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3D Shape Recovery of Smooth Surfaces: Dropping
the Fixed Viewpoint Assumption

Yael MosesMember, IEEE and llan ShimshonMember, IEEE

Abstract— We present a new method for recovering the 3D fixed viewpoint assumption does not hold and therefore these
shape of a featureless smooth surface from three or more methods cannot be directly applied to our images.
calibrated images illuminated by different light sources three Our method accurately computes the surface shape of 3D

of them are independent). This method is unique in its abiliy to biects b bini tri d phot tric inf fi
handle images taken from unconstrained perspective viewpats Oobjects by combining geometric and photometric informatio

and unconstrained illumination directions. The correspordence A dense correspondence between the set of input images is
between such images is hard to compute and no other known recovered, despite the dissimilarity of correspondindufiess

method can handle this problem locally from a small number when lighting and viewpoint directions change from image
of images. Our method combines geometric and photometric to image. The general idea is to propagate correspondences

information in order to recover dense correspondence betwen the surface and simultaneously recover its 3D shape
the images and accurately computes the 3D shape. Only aover the y pe.

single pass starting at one point and local computation are Given a set of corresponding points, we can compute the
used. This is in contrast to methods which use the occluding 3D location using geometric stereo triangulation. We cao al
contours recovered from many images to initialize and cons&in compute the normal to the point using local photometric
an optimization process. The output of our method can be usetd jtqrmation (e.g., classical photometric stereo [40],][8t
initialize such processes. In the special case of fixed viewipt, the -
proposed method becomes a new perspective photometric ster MO general methods [1]). The recovered 3D point a_nd
algorithm. Nevertheless, the introduction of the multiviev setup, surface normal define the local shape of the surface, which
self-occlusions and regions close to the occluding boundas is then used to propagate the correspondence more acguratel
are better handled, and the method is more robust to noise than possible by shape-from-shading algorithms [16]. This
than photometric stereo. Experimental results are presered for 1, ocess js repeated to recover the full 3D shape. A simplified
simulated and real images. version of this process is illustrated in Figure 2. Noisdf-se

Index Terms—3D shape reconstruction, featureless objects.  gcclusions, and shadows are overcome by using a few more
images than the minimum required for shape recovery from
shading. In contrast to whole-object optimization methods
(e.g., [19], [34]), our method performs the shape recovery

We present a method for recovering the 3D shape f a single pass, as in [6], [21]. In some applications, the
a smooth featureless surface. Our system accepts as irgutput of our method can also be used to initialize whole-
three or more calibrated images of the surface, taken frashject optimization methods. This replaces, for examgile, t
different viewpoints (there can be a wide baseline betwegisual hull created from the occluding contours of a large se
the camera positions) and illuminated by different knowof images (e.qg.,[20], [41], [39], [15], [2].
distant point light sources (three of them are independent) Note that traditional geometric methods assume that corre-
The surface is assumed to be Lambertian, and the perspecspending points have similar intensities. Differencesnitemn-
projection model is used. This is a challenging problem faity values of corresponding points are often regarded byeh
which classical methods for shape recovery, both geometnigthods as noise. In our case the intensities of correspgndi
or photometric, are inadequate, since correspondencesbatwpoints are expected to be different since the light source
such images is hard to compute. Geometric methods, switanges from image to image. Thus, these differences,rrathe
as stereo or structure from motion, are based on the rectivan being considered noise, become a source of information
ery of corresponding points in different images. Determni for computing the local approximation of the surface shape.
correspondence for images of the type considered in tlf®mbining geometric and photometric information allows us
paper is hard because the surface is assumed to be feaduratesiraw on both, while overcoming their weaknesses. We
and the grey-level values of corresponding points can vasyercome the weakness of photometric stereo by dropping the
considerably between images when the direction of the liglited viewpoint assumption while using additional geonuetri
source changes. This is demonstrated in Figure 1. In cidssimformation. In the simple case when a single viewpoint is-co
photometric stereo [40], [31], the input images are taketh wisidered, the algorithm is reduced to a straightforward watth
different lighting directions but from the same viewpointfor handling perspective photometric stereo. When differe
The fixed viewpoint assumption provides the correspondengiewpoints are considered, it also allows the depth factor
for such methods. In the general setup considered here, #mebiguity to be eliminated. In addition, the method can &and

self-occlusion because more than a single viewpoint is .used
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Fig. 1. This figure demonstrates that the intensities of threesponding points taken under different illuminatiomditions can differ considerably. The
intensity values of corresponding lines in the two imada$.and (b), are shown inc). If the two images had also been taken from different viewmias
in the general setup, an additional non-uniform foresimimtg effect would have taken place as well.

a b c

Fig. 2. A simplified illustration of the algorithm(a) Given a pair of corresponding points, the 3D location is cote@ using triangulation and the normal
at that point is computed using photometric stereo. The aband the 3D point location determine the tangent plane dostivface at that point (the red
line). (b) A point on this plane is then re-projected to the images aratl de compute a new set of corresponding points (the bluetg)oiic) The new
correspondence determines a new normal and a new tangeset (e blue line).

information to obtain support for the reconstructed 3D ghapA. Previous work

Running our algorithm on synthetic and real data revealsThe direct method for recovering the shape of a smooth
that the combined photometric and geometric constrairiés ofLambertian object from a single image is the shape-from-
us a powerful tool for handling general images of smooghading method proposed by Horn [16]. Since the problem
surfaces. Our one-pass results can be used as a startirtg psiil-posed, strong assumptions such as smoothness,-ortho
for higher level iterative methods for shape recovery (¢33], graphic projection, and constant albedo must be used to
[16]). Moreover, since the surface shape is overdetermine@mpensate for the lack of information. Numerical methods
when both photometric and geometric information are useahich solve partial differential equations were developed
we expect that in future work the camera and light paramete&force the smoothness and the photometric constrainfs [19
will also be obtainable directly from the images. [34]. Please refer to [8], [25], [44] for surveys on this sedij

