ≡ 0 for

a > 1. Thus, in each iteration the algorithm first extracts from D a subset of the

points close to yj and then evaluates eq. 2 only on them. Thus, the complexity of the
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naive implementation of the algorithm is O(|D|It|D|d), where d is the dimension

of the data and the complexity of the procedure which recovers the near neighbors

of yj is O(|D|d). In our previous work 14 we developed a mean shift algorithm in

which the near neighbors procedure was replaced by an approximate near neighbors

algorithm. In our algorithm the Locality Sensitive Hashing (LSH) data structure

was used 19,15. The complexity of an LSH query is O(d log2(|D|)/ϵ2), where ϵ is

a measure of the error guaranteed by the LSH data structure. Thus, when LSH

is used, the complexity of the MSC algorithm is O(|D|It d log2(|D|)/ϵ2). Similar

results can be obtained when other approximate nearest neighbors data structures

are used. As our algorithm mainly consists of running MSC several times, this is

also its computational complexity.

5. Dataset comparison in a transductive learning setting

The proposed method can also be used in the transductive learning setting. A

demonstration on how this can be done will now be given.

Training a classifier on the initial data set D using labeled data can facilitate

its analysis. When the new dataset D′ is obtained, a key question is whether the

classifier trained onD can also be used onD′ to obtain results of similar quality and,

if not, whether the classifier could be retrained with no or minimal user intervention

to produce a classifier better suited for the new dataset. The additional information

we have in this case (the labeled points and the classifier) can help us perform the

analysis described in Section 4, the results of which can be used to answer these

questions.

In the first step we can use this additional information in order to rank the

set of stable bandwidths SB according to the correspondence between the cluster

structure and the labels of points belonging to each cluster. The TSMSC process

will only be run on clustering results where nearly all the points belonging to

each cluster have a single label. After the TSMSC has been executed on the two

datasets, we assume that points belonging to matching clusters should be classified

with the same label. This conjecture is easily checked by applying the classifier to

points in the corresponding clusters. Only if this condition does not hold is further

investigation required.

Figure 8(a) shows the results of training an SVM classifier using the RBF kernel

on the initial dataset D. Figure 8(b) shows the classification results obtained on D′.

As described in Section 6.1, there have been quite a few changes in the underlying

distribution between D and D′. Only a few of them, however, are related to the

classifier.

When a cluster (D1.2.1), which lies on one side of the class boundary, matches

cluster(s) (D′1.2.2.1 & D′1.2.2.2.1) which lie on both sides of the class boundary,

we will assume that the distribution of the cluster changed and a new classifier has

to be trained. This can be done by automatically labeling points from the cluster

from D′ with the label of the corresponding cluster from D and adding them to the
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(c) Modified classifier results on D′

Fig. 8. Classifying old and new datasets: (a) Dataset D classified using training examples from D.
(b) Dataset D′ classified using the same classifier. (c) Classification results of D′ using a modified

classifier with additional training examples from D′ which were automatically labeled.

training set of the classifier. This results in the classifier whose results are shown

in Figure 8(c).

When two clusters from D (D1.1.1.1.1 & D1.1.1.1.2) with different labels are

merged into a single cluster in D′ (D′1.1.1.1), there is no point in retraining the

classifier. Our assumption is that the change in data distribution made the clas-

sification problem harder. Some of the points of the new cluster now lie close to

the class boundary and we should expect the classifier’s error rate to increase as a

result.
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Finally, when a new cluster appears in D′ (D′1.2.1.2), we can assume it does

not constitute a problem if the vast majority of its points are classified as belonging

to one class. However, it is perfectly possible that the points of this new cluster

might instead be outliers. We would therefore recommend that the domain expert

manually label a few points belonging to the new cluster before proceeding. Other

changes in the distribution of cluster points of corresponding clusters (e.g., D1.1.1.2

& D′1.1.1.2) can be ignored if they are not related to the classification problem.

In conclusion, the results of the analysis can be used by the domain expert to

minimize the number of examples which have to be manually labeled in order to

maintain classification quality.

6. Comparisons and experimental results

In order to demonstrate the quality of our algorithm we will present in this section

three types of results. First, we will apply our algorithm to two synthetic datasets

to demonstrate its ability to detect several types of changes between them. In

Section 6.2 we will compare our method to the methods referred to in Section 2

and show the strengths and weaknesses of our method. In Section 6.3 we will present

the results of running our algorithm on real data (a stereo image pair) and show

that the algorithm is able to recover the expected changes between the datasets

without using any prior knowledge derived from the theory of stereo imaging.

