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Abstract: A distance metric learned from data reflects the actual similarity 
between objects better than the geometric distance. So, in this paper, we 
propose a new distance that is based on clustering. Because objects belonging 
to the same cluster usually share some common traits even though their 
geometric distance might be large. Thus, we perform several clustering runs  
to yield an ensemble of clustering results. The distance is defined by how  
many times the objects were not clustered together. To evaluate the ability of 
this new distance to reflect object similarity, we apply it to two types of data 
mining algorithms, classification (kNN) and selective sampling (LSS). We 
experimented on standard numerical datasets and on real colour images. Using 
our distance, the algorithms run on equivalence classes instead of single 
objects, yielding a considerable speedup. We compared the kNN-EC classifier 
and LSS-EC algorithm to the original kNN and LSS algorithms. 
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1 Introduction 

The performance of many learning and data mining algorithms depends critically on their 
being given a good metric over the input space. Learning a ‘good’ metric from examples 
may therefore be the key to the successful application of these algorithms. Many data 
mining algorithms use only the geometric distance to measure object similarity or 
dissimilarity without using any statistical regularities in the data. But this metric does not 
always reflect the actual similarity between the objects. The following example illustrates 
this situation. Consider the dataset in Figure 1(a), with two labelled points. When the 
nearest neighbour (NN) classifier (Cover and Hart, 1967) uses the Euclidean distance, it 
works poorly and many points belonging to the green class are incorrectly classified as 
black Figure 1(b). 

Figure 1 Euclidean distance does not reflect actual object similarity (see online version  
for colours) 
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(a) (b) (c) 

To overcome this problem, we need to define a better metric. To this end, we turned to 
clustering. As there is no optimal clustering algorithm with optimal parameter values, we 
performed several clustering runs, which yielded an ensemble of clustering results.  
The distance between points is defined by how many times the points were not  
clustered together. This distance is then used within the framework of the kNN algorithm 
(kNN-EC). Figure 1(c) shows that this method worked very well. 

Using the new distance function, points that are always clustered together in the same 
cluster (distance= 0) are defined as members of an equivalence class. As a result, the 
algorithms now run on equivalence classes instead of single points. In our experiments, 
the number of equivalence classes is usually between 2% to 24% of the number of points. 
This equivalence class representation is in effect a novel data reduction technique with a 
wide range of possible applications. It is complementary to other data reduction methods 
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such as feature selection and to dimensionality reduction methods such as the well-known 
principal component analysis (PCA) technique. 

Our metric is general and can be used with any approach which uses a distance 
metric. But because its performance depends strongly on the chosen distance measure, we 
opted for the k nearest neighbour classifier to evaluate its ability to accurately reflect 
object similarity. As many researchers have demonstrated, kNN (Cover and Hart, 1967) 
classification can be notably improved by learning a distance metric from labelled 
examples (Chopra et al., 2005; Domeniconi et al., 2005; Goldberger et al., 2004; Hastie 
and Tibshirani, 1996). 

In the second part of the paper, we evaluate how this new metric function improves 
the selection of the most informative samples to be labelled and added to the training 
dataset. This approach, known as selective sampling, (SS) is one of the common active 
learning approaches. We decided to work with the selective sampling for nearest 
neighbour classifier [lookahead selective sampling (LSS)] (Lindenbaum et al., 2004), 
because it is based on kNN. At each iteration of the algorithm, all of the unlabelled 
examples are tested and the point which yields the highest expected utility is chosen. A 
short version of kNN-EC is given in Lindenbaum et al. (2004). 

The paper is organised as follows. Related work on distance metric learning and 
selective sampling is discussed in Section 2. The distance metric using ensemble 
clustering is described in Section 3. Section 4 describes the ensemble clustering method 
using the mean shift and the k-means clustering algorithms. The lookahead algorithm for 
selective sampling for nearest neighbour classifiers using the suggested metric is 
presented in Section 5. 

Experimental results on numerical datasets and real colour images are presented in 
Sections 6 and 7, respectively. Finally, our conclusions are presented in Section 8. 

2 Related work 

In our work we present a new distance metric and, within the framework of kNN, apply it 
to selective sampling. We will therefore now review related work on distance metric 
learning and on selective sampling algorithms. 

2.1 Distance metric learning 

A large body of work has been published on the topic of distance metric learning, and we 
will briefly mention a few examples. Most of the work can be organised into the 
following two categories: supervised/semi-supervised distance metric learning and 
unsupervised distance metric learning. 