Shape-from-shading algorithms were recently extendeeab d

The paper continues as follows. We first elaborate omith the more accurate perspective projection model [32],
previous related work in Section I-A. In Section Il we preser}38]. This projection is also used in our algorithm. Shape-
the basic derivation of our method and the special case af fixsom-shading algorithms usually have to be provided with th
viewpoint (photometric stereo). Extensions to the basithoa light source direction and intensity. This requirement besn
are discussed in Section Ill. We then present experimenlifed in [34], [45], which recover the light source inforian
results run on simulated and real data in Section IV. Fututegether with the 3D shape. One type of shape-from-shading
research directions are discussed in Section V. algorithm starts at a special point at which the normal to the

surface is known and propagates the recovered local shape

A preliminary version of this work was published in [30]. over the whole surface in one pass [6], [21], [23], [22],
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[4], [33]. Our method also makes use of one-pass shaihés problem is proposed.
propagation. However, the shape information is recova@df  Recent studies address the problem of shape recovery of
three or more images, while the shape-from-shading approaenooth surfaces under non-fixed viewpoint with limited il-
relies only on a single image. As a result, we can relax thgmination variations. In [36], [29], the shape of a moving
assumption of fixed albedo, and obtain more accurate resufisject is recovered. The relationship between the changes
This is not surprising: when more images of the surface are lighting and viewing conditions is exploited to yield a
used, more information becomes available. modified stereo algorithm. In [43], [28], an iterative scleem
Photometric stereo methods [40], [31], [25] compute thig introduced which is able to recover the 3D structure and
surface normal at each point on the surface without relyinge camera motion under the same settings. A work that
on smoothness constraints by using only the local intensiiges an experimental setup similar to ours was presented
value at the point. This is done by taking several images [39]. The photometric constraints were only used to yerif
from the same viewpoint but with different lighting diremtis. the 3D structure but not to locally estimate the surface and
Once the normal has been computed everywhere, the shapgerishagate the correspondences. The advantage of this dnetho
recovered by integrating the normals over the entire imagdg.that the surface does not have to be almost entirely smooth
Thus, the normals are computed more accurately than Nlonetheless, many more images are needed to determine the
shape-from-shading algorithms but the error increase&én 8D shape. An example of a method that fully exploits the
final step of the algorithm because no geometric informasonphotometric constraints is given in [2], where a variationa
available. The quality of the results can be improved by @isirmethod implemented as a PDE-driven surface evolution in-
global integration techniques such as multi-grid [24]. 9de terleaved with reflectance estimation is described. Ingires
algorithms have to be supplied with the lighting informatioresults are obtained by [15] which uses a similar setup. In
about the different images and use the orthographic piojecta preprocessing step the camera positions and the distant
model. Several works have been published that extend the paint light source directions are estimated from the images
sic method and drop several of its simplifying assumpti&is [ Then, the shape is reconstructed using the silhouetteseof th
[27], [42], [14], [9], [11]. One method for improving the object and the photometric stereo constraints. The algurit
quality of the recovered shape is to supply the algorithni witilternates between estimating the 3D surface and computing
a small number of anchor points for which the 3D coordinatése normals using photometric stereo. Our method diffensfr
are known. These points can be obtained using standara stetfis work in several aspects. We use a relatively small numbe
methods [17], [18], [12]. Traditional photometric stereetin  of images (about 5), we propagate the shape starting from a
ods assumed the orthographic projection model. A persectsingle point, and do not rely on occluding contours.
projection photometric stereo algorithm was recently psgal  The only similar work which strongly integrates geometric
by the authors of [37]. This is an extension of their previougnd photometric constraints in shape recovery propagatsn
work on shape from shading under perspective projectioh [38resented in [35]. There we addressed the special problem
[7] proposes an improved method for normal integration f@jf recovering the shape of a smooth, bilaterally symmetric
orthographic and perspective photometric stereo. A specirface from a single image. The geometric and photometric
case of our method where all images are taken from the sagifistraints were integrated to compute correspondence be-
viewpoint provides an alternative, straightforward siolotto  tween the two halves of the symmetric surface, and hence to
this problem. compute its 3D shape. In both works the reconstructionsstart
Multiview stereo deals with the problem of 3D reconfrom a single point and does not rely on the visual hull of the

struction of smooth Lambertian surfaces taken from m@tipbpject created from silhouettes of many images to constrain
viewpoints under fixed illumination. These methods ofte@ ushe reconstruction.

a large number of images taken by placing the object on a

rotating turntable and rely on the occluding boundariesache

image and photometric information. All this information is II. THE BASIC APPROACH

used as input for various optimization techniques. In [10] a

variational method based on solving PDE’s using level setsConsider calibrated images of a featureless surface taken
is presented. The intensity values in the image are used iffr@m different known camera positions under different know
smart way only for evaluating the quality of correspondencéighting conditions. The number. must be sufficient for

on the featureless surface. [20] uses a variational opditioiz local normal recovery from photometric information when
method to recover the shape, the lighting, and a piecewi@respondence is known. The method used to recover the
constant albedo. In [41], the visual hull is used as a coargermal is irrelevant for our purposes, as long as it can be
shape approximation represented as a mesh. The algoritlegally computed from the intensities of a set of correspogd
alternates between improving and refining the mesh and @eints in then images. Here we assume perspective projection
timating the view independent reflectance model parametetsd a Lambertian surface. We use classic photometric stereo
The reflectance model consists of diffuse and specular cofar recovering the local normal. In this case,> 3 images
ponents and unknown lighting parameters. Although it seerigffice (since we do not assume constant albedo).

that these methods could be extendable to deal with varyindn this section we show that a single set of corresponding
illumination this extension was not attempted by the awghoipoints is sufficient for propagating the correspondence ove
In [26] a global continuous optimization scheme for solvinthe entire image and computing the 3D shape.
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A. Notation whereO; is the known center of projection of the first camera,