6.1. Results on synthetic data

To demonstrate the results of our algorithm we will compare the two datasets D

and D′ shown in Figure 9. We begin by finding CP

CPD : {40, 17.2, 16.3, 15.4, 13.9, 13.6, 11.2, 10, 6.7, 2.5, 1.6} and
CPD′ : {40, 21.7, 18.7, 16, 15.4, 12.4, 9.1, 7.6, 6.1, 1.6}.
The common stable bandwidth values found are:

commonSB:{40,30.85,20.2,17.95,16.75,14.65,13,11.8,
10.6,9.55,8.35,7.15,4.3,2.05}.

We will now present the results of running TSMSC for h = 4.3. The algorithm

was run on all the points from dataset D′. The results are presented as a confusion

matrix in Table 3. The columns show the results when the algorithm was run on

distribution generated from dataset D (D clusters) and points belonging to their

boundary, and the rows show the D′ clusters. The confusion matrix is analyzed

automatically according to the following rules. If most (more than 80% in our

implementation) points from one cluster is matched to another cluster then the

clusters are considered matched. If more than one cluster is matched to the same

cluster then a merge (or a split) has occurred. If most of the points in a cluster

are matched to cluster 0, the cluster disintegrated (or was formed). If a certain

amount of points from a cluster (10% in our implementation) are matched to the

boundary of its matched cluster or cluster 0 then we conclude that the underlying

distribution of the cluster has changed between the datasets.
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Fig. 9. Clustering results for the two datasets for h = 4.3

0 1.1.2.1.2 1.1.2.1.2 1.1.2.2 1.1.2.2 1.1.2.1.1 1.1.2.1.1 1.1.1.1.2 1.1.1.1.2 1.1.1.1.1 1.1.1.1.1 1.2.1 1.2.1 1.1.1.2 1.1.1.2

B B B B B B B

0 164 4 7 10 4 9 7 6 3

1.1.2 346

1.1.2-B 1 7

1.2.1.1 2 308 50

1.2.1.1-B 4 7

1.1.1.1 203 108 175 230

1.1.1.1-B 4 1 1 2 2 5 1

1.2.2.2.1 2 192 18

1.2.2.2.1-B 5 7 2

1.2.2.1 2 239 23

1.2.2.1-B 1 1 4 4

1.1.1.2 2 352 7

1.1.1.2-B 3 6 2

1.2.1.2 349

1.2.1.2-B 8

Table 3. Confusion matrix for D and D′ for h = 4.3. The columns represent D clusters while

the rows represent D′ clusters. Rows and columns marked with B represent points belonging the
boundary of the cluster. The value K for the hcount boundary is the second percentile of each
cluster.

Using these rules the automatic analysis off the confusion matrix from the per-

spective of D′ (rows) yields:

Cluster D′1.1.1.1 (red) is the merger of clusters D1.1.1.1.1 and D1.1.1.1.2.

Cluster D′1.2.1.1 (pink) is mapped to D1.1.2.1.1 but some of the points are on the

boundary, indicating that the cluster moved or changed its distribution.

Cluster D′1.1.1.2 (green) is mapped to D1.1.1.2.

Cluster D′1.2.1.2 (cyan) is a new cluster. All the points were associated with clus-

ter 0.

Cluster D′1.1.2 (blue) is mapped to D1.1.2.1.2.

Cluster D′1.2.2.1 (yellow) is mapped to D1.2.1 but some of the points are on the

boundary, indicating that the cluster moved or changed its distribution.

Cluster D′1.2.2.2.1 (orange) is mapped to D1.2.1 but some of the points are on the

boundary, indicating that the cluster moved or changed its distribution.
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Analyzing the matrix from the perspective of D (columns) yields:

Cluster D1.2.1 (red) is the merger of clusters D′1.2.2.1 and D′1.2.2.2.1.

Cluster D1.1.2.2 (blue) did not map to any cluster. This indicates that it disinte-

grated.

6.2. Experimental comparison to other methods

Most related works, such as the ones reviewed in Section 2, suggest calculating

a numerical value for the similarity between two sets of clusterings in order to

determine whether any changes took place. For complex datasets, we argue that

understanding the nature of the change is even more important. We demonstrate

this here by comparing our method’s results to the following measures:

Measures based on Pair Counting: RI : Rand index 31. AR: adjusted Rand

index 17. MIRKIN : Mirkin’s index 5. HI : Hubert’s index 16.