Most supervised/semi-supervised methods attempt to learn metrics that keep data 
points within the same classes close, while separating data points from different classes 
(Chopra et al., 2005; Hastie and Tibshirani, 1996). Goldberger et al. (2004) provided a 
distance metric learning method to improve the classification of the kNN algorithm. They 
use a gradient descent function to reduce the chance of error under the stochastic 
neighbourhood assignments. Domeniconi et al. (2005) proposed to use a locally  
adaptive distance metric for kNN classification, such as SVM decision boundaries. 
Shalev-Shwartz et al. (2004) considered an online method for learning a Mahalanobis 
distance metric. The goal of their method is to minimise the distance between all 



   

 

   

   
 

   

   

 

   

    An ensemble-clustering-based distance metric and its applications 267    
 

    
 
 

   

   
 

   

   

 

   

       
 

similarly labelled inputs by defining margins and inducing hinge loss functions. Recently, 
Weinberger and Saul (2006) presented a similar method, which uses only the similarly 
labelled inputs that are specified as neighbours in order to minimise the distance. 

Unsupervised distance metric learning takes an input dataset and finds an embedding 
of it in some space. Many unsupervised distance metric learning algorithms have been 
proposed. Gonzalez and Woods (2001) provided the well-known PCA technique, which 
finds the subspace that best maintains the variance of the input data. Tenenbaum et al. 
(2000) proposed a method called ISOMAP, which finds the subspace that best maintains 
the geodesic inter-point distances. Saul and Roweis (2003) provided a locally linear 
embedding (LLE) method to establish the mapping relationship between the observed 
data and the corresponding low dimensional data. Belkin and Niyogi (2003) presented an 
algorithm called the Laplacian eigenmap to focus on the maintenance of local neighbour 
structure. 

Our method falls into the category of unsupervised distance metric learning. Given an 
unlabelled dataset, a clustering procedure is applied several times with different 
parameter values. The distance between points is defined as a function of the number of 
times the points belonged to different clusters in the different runs. 

This problem of combining multiple clusterings of a set of objects without accessing 
the original features is called cluster ensemble. Combination of clusterings is a more 
challenging task than combination of supervised classifications. Strehl and Ghosh (2002) 
and Topchy et al. (2003) addressed this issue by formulating consensus functions that 
avoid an explicit solution to the correspondence problem. Recent studies have 
demonstrated that consensus clustering can be found using graph-based, statistical or 
information-theoretic methods without explicitly solving the label correspondence 
problem as mentioned in Topchy et al. (2005). Other empirical consensus functions were 
also considered in Dudoit and Fridlyand (2003), Fischer and Buhmann (2003a) and Fern 
and Brodley (2003). 

A clustering-based learning method was proposed in Derbeko et al. (2004). There, 
several clustering algorithms are run to generate several (unsupervised) models. The 
learner then utilises the labelled data to guess labels for entire clusters (under the 
assumption that all points in the same cluster have the same label). In this way the 
algorithm forms a number of hypotheses. The one that minimises the PAC-Bayesian 
bound is chosen and used as the classifier. The authors assume that at least one of the 
clustering runs produces a good classifier and that their algorithm finds it. 

Our technique differs from Derbeko et al.’s in several ways, primarily with regard to 
the assumptions made. We assume only that the equivalence classes, which were built by 
running the clustering algorithm several times, are quite pure. Moreover, we do not 
assume that at least one of the clustering runs produces a good classifier but rather that 
the true classifier can be approximated quite well by a set of equivalence classes (in other 
words, the points which always belong to the same clusters in the different clustering 
iterations will define an equivalence class instead of single points and the distance metric 
defined between these equivalence classes). 

2.2 Selective sampling 

Previous work on the problem of selecting a sample of relevant instances from a set of 
unlabelled data falls under the paradigm of active learning and, more specifically, 
selective sampling (Cesa-Bianchi et al., 1997; Dagan and Engelson, 1995; Lewis and 
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Catlett, 1994; Lindenbaum et al., 2004), which is more common in practice. Here it is 
assumed that a set of unlabelled examples is available. In this approach the learner selects 
an unlabelled example from the given set and asks the teacher to label it. 

Much work has been done in selective sampling of examples related mainly to 
training classifiers: for neural networks (Davis and Hwang, 1992; Cohn et al., 1994), for 
the C4.5 rule-induction algorithm (Lewis and Catlett, 1994), and for hidden Markov 
models (Dagan and Engelson, 1995). 

The most simple sampling technique is random sampling, where we select a group of 
instances from an instance space. Another