. . . . . ~ (1) 5 ; ; (1) i
The following notations are used in existing geometric arlds 1] = Mi"p; is a point that projects tp; ', anda is a

photometric image analysis methods to recover 3D structugalar. Any Va'“?IOh uniquely determines a 3D point in space
that projects tg{". That is, P() = P(a) for somea. Since

we are looking forP(") on the surfaceq can be determined

Geometry: Let M;, 1 < i < n be the known perspective "~ ) . i
projection matrices of the images. Given a 3D surface pointusmg a local surface approximation that is computed froen th

P, the projection of the point to the images is given by: Surface normals. _ o
pro) P 9 g y Here we consider first order approximation, where the

surface is assumed to be locally planar (see Figure 2 for an
illustration of the algorithm). The surface is locally appr
(Throughout the paper we denote by superscript the pomated by the point?(®) and the tangent plane to that point,
number and by subscript the image number.) The invers#ich can be computed using the norméi®. For the point
problem is to recoveP(®) given its projections to the imagesP(!) to lie on the tangent plane &(® it must satisfy:

p§0>,pgo>, e ,p%o) using geometric stereo. In this case, each N(o)(p(l) _ p(O)) —0. (5)
instance of Eq. 1 can be converted into two linear equations i o i )
in the coordinates of?(®). Thus, when given two or more | N€ two constraints o', Eq. 4 and Eg. 5, yield a unique
projections of a point, its 3D position can be recovered gisiy2lue fora, ai:

least squares, or by finding the optimal corrected position o (P© — 0))TN©

the input points [13]. o = (P = 0)TN@ (6)

OnceP™") = P(a;) has been estimated, its projection to all

P9 = MPO 1<i<n. (1)

Photometry: Let [;, 1 < ¢ < n be the known lighting ) 1 : ) o
vectors, where each is pointing to the light source and thet® image; ", 1 < i < n is computed, yielding a new set of

i i i 1
magnitude of eacty; is the light source intensity. Denote bycorresponding points. The surface normal to this pait,),
L=, -7 the matrix of all lighting vectors. can be computed using Eqg. 3. Note that any other method for

Let P be a surface point whose normal and albedo apormal recovery based on shading information can be used
given by the vectoiV(®). The direction ofN® is the normal here instead of the classic photometric stereo method. For

direction at the poin?® and its magnitude is the albedo af!i9hly curved regions, first order approximations might not
that point. Denote by(o) the intensities ap(-o) forl<i<n be sufficient; we consider such cases in Sections IlI-C and

T [11-D.
0 0 . . . . . 3
The vector/(®) = [11( URRRIN )} is the intensity vector of  To recover the entire surface, the basic scheme starts with
the corresponding points. Under the Lambertian model, &hes set of corresponding points, and propagates the correspon
Ifo) =(;N© we obtain: dence as described above. The order of propagation is not
) © expected to affect the recovered surface as long as the data
19 = LN©, 2 i :
is noise free. To reduce error accumulation due to noise, the

Thus, whenL and I(® are given,N®) can be recovered Propagation order is chosen such that the length of the path

using a least squares procedure (photometric stereo).ighatetween the original pixel and the target pixel is minimal.
This can be done by propagating the correspondence in all

NO =10, (3) directions from the given pixel, that is, by a breadth-fiestreh
(BFS) traversal of the image. This traversal also circuntsen
regions for which the propagation cannot be computed (e.g.,
shadowed pixels).
B. Combining photometry and geometry Our method can be regarded as a traversal of the 3D
Here we propose our basic method for combining photgurface. In our implementation we use a reference image to
metric and geometric constraints for computing the 3D shagierform this traversal. The use of a reference image mayecaus
starting from a single given correspondence and propgggatmomems when the object is self-occluded. In this case, two

the computation over the entire image. Extensions of thiebagr more surface points are projected to a single point on
method are presented in the next section. the reference image and only one of these surface points is

Given a corresponding set of poin@,o), 1 <i<n,we recovered. Since our method can identify occluding (or self
can compute the surface poiRt? (by geometric stereo, using©ccluding) boundaries, a switch of the reference image may
Eqg. 1) and its normal to the surfac8® (by photometric overcome this problem. In addition, in our implementation
stereo, Eq. 3). The task then is to compute a new point 8#f size of the step is of a single pixel in the reference
the surface P, based onP(® and N(©). Consider a small image. The value o6 can be modified reducing it close to
step,s, on the first image to a neighboring pop{ﬂ) :p§0>+ the occluding boundary or at regions with high curvature in
5. The new surface point that projects to the image ppth order to increase the accuracy. Again, switching to a differ

must lie on the rav of boints that proiects to the paiftt. reference image, or more generally performing the traversa
This ray is given b))//: P prol pcptc,ft on the surface itself (as done in [41], [20]), may handle this

problem as well. These solutions were not implemented g thi
P(a) = (1 — a)O1 + aPs, (4) paper but can be done in a straightforward manner.

where L™ is the pseudoinverse df.
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C. Photometric stereo Section IV, using multi-neighbor rather than single neighb

A special case of our setup is when all images are t(,jlkgr,ppagation improves the reconstruction considerably.