Information Theoretic based Measures:a MI, mutual information; NMI, nor-

malized mutual information; AMI, adjusted mutual information 35.

Probability distribution based Measure: K-L, the Kullback-Leibler diver-

gence. This is a measure of the dissimilarity between two completely determined

probability distributions. KL p = KL(p||q) ,
KL q = KL(q||p).
Distance measure based on spatial information: CDistance: Comparison

function clustering distance 8 b.

We created a simple synthetic dataset in two dimensions consisting of two clus-

ters, where each cluster has 500 points. We refer to this dataset shown in Figure 10

as the ’reference data’. We also generated 11 datasets drawn from similar distri-

butions as the ’reference data’ but with certain changes. The changes made to the

distribution represent some of the changes that may occur in the cluster’s structure

in real scenarios.
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Fig. 10. Reference data

The changes as well as the results of the algorithms are presented in Tables 4& 5.

aCode implementing MI NMI and AMI available at

http://ee.unsw.edu.au/∼nguyenv/Software.htm.
bCode implementing CDistance is available at http://biocomp.wisc.edu/data.
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The descriptions of the qualitative results of the TSMSC algorithm use the following

symbols: R, the reference dataset; N , the new dataset; CX, points that belong to

cluster X but are not on its boundary; CXb, points that belong to cluster X’s

boundary.

The following changes were made to the distribution of the data:

• Ex1: No change. The data was generated from the same distribution.

• Ex2: The variance of the y coordinate of the points belonging to the green

cluster was increased.

• Ex3: The variances of the y and x coordinates of the points belonging to the

red cluster were decreased.

• Ex4: The variances of the y and x coordinates of the points belonging to the

red cluster were increased.

• Ex5: The green cluster was split into two clusters.

• Ex6: The red cluster was split into two clusters.

• Ex7: The number of points has changed and a new cluster has been formed.

• Ex8: A new cluster was formed with the same number of points.

• Ex9: The mean of the green cluster was changed (shifting).

• Ex10: The red cluster was caused to disintegrate.

• Ex11: The ratio between the number of points in the red cluster and the green

cluster was changed.

It is obvious that the methods based on pair counting (e.g., RI and AR) and

those based on information theory are not, by definition, appropriate for different

data sets or even different samples from the same distribution. In order to be able

to apply those methods, the points were ordered such that the cluster’s identity

changed as little as possible between datasets. In contrast, CDistance overcomes

this constraint and can alert for changes between different datasets but does not

characterize them.

The is the main problem with all of these methods is that even though they are

able in most cases to detect that there was a change in the distribution they are not

able to describe what the change was. For example, in Ex3 and EX4 (Table 4) the

CDistance succeeded in alerting that changes occurred but assigned them similar

values (0.102 and 0.1009) despite the changes being of opposite types (i.e., an

increase vs. a decrease in the variance). Most methods are not able to deal with the

case when the number of points in the dataset has changed (Ex7).

The KL divergence measures differences between densities. Like the other meth-

ods, it produces a numerical value which represents the difference between the dis-

tributions (without giving an explanation to the nature of the difference). It is

therefore able to detect, for example in Ex11 (Table 5), changes in the proportion

of points in the different clusters, while TSMSC is oblivious to such changes.

This is not a major shortcoming of TSMSC since one of its main applications

is in the transductive transfer learning setting, where it is required to distinguish

whether changes in cluster structure or cluster shape occurred. This information
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Reference Clustering Ex1 Ex2 Ex3
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Technique Name