from the same viewpoint. In this case the setup is identical 1€ traversal order is also expected to affect the result.
to perspective photometric stereo. In photometric stetlem, '€ Pasic propagation was based on a BFS traversal. The

normals are estimated from the intensity of correspondirli@“’ers"_’lI _o_rderlnth|s case was Q'Ctat_ed by the shor_telslr_td]e
the initial corresponding point. Since our multi-neighb

points. In this case the correspondence between imagespomt . )
is trivial. The depth of a point is then computed by somBropagation uses all of the already computed target point

integration method using these normals. The contributibn {§cation neighbors, we should choose the traversal order in
our method in this case is reduced to the integration er—h'Ch' for each target pixel, as many neighbors as possible
cess, and to basic error correction (as explained in the nbgye already been computed. To <_:hoose_the traversal (_)rder
section). In our method, the integration is performed ungfat meets these (_:°nd't'°n§' the e'ght neighbors of a given
perspective projection using Eq. 6, as illustrated in FégRr f:omputed target pllxel are msgrted |nt0.the queue. First we
Independently, [37] also derived a perspective photometH‘sert the four ve_rt|cal and horlzont_al neighboring pixatsd
stereo algorithm, presenting a new method to transform t n the four ne|g.hbors. on the diagonal. It can be shown
object coordinate system to the image coordinate system WHQ"’_“ each target pixel will have at least three pre-computed
the perspective projection model is considered. nelgr;]bors.h . for the i | . h
A comparison of the photometric stereo setup (fixed view- Other ¢ oIces for t, el Image tra\isrsa Ca?]. "r”]”pro"? t €
point) to the general viewpoint setup reveals several Giﬁerecons:tructlrc])n. In particu ar(,j we t():ou set al' tl)? er P‘W”h
ences. The fixed viewpoint assumption results in a trivigi)r points t at are expected to € more reliable, using the
solution to the correspondence problem. Therefore, edhoes score function defined below (Section IlI-D). In additiohet
to incorrect correspondence are eliminated. However,mngp planarlty of a region determines the expectgd reliability o
this assumption results not only in a more general Setdﬁ_reconstrugtlon. Slr?che ﬁurveg_ surfa;:]_e r:eglon_s .corrmﬂ;pg
which can be used on arbitrary images, but also has sevépafma93 regions wit ,'ﬁ g{a |e_nts, 'gher pdr!onty can I €
computational advantages. For example, occluded reg'mns??s'gne _to regions W't a low _|ntens_|ty gradient. Finally,
one view can be recovered from a different view. In additio['29€ regions containing extreme intensity vglues argcehe_pe
the overdetermined 3D information from both geometric arfd b_e unrellable,_ since they may contgln_lm_age highlights.
photometric data can be used to correct the 3D reconstructfod@in: these regions can have lower priority in the traversa

(see Section IlI-D). Experimental results showing the S-Hpequeue. .
ority of the general case are presented in Section IV, In general, an error term can be computed for each possible
candidate for propagation using the scores defined in Sec-

tion 111-D. At each step, the propagation will be performedd a
I1l. M ETHOD EXTENSIONS the pixel with the lowest score. Then the score of its neighbo
The reconstruction method of the basic approach is expect#d] be updated.
to be sensitive to noise, shadows, and self-occlusions. In
particular, since the method is strongly based on propagatiB. Using more than three images
a single error can affect the rest of_ the reconstruc.tionhlﬂ t A minimum of three intensity values is required for recov-
section we suggest several extensions of the basic methodig the normal of a given surface point and its albedo using
improve the quality of the reconstruction and reduce th@neg,,yiometric stereo. Therefore, three images were useckin th
tive impact of noise. It includes using a larger number olinp ), jc scheme. Our method can be easily extended to use a
images, computing local error corrections, and considean |5ger set of input images because the same solution to the
higher order approximation of the surface. Finally, we pres ., resnondence problem will also work on a larger number of
a method for automatically estimating the initial 3D poised jyaqes. The information available in a larger set of images
for starting the propagation. improves the scheme’s robustness and allows occlusions and
shadows to be handled without introducing holes in regions
A. Multi-neighbor propagation for which a set of three images does not include enough

In the basic scheme, the correspondence for a given tarimc rmation.
' P 9 9%Vhen each surface point is visible and not shadowed in all

pixel is estimated using a single neighbor whose 3D Iocatl(?ln\e images in the set, the normal can be computed from more

and normal have already been computed. As a result, a sin &n three intensity values by using Eg. 2. Such a least squar

error can affect the rest of the reconstruction. To reduee t S ,

. . : computation improves the system’s accuracy. The leastegua
errors caused by noise, we use more than a single nelghbo(rarpOr
compute the target pixel. A set of candidate locations fer th '
target point is computed from each of its already computed
neighbors (in a 8-pixel neighborhood). One possibility as t
choose the best location from this set using a score functioan also be used to locally evaluate the quality of the esticha
(see Section IlI-D). In our scheme, calledulti-neighbor normal. Using Eq. 2, we obtain:
propagation, the average of the set of locations is chosen as

the target point location. As we showed experimentally in s =10 _ L+10), (8)

s\ = |1 — LN©), 7)
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A surface point is not necessarily visible and illuminated i

all images. For non-convex surfaces in particular, ocolusi Al (a)

and self-shadowing are expected to occur in some of the (@) = I(GO)+5aa—a (10)
images for some of the surface points. When the set of input N (o) = N(ag +da)

images is larger than three, a subset of at least three images oI

from which the normal and the albedo can be recovered is ~ LT (I(e0) +0a5—(a0))

sufficient for each surface point. Thus, a larger part of the oI

surface can be recovered. To define the subset of images for a = N(ao)+ 5aL+%(ao) (11)
given surface point we have to detect for each of the images  p(o) = (1-a)0; + aP;

shadowed and saturated pixels, as well as occluded pixeds. T

shadowed points are easy to detect since their intensitieval = (1—00—0a)O1+ (a0 +0a) P

is close to zero. Similarly, we can also avoid using pixels = (I-a0)O1+agPé+6a(Ps — O1)
whose intensity values are close to the saturation values of = P(ag) + 0a(P5 — O1). (12)
each image.