RI 0.998 0.996 0.998

AR 0.999 0.998 0.999

MIRKIN 0.0009 0.002 0.0009

HI 0.998 0.996 0.998

MI 0.6931 0.6931 0.6931

NMI 0.9897 0.9897 0.9897

AMI 0.9948 0.9897 0.9948

KL 0.0598 , 0.0410 0.4369 , 0.1462 0.1093 , 0.2690

CDistance 0.0778 0.1419 0.102

TSMSC

C 0 1 1-b 2 2-b

0 0 0 0 0 0

1 0 479 4 0 0

1-b 0 1 16 0 0

2 0 0 0 471 11

2-b 1 0 0 0 17

No change

C 0 1 1-b 2 2-b

0 1 0 0 0 0

1 0 384 98 0 0

1-b 13 0 4 0 0

2 0 0 0 480 2

2-b 1 0 0 2 15

Part of N C1 converged to R C1b
indicating that N C1 changed

its distribution

C 0 1 1-b 2 2-b

0 0 0 0 0 0

1 0 472 12 0 0

1-b 0 0 16 0 0

2 0 0 0 483 0

2-b 0 0 0 17 0

N C2b converged to R C2

indicating that R C2 changed

its distribution

Ex4 Ex5 Ex6

−20 −10 0 10 20 30 40 50 60
−30

−20

−10

0

10

20

30

40

50

−20 −10 0 10 20 30 40 50 60
−30

−20

−10

0

10

20

30

40

50

−20 −10 0 10 20 30 40 50 60
−30

−20

−10

0

10

20

30

40

50

Technique Name

RI 0.998 0.7476 0.7496

AR 0.999 0.8739 0.8749

MIRKIN 0.0009 0.1261 0.1251

HI 0.998 0.7478 0.7498

MI 0.6931 0.6931 0.6938

NMI 0.9897 0.666 0.6667

AMI 0.9948 0.8123 0.8131

KL 0.1762 , 0.0774 0.2391 , 0.2211 0.5767 , 0.4863

CDistance 0.10009 0.2535 0.2647

C 0 1 1-b 2 2-b

0 0 0 0 0 0

1 0 477 7 0 0

1-b 0 1 15 0 0

2 0 0 0 423 61

2-b 4 0 0 0 12

Part of N C2 converged to R C2b
indicating that N C2 changed

its distribution

C 0 1 1-b 2 2-b

0 0 0 0 0 0

1 0 162 58 0 0

1-b 0 25 4 0 0

2 0 233 0 0 0

2-b 0 16 2 0 0

3 0 0 0 467 7

3-b 0 0 0 3 14

N C1 & N C2 converged to

R C1 indicating that R C1 split

C 0 1 1-b 2 2-b

0 0 0 0 0 0

1 0 483 1 0 0

1-b 0 1 15 0 0

2 0 0 0 203 33

2-b 0 0 0 12 4

3 0 0 0 165 59

3-b 2 0 0 18 4

N C2 & N C3 converged to

R C2 indicating that R C2 split

Table 4. Comparison to other works: Ex1: No change. The data was generated from the same
distribution; Ex2: The variance of the y coordinate of the points belonging to the green cluster

was increased; Ex3: The variances of the y and x coordinates of the points belonging to the red
cluster were decreased; Ex4: The variances of the y and x coordinates of the points belonging to
the red cluster were increased; Ex5: The green cluster was split into two clusters; Ex6: The red
cluster was split into two clusters.

can then be used to decide whether a classifier trained on the first dataset can

be used to classify points from the second dataset. Detecting changes in the ratio

of the number of points between clusters is not important for this task, although

this can be easily provided by analyzing the differences between the number of the
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Reference Clustering Ex7 Ex8 Ex9
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Technique Name