Occluded points or noisy pixels can be detected using theSl"bSt'tu“ng the above terms into Eq. 9 yields:

score function given in Eqg. 8. When the score is higher than
a given threshold, one of the following cases is implied:

« One or more of the intensity values is noisy. 0a(Ps — 01) = P) = 0.

o The 3D surface point is invisible in one of the images Since all the terms in the above equation exegptan be

due to occlusion, and therefore its intensity value in thah o ted in advance, we are left with the following quadrati
image is the intensity of the 3D point that occludes it. equation ind,:
o

« The 3D point is incorrect, and therefore its projection to
the images results in an arbitrary set of intensities.

(N(a0) + 8a L 5 (a0) + N - (Plag) +

In the first two cases, a subset of the intensity values can L+8—a(00)(P6 - 01)8,
be used if the score obtained in Eq. 8 is smaller than the oI
threshold. Note that if the size of the set is three, the score +(L+£(ao)(P(Oéo)—
will always be zero. Therefore we are looking for the largest P(O)) 4 (Ps — 01)(N(ap) + N(O)))da
set such that the score is still smaller than the threshald. F ©) ©)
the last case, a local error correction can be applied, ds wil +(N(ao) + N*)(P(ag) — PT) = 0. (13)

be discussed in Section IlI-D. _ The second order approximation can be used directly for
The benefits of using more than three images are dem@itimatinga. We, however, use it as part of a score function
strated experimentally in Section IV. that evaluates the quality of the local shape as describedbe

C. Second order approximation D. Local evaluation and local correction

. . ' L . We base our definition of a score function on the continuity

For highly curved regions, first order approximations might : . . ;
. . assumptions of the local neighborhood of a target pixels Thi

not be sufficient. We therefore consider a more general case

. ) . FcOre is used for improving the surface reconstruction eher
where the surface curve connecting two points is local

circular. Under this assumption, the average of the normals.- target point is computed.
0) 1) (o) P a g *The score function is defined as a weighted sum of several
at P9 and P\Y, N® and N'Y, must be orthogonal to the

. i subscores. The first subscore is based on the intensitysvalue
vector connecting them: N ) ;
of the projection of the target point to the set of images, as
1) (ONT(p(1) _ p(0)y _ defined in Eq. 8. We next define subscores which are based
(N7 + NP P =0. on the already computed neighbors of the target pixel. Let
neighb be this set of pixels. LetV(®, p;, and P; be the
computed normal, albedo, and 3D location computed for each
(N(a) + NOYT(P(a) — PO) =0, (9) Pi € neighb. Similarly, let N, p,, and P, be the candidate
normal, albedo, and 3D location of the target point. We can
where N (a) = LtI(a) and I(a) is the vector of intensities now define the local continuity subscores:
of the projection ofP(«) on then images. Continuity of the normal direction: the angle between the
We next show that Eq. 9 can be used to compute the vaRmputed target normal and the average normal of its already
of a which satisfies it. The value ef can be computed using computed neighborhood,
ay, the first order approximation computed using Eq. 6, and 1 _
the image derivatives in the epipolar direction at each ef th Sdirec = 1 — W Z |N(Z)N(t)|' (14)
images. piE€Eneighb
Let « = ag + d». The first order approximations fdi{«), Continuity of the albedo: the average difference between the
N(«), and P(«) are given by: computed target albedo and the albedo of its already cordpute

In this casexr must satisfy
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neighborhood, E. Automatic detection of the starting point
s _ 1 Z i — pil (15) The starting point of the propagation process can be auto-
albedo = 1 eighb] Pi = Pel- matically detected using the integrability constrainteTdasic

o _ pi€neight idea is to choose a pixel in one image as an initial point
Continuity of the shape: the 3D distance between the comyng search for its correct 3D location. The 3D location is

puted target point an@,..», the average 3D location of itS yetermined by a single parameter which is the distance

already computed neighborhood, along the 3D ray of the image point. We use the integrability
S10c = || Pmean — Pil|. (16) constraint to evaluate a given This is done in the following
Finally we define a subscore that measures the consisterrﬂ:n)énner' We select a closed path in the image starting and

a
between the 3D location of the computed points and theer ing at the selected pixel. Using the basic scheme, the 3D

X . T ) epth is computed for all pixels on the path starting with the
normals. This score is based on the analysis in SeCt'on'”I'mitial oint whose depth is determined by The integrability
Consistency of 3D point location and shape normalThe P P 9

normal to the target point and the 3D location of the targanStramt stipulates that the depths computed for the first

point should be consistent with a second order approximati%nd last pixels in the closed path (which are both the initial

of the shape. This does not necessarily hold when the tar%%m) are the same. Thus, the score of each value isfthe

point is computed from the first order approximation. In tha erence in de_pths _be_ztvx_/een the two points. The algorithm
. . Selects thex which minimizes this difference. We select the
case it can be used as a measure for evaluating the targét poin : : . .
path to be in a relatively smooth region, where the basic
(N®) + N®) (P, — P,) method can be used to recover the 3D shape and the normals
2 ) 1IN+ NOJ P = Bl quite accurately even though error correction is not penéat

(17) along the path. For robustness, several different closéuspa

For each subscore, a different threshold is defined, usi¢ used in order to determine the optimal starting poine Th

threshold chosen for the continuity of the normal directio® POINt on a relatively smooth region in one of the images,
The final score is then defined by: and the range ofv is chosen such that the projection of the

3D point is in the range of all the images. In Section 1V-B
. (18) we show that this method can accurately estimate the correct
) e _initial point.
A high error score for a target point implies that either
the entire reconstruction so far is incorrect or that the re- IV. EXPERIMENTAL RESULTS
construction of that point is incorrect. Since our method is

based on propagation, a single point can affect the resteof tth VtVe q Tﬁve |mpl_eme|n:eg segerall\_/arlants (if og_r mletth(()g and
computation. We considered three possibilities for ushig t ested them on simulated and realimage sets. simulatedimag

score to improve the computation: ;ets gnai;)rlle uls to_tﬁompare thT_resuIts V\tIIFh the gr(r)]urlwld trgth.
Remove unreliable points:target pixels with a high score are~"""Ng the algorithm on a real Image Set 1s more challenging

removed from the computation. As a result, the full shape k?éeca_use we h(.':\ve. to ;upply t.he algqnthm with projection
not reconstructed (see Figure 11). matrices and lighting information, which also have to be

Compute a new target normal: The score of a target point is recovered from the images. In addition, the algorithm has to

reduced by choosing a subset of images to compute the rféﬁ?l with image noise and the inaccuracies of the Lambertian
normal. model.