RI NaN 0.4453 0.9980

AR NaN 0.7230 0.999

MIRKIN NaN 0.277 0.0009

HI NaN 0.4459 0.998

MI NaN 0.4639 0.6931

NMI NaN 0.4212 0.9897

AMI NaN 0.5289 0.9948

KL 3.6157 , 0.4034 5.3676 , 0.6372 1.1991 , 1.1944

CDistance 0.3648 0.4733 0.2174

TSMSC

C 0 1 1-b 2 2-b

0 1 0 0 0 0

1 0 475 8 0 0

1-b 0 1 17 0 0

2 0 0 0 477 5

2-b 0 0 0 0 17

3 290 0 0 0 0

3-b 9 0 0 0 0

N C3 converged to cluster 0,

N C3 is a new cluster

C 0 1 1-b 2 2-b

0 0 0 0 0 0

1 0 315 7 0 0

1-b 0 2 9 0 0

2 0 0 0 320 2

2-b 0 0 0 2 8

3 323 0 0 0 0

3-b 9 0 1 0 1

N C3 converged to cluster 0,

N C3 is a new cluster

C 0 1 1-b 2 2-b

0 0 0 0 0 0

1 1 298 185 0 0

1-b 1 4 11 0 0

2 0 0 0 470 14

2-b 0 0 0 4 12

Part of N C1 converged to R C1b
indicating that N C1 changed

its distribution

Ex10 Ex11
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Technique Name

RI 0.0083 0.1589

AR 0.5029 0.579

MIRKIN 0.4971 0.421

HI 0.0058 0.158

MI 0.0331 0.1644

NMI 0.0463 0.2329

AMI 0.0915 0.276

KL 1.0821 , 2.2308 0.3139 , 0.3876

CDistance 0.9254 0.6218

C 0 1 1-b 2 2-b

0 20 0 0 14 12

1 0 903 22 0 0

1-b 0 0 28 0 1

No cluster was mapped

to R C2 indicating that

cluster R C2 faded away

C 0 1 1-b 2 2-b

0 1 0 0 0 0

1 0 769 5 0 0

1-b 0 1 25 0 0

2 0 0 0 191 0

2-b 0 0 0 5 3

No change

Table 5. Comparison to other work: Ex7: The number of points has changed and a new cluster has
been formed; Ex8: A new cluster was formed with the same number of points; Ex9: The mean of
the green cluster was changed (shifting); Ex10: The red cluster was caused to disintegrate; Ex11:

The ratio between the number of points in the red cluster and the green cluster was changed.

points in corresponding clusters.

The main difference between TSMSC and the other methods is its ability to

produce a qualitative description of the changes between the datasets. For each of

the experiments the confusion matrix and its interpretation is provided. In com-

plex datasets such an analysis is crucial to help the domain expert understand the

changes that have occurred.
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6.3. Experiments on real stereo images

When performing experiments on real data, the data should be complex but the

clustering results should be easy for the user to evaluate. Moreover, there should be

some high level matching result which could easily be tested by the user although

it is unknown to the algorithm.

For these reasons we tested our algorithm on a pair of real color images known

as stereo pairs (two images of a scene taken by a camera from two viewpoints).

These datasets satisfy our requirements: the data sets are sufficiently large and

complex, and the results obtained by the TSMSC algorithm can be easily viewed

and evaluated. Moreover, as a result of horizontal motion of the camera, objects

in the scene move horizontally between the images a distance that is inversely

proportional to their depth. This distance is known as the disparity.

Working with images is not an easy task. Each pixel in the image is represented

by its two image coordinates (X,Y ) and its RGB color values, yielding a 5D dataset.

A commonly used system for analyzing images is the Edge Detection and Image

Segmentation (EDISON ) System. This program implements the mean shift image

segmentation algorithm described in 7. The user is asked to give the algorithm

values for two bandwidths, one for the spatial domain hXY (the image coordinates)

and the other for the range domain hRGB (the RGB values). The output of this

program is a clustered image. Each cluster is assigned a color, (i.e., points in the

same cluster have the same color). EDISON is an interactive program which is

able to segment an image in several seconds. Using EDISON as our model, we

implemented a variant of TSMSC for color images.

The main difference between this variant of TSMSC and the basic algorithm

described in the previous sections is that this variant requires that two bandwidths

be given to the algorithm. To deal with this case we simply build a two-dimensional

table in which the vertical axis is for different values of hxy and for each row we

execute the finding h algorithm (Algorithm 1) on hRGB . We then use the results

to find an appropriate and stable bandwidth for RGB. The same can be done in

cases where more than two bandwidths are required.

6.3.1. Experimental results

In addition to the aforementioned disparity, we also expect that some clusters will

merge or split as naturally happens when two images are taken from two viewpoints.

The images were taken from the Middlebury College Stereo Vision Research

Web Page 27. This Web site is intended for comparing stereo algorithms. Figure 11

shows the image pair on which we tested our algorithm.

The segmentation partitioned image 1 into 503 clusters and image 2 into 530

clusters. The size of the confusion matrix is thus 530 × 530. We therefore present

only a small slice of it in Table 6. The vertical axis represents clusters from image

2 and the horizontal axis represents clusters from image 1. Each row shows the

number of pixels from one cluster in image 2 that converged to each cluster of
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Image 1 Image 2 Image 1 segmentation Image 2 segmentation

Fig. 11. Images 1, 2 and the segmentation results with hXY = 8 and hRGB = 30

image 1.

0 . . . 17 . . . 60 . . . 66 . . . 70 . . . 97 . . . 147 . . . 178 . . .

. . .

81 5 63 680 15

. . .

117 15 35 803 2 8

. . .

Table 6. A slice from the confusion matrix of the images. The columns represent image 1 clusters
while the rows represent image 2 clusters.