Correct target point location: The score of a target point

is reduced by modifying its 3D location. We search for a 3B. Simulated images

point located on the ray whose points project to the targetwe generated several sets of simulated images of a bust
pixel, which minimizes the score. The 3D location of the poirof Mozart from a 3D range image which was used also
is defined bya. We search for the value of in the range that in [32]. We chose this object since it has considerable shape
satisfiess;oc < thi,.. We compute the range af from the variability - high curvature, low curvature, self occlusietc.
average location of its already computed neighbBrs.... The geometric and photometric properties of the generated
Using Eq. 4, the range of is the solution of the following images match the model used by our algorithm (a perspective

Sshape/norm =
piEneighb(t

_ Sint + Sdirec + Sloc Salbedo Sshape/norm
thint thdi'r‘ec thloc thalbedo th’shape/no’rm

quadratic equation iav: projection image of a Lambertian surface with a distant poin
(1- )01 +aP;, — P, )T light source). The size of each image 280 x 280. The
mem; images of the first set were generated as being shot from

(1 = )01+ aPy = Prcan) < thig,. different viewpoints and illuminated from different ditems.

In our experiments, the influence of the score function orhe images and their parameters are presented in the first
the computation is demonstrated on synthetic and real imagew of Figure 3. Four variations of this set of images were
Note that the score described here is based only on the clased for testing various aspects of our method. This inglude
neighborhood of a target point. In the next section we dbscriadding noise (e.g., Figurea¥ changing albedo (second row
a score that is based on a larger region. This score is useddbFigure 3), adding noise and albedo change (e.qg., Figoe 4
automatic detection of the starting point. and adding a synthetic shadow (e.g., Figuo}. &or testing



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 1, NO. 8, AUGUST 2002 8

Image 1 Image 2 Image 3 Image 4 Image 5
l: (0,0, 1) (0.45,0, —0.89) (0.18,—0.44, —0.88) (—0.28,0.19, —0.94) (—0.57,0,-0.82)
0: (0,0,0) (0.2,0.3,0) (0,0,0) (=0.2,0,0) (0,—0.5,0.3)
T: (0,0, —1000) (300, 0, —1000) (40, —40, —1000) (—140, —400, —1000) (—500, —200, —800)

Fig. 3. First row The five synthetic noise-free images with fixed albedo usetiénexperiments. The starting corresponding point is ntatkea blue star.
Second rowThe five synthetic noise-free images with non-fixed albedmlus the experiments. The illumination vecthrthe rotation vecto) = (0,0y,6:),
and the translation vectof;, are given for each image.

a

Fig. 4. The three lines superimposed on (a) indicate thetiotaf the cross-sections presented in Figure 7. (a-b) pl@snof Gaussian noise added to
Image 1in the first g = 30) and secondd = 20) rows of Fig 3. Similar noise was added to all the images irufég 3 & 5. (c) the “shadow” patch added
to Image 1

Fig. 5. The five noise-free synthetic images used in the phetdc stereo experiments. Noise similar to Figure 4a was atided to this set.

our photometric stereo algorithm, we generated two sets tefs (cameras and illumination) that were used to generate
images all being shot from a single viewpoint and illumimiatethe images, and an initial known 3D point to initialize the
by the point light sources used in the first set. The first sptopagation. This point is marked by a blue star in each of the
was noise free (see Figure 5) and the second set had additimages in Figure 3. The reconstructed surfaces for the wario
Gaussian noise witlhr = 30 (see Figure 4). algorithms are presented in Figure 6. Cross-sections akile
The basic approach and its extension were implement8@ structure and the recovered ones are then plotted for @ mor
in Matlab. In all cases only a first order approximation ofrecise comparison in Figures 7 & 9. We next elaborate on
the surface was used. The algorithms received the pararife different experiments we performed on the set of syitthet
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a b c d

Fig. 6. 3D surfaces obtained bg)(the basic scheme run on three noise free imadggsthe full scheme run on five noise free images); the full scheme
run on five noisy imagesdj photometric stereo run on five noisy images.

images and their results. these experiments, we used the first set of images to which
] ] ) Gaussian noise was added (see Figuadot an example of
[a] Basic scheme on noise free images: We compare gne of these images). The Gaussian noise was independently
the results of our basic algorithm (without using the scotgyqed to each pixel, with = 30. The results, are shown in the
to remove points or correct errors) on three and five imageird row of Figure 7. For the basic algorithm, the resultarbe
The propagation begins from the initial point. Cross-sBti |ittje resemblance to the ground truth 3D data. Three differ
through the reconstructed surfaces are presented in the f$or correction procedures were then compared, using the
row of Figure 7. The reconstructed surface closely resesnblg.qgre functions suggested in Section 11I-D, and using the
the original data. Note that this is true even for recoveregme parameters of the score function as in the previous
regions far from the starting point (see cross-section @ Teyperiments [b]. We first ran the procedure which discards
reconstruction starts to drift in the hair area of the Mozaggints with overall scores higher thénbut the reconstruction
head (the left part of cross-section B). This is the result @fjieq to propagate to regions which are not in the immediate
propagating the 3D shape over unreliable regions (the edgginity of the starting point. We therefore do not displéyst
between the face and the hair). When five images insteadgke \We then ran a second procedure. When points with high
three are used, the reconstruction of the hair area is in@okovgcqres are encountered, it searches for a subset of images
but bears only a distant resemblance to the original datas,Thyhich yields a low score value. We use this subset to compute
error correction is needed. The reconstructed surfaceén@uta e gyrface normal. When the score remains high, the point

by the basic algorithm running on three noise-free images;isremoved from the computation. In the final run, points for

shown in Figure €. which the first type of correction has failed are corrected by
trying to find the optimal depth (value af). The optimal
experiment, we apply the error correction on three and ﬁ\g‘?pth(aweldsc}he Io;vedst §rchore. Agl'?'”’ r;oiﬂts with sc?rei?@ 9
images. The parameters of the score function &rg: = 8, 1an b are discarded. the qualty 0! the reconstruction 15
similar in both cases and is superior to the result of thecbasi

tagiree = 0.1, tioe = 3, tatpedo = 0.1 andt pane /morm = 0.1. . e
The global threshold i§. The second I’OWhOZf) I/:igure 7 showsSCheme' The advantage of the third type of correction is that

that error correction improves the results considerablthi thefreconts):ryctzdbpatrrt] Off tne f:;ce IS _Iargr:e r Th_e rltze_cortm(iauc
problematic hair region even when only three images are,usgy''ace obtained by the full scheme 1S shown in Figure

When five images are used, the results are almost perfect. We used the same parameters of the score function in all the
synthetic experiments. The global threshold is the one fvhic

[c] Error correction on images with Gaussian noise: In affects the performance of the algorithm. When taken to be

[b] Error correction on noise free images: In the second
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too small, the reconstruction fails to propagate over ficgmit the help of a piece of checkerboard paper. The light source
parts of the shape. In the other extreme, when the glolaiitection was estimated using a set of nails and their shadow
threshold is too large, erroneous pixels are reconstruzztad- (see left-hand image of Figure 10). Vectors connecting nail
ing propagation errors as if the error correction mechanssmtips to their shadows intersect at the light source position
turned off. The algorithm is not very sensitive to the actudlhe 3D tips of the nails were computed by marking their
value of the threshold betweén- 10, yielding similar results. location by hand in a few calibrated images, and then using
i _ i i triangulation. The 3D position of the plane on which the
[(1] _Varylng alrs)_ego. In this expedrlm(_aﬂt we t_estedlbtvxijo Sel$hadows fall was also computed from the projection matrices
of images which were generated with varying albedo. Thg, s the 3D position of the shadows of the tips of the nails can
albedo used to generate the images is a Sinus function algfg, e computed. The ambient light was determined to be the
the x-d|rect|ohn V}’,'th an amplitude °f®'6 _(seef second row OLj tensity value in the shadow of the mannequin, and the light
Figure 3). The |.rst set consists Of noise 1ree Images, Whig rce intensity was chosen to be the maximal intensityevalu
thg second consists of the same Images with a_dded Gau,sﬁ'ﬁ"fhe mannequin after the ambient value was subtracted.
noise ¢ = 20). One of the T'Ve noisy images is shown in Only the facial part of the images was used in the exper-
Figure 4. The fourth row of Flgure_ 7 shows the results of OUnent, as shown on the first row of Figure 12. The images
full method on these two sets of images. As can be seen, figre smoothed with a Gaussian mask, witk- 2. The initial
reconstrqctlon is not affected when ObJ?CtS with varyirigpao corresponding points were chosen by hand and then fine-tuned
are considered. Moreov_er, the albedo is correctly recaiieye to minimize the cost function in Eq. 18. An experiment for
our method, as shown in Figure8 automatic detection of the initial point is described below
[e] Shadows: In this experiment, we tested the ability of We present here the results of three versions of our algo-

the algorithm to deal with pixels which do not agree with th@thm' Thefirstis thgbaspmethod, which is ba;ed onasingle-
photometric model. This occurs, for example, when shadoR€'9nPor propagation with no error correction; The second,
are cast on the object. We simulate this phenomenon B\Pre advanced method uses multi-neighbor propagation, and
replacing an arbitrary image patch in one of the images Héprehable points, defined by the score fun(?tlon, are remove

a constant grey-level (value 70), Figure. &he algorithm is inally, we use the complete scheme with multi-neighbor
able to detect and ignore these pixels, while yielding aemirr propagation and fgll error correction. The parameters used
reconstruction using the other images. Figute shows the O the score function aréh;,; = 5, thg”ﬁc :I Oﬁl’l t::loc h: »
discarded pixels from the first image in the computation. ify thatbedo = 0-1thshape/norm = 0.1 and the global thresho

addition to the patch, other pixels with high levels of nois s = 10. . N
were also discarded from the computation. To evaluate algorithm performance we present in Figure 11

the reconstructed surfaces. In Figure 12 we display the com-

[f] Photometric stereo - fixed viewpoint: The final puted correspondence of a set of points in the five images.
experiment on synthetic data compares our method run &he correspondence set is computed as the projection of the
images shot from a fixed viewpoint (photometric stereo) wittomputed 3D points to each of the images, where correspond-
the result obtained for images shot from multiple viewpsinting points are marked in the same color. Even in regions
The results are summarized in Figures & 9. When noise- which are far from the initial starting point (marked by adka
free images are considered, the reconstruction obtained $tar), the correspondence is good despite the large arsati
photometric stereo is good for regions close to the initiéih viewpoint and illumination direction. Finally, severaioss-
point but deteriorates in remote regions of the image. Thigctions of the surfaces recovered by the algorithms are
is the result of self-occlusion, which is not dealt with by thdisplayed in Figure 13.
normal integration process. When comparing the results forOverall, the results demonstrate that the proposed method
photometric stereo on noisy images-€ 30) with the general works very well on real images. The basic scheme already
method, the advantage of using multiple viewpoints is avidegives a rough 3D shape of the object. Adding multi-neighbor
(compare to the results plotted in the third row of Figure 7propagation to the basic scheme greatly improves the basic
Using multiple viewpoints provides more reliable inforioat scheme. The score function allows us to stop possible myifti
In particular, the general method can detect and handle s@if the 3D shape due to errors. It also causes holes to appear
occluded boundaries and hence propagate correctly thé déptthe reconstructed shape, which stop the reconstruction i
over these boundaries. Photometric stereo, in contrafg, fainreliable regions. Finally, error correction allows thapg
there. In addition, multiple viewpoints handle noise hettdéo be filled in and the reconstructed shape to be extended
because the algorithm is able to reason about the deggnrectly.
information of a given point. In the final experiment we tested our method for automatic
detection of the 3D starting point. The process and the tesul
are shown in Fig 14. An initial 2D point on the forehead in
the first image was chosen and marked on Fig. Tshe closed