An analysis of the rows shows that cluster 81 is mapped to cluster 70, and an

analysis of the columns shows that cluster 70 is the merger of clusters 81 and 117.

Figure 12 shows clusters 81 and 117 from image 2 and cluster 70 from image 1.

Im 2: Clusters 81 & 117 Zoom in Im 1: Cluster 70 Zoom in

Fig. 12. Clusters 81 and 117, mapped to cluster 70

As mentioned above, the main difference between the images is the disparity

between segments. Consider, for example, the boundary between two segments A

and B. The X coordinate changes while the Y and RGB components stay the same.

Figure 13 illustrates the different possible cases for pixels lying close to the bound-

ary between clusters which underwent movement. We will concentrate on pixel c.

This pixel, which belongs in the first image to segment G, will have coordinates
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(X,Y,RGBG) while in the second image it will have coordinates (X,Y,RGBR).

Assuming that the colors are different enough, this pixel will not belong to any

segment when the dataset of the first image is used. It will not belong to segment

G because d(RGBG, RGBR) > hRGB and it will not belong to segment R because

the points belonging to segment R in the first image are not close to it in the spa-

tial domain. Thus, it will be associated with cluster 0. These pixels can be used to

estimate the disparity of the cluster.

Image 1. Image 2. Execution of MSC on three pixels from image 2 on image 1.

There are ’close’ pixels in Pixel a converges to cluster G. There are ’close’ pixels in Pixel b converges to cluster G.

the bandwidth of pixel a. the bandwidth of pixel b.

There are no ’close’ pixels Pixel c converges to cluster 0 Output

in the bandwidth of pixel c.

Fig. 13. TSMSC output as a result of segment motion

Figure 14(a) shows the pixels that belong to a cluster in image 2 and that

TSMSC associated those pixels with cluster 0 on image 1. Those pixels are colored

in cyan. We focus on six segments, marked A, B, C, D, E, and F . In these examples

a wide range of disparity values can be seen (Recall that the disparity is inversely

proportional to the depth of the object.) Segments A, B, and C lie on a planar

surface inclining away from the camera. This is evident because the disparity values

decrease continuously. The disparities of segments C and D are quite close and

therefore so are their depths. E is further away. No disparity is measured for segment

F , and thus it is furthest from the camera.

Figure 14(b) plots the ground truth disparity provided by the Middlebury Web

site as a function of the width of the six cluster 0 regions. The difference between

the values is close to constant (between 5.5 and 7 pixels). As Figure 13 shows, this

is because pixels close to the boundary between the two clusters (e.g. pixel b) are
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F

E

D

B

A

C

(a) (b)

Fig. 14. Stereo results: (a) The disparity map of image 2 (b) The ground-truth disparity map vs.

TSMSC results

not associated with cluster 0. Thus the disparity can be estimated as the width of

the cluster 0, to which a constant (which is a function of hXY ) is added.

In conclusion, this example shows how the algorithm is able to correctly analyze

the data and even produce an initial estimate of the disparity.

7. Conclusions

In this paper we proposed a dataset change analysis method based on the mean

shift clustering algorithm. Our non-parametric algorithm makes no assumptions

on the structure of the data (besides that it can be clustered). The method is in

essence density based. However, it uses mean shift to analyze changes in cluster

structure rather than changes in density alone, yielding more meaningful results.

It first recovers a stable cluster structure in both datasets. Each point from one of

the datasets is associated also with a cluster from the other dataset. The resulting

confusion matrix serves as the basis for our analysis of the changes between the

datasets. The changes are not given as numerical values but descriptively.

The algorithm was also used as the basis for a transductive transfer learning

method for automatically training a classifier on the new dataset using the old

classifier and the results of the algorithm.

The main strength of the algorithm is that it can be applied to datasets drawn

from general distributions but this is also its main weakness. If it can be assumed for
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example that the distribution can be approximated as a Gaussian mixture model,

where each cluster is approximated as drawn from a Gaussian distribution, the

GMM clustering method could be used. In addition, methods for comparing samples

from Gaussian distributions can be used to test whether or not there has been a

change from one dataset to the other. This can probably be done more efficiently

and with smaller sample sizes then is required by our algorithm.

Future work will focus on developing efficient methods for detecting whether

changes have occurred using only a small subset of points selected from the new

dataset, and applying the algorithm to the two complete data sets only when a

change has been detected.
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