We ran our algorithm on five real images of a mannequaycles were chosen to be rectangles, each marked in a differe
taken by a standard CCD camera. The original images a@or on the image. The projection of the search domain is
shown in Figure 10. The cameras were internally and extenarked on each of the other four images by a yellow line
nally calibrated using the camera calibration toolbox {@th  (Fig 14b-€). Recall thata (Eq. 4) determines the 3D location

B. Real images
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Fig. 7. In this figure we compare different variants of ouroaithm running on the synthetic images. Each column is the&fnstruction along one of the
cross-sections in the 3D shape shown in Figure 4. Each rosepte a different experiment, with the red plots represgntthe ground truth in eactrirst
row: the blue and green plots are the results of running the bakiense running on 3 and 5 noise free imaggscond row: the blue plot is the result of
running the basic algorithm on 3 images and the green pldteigdsult when error correction was applied. The black gldhé same as the green but when
the algorithm was run on 5 imageshird row: the blue plot is the result of the basic scheme run on 5 imag#ésneise ¢ = 30). The green and the
black plots are the results of applying error correctione Tésult of changing only the normal at each point is plottedreen, while the black plot consists
of correcting the target point location as well when the redroorrection is insufficientFourth row: the blue and the green plots are the results of the full
scheme (with error correction) run on the 5 images with vayyalbedo with and without noise of (= 20), respectively.

Fig. 8. (&) The recovered albedo in the varying albedo expat, see image Figure 4(b); (b) the black pixels are thosematically removed from the
computation in the shadows experiment, using the image rshiovrigure 4(c).

of the starting point. We propagate the 3D location of thdarough relatively high curvature regions. The blue polohg
points along a closed cycle using the basic approach (the e yellow line in each of the images marks the projection
of the image was ignored). The 3D distance between the fiodtthe chosen initial 3D point. Looking at the corresponding
and the last point along a closed cycle is plotted as a fumctipoints in the four images, we can see that the results are quit
of « for each of the rectangles (see Figfll4n general, we accurate.

search for the minimal value on each of these graphs. As can

be seen, three out of the four plots closely agree on thérsart V. SUMMARY AND CONCLUSIONS

point location. The only plot (in pink) that does not agre#hwi  In this paper we introduced a new single pass shape recon-
the rest is the one that corresponds to a rectangle thatpassriction algorithm for smooth featureless surfaces urioer
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cross-section A cross-section B cross-section C

Fig. 9. The photometric stereo experiment: the 3D recoatitnu along three cross-sections of the 3D shape as showigime~7. The red plot is the ground
truth; the blue plot is the result of running the basic phattin stereo method on 5 noise-free images. The green acH plats are the results of running
the photometric stereo method on noisy images=(30) without and with error correction.

Fig. 10. The real image experimental setup. Calibrationepayas used to calibrate the camera location, and a cleaslpleisubset of the nail shadows
were marked by hand to compute the light source directiore fiojections of the nail heads are marked in blue and theidahis in red. The yellow line
is the projection of the light source position to the imaganpl The yellow rectangle is the region on which we run ouorétlym.

a b C

Fig. 11. 3D surfaces obtained by our meth(a).Propagation based on a single neighbor without error ctiore¢the naive method)b) and(c), propagation
based on multiple neighbors. [b) points that have high scores are removed whil¢cinpoints are corrected to have scores below the threshold.

perspective projection model. By enabling independeniram recovered surfaces were quite accurate. These resultsecan b
and light source location, an accurate reconstructionritlgo  improved by modifying the reflectance model to deal with
is created. It builds on the strengths of photometric sterespecularities and non-distant light sources. This extnsi
geometric stereo, and shape-from-shading, where eaclothetis relatively straightforward in our setup because, when th
alone cannot handle this task adequately. normal to a target point is computed, the 3D location of that
) ) o ) _point is already known and therefore the lighting direction
The algorlthm has been tested in realistic settings USiRgn he computed locally. A more challenging goal would be
an experimental setup that enables us to recover the inpliteyieng the method to deal with other reflectance models.

parameters to the algorithm from the images. Even thougese reflectance models can be easily incorporated within o
these parameters were estimated from the images, theingsult
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Image 1 Image 2 Image 3

Image 4 Image 5

Fig. 12. The first row consists of the five cropped images usdida experiment. Note that each was taken from a differenvtpoint and with a different light
source direction. The blue star is the corresponding padugingto the algorithm. The second row consists of a grid obruatically computed corresponding
points on the face images. Corresponding points are markeétebsame color on the different images.

Image 1

g I

Fig. 13. Cross-sections of the surface showiniage 1are presented. The red is the naive method with a single b@igiropagation and no error correction

while the blue is the full method with error correction.

general approach, as long as the normal recovery proceslurg4]
local.

Future research will also focus on self-calibration of them
system (for camera and lighting parameters). This willvallo
the reconstruction of smooth featureless surfaces from g
arbitrary set of images. In addition, applying whole-objec
optimization techniques to the output of our method shoulé!
be explored in order to improve the quality of the recovered
surface. [6]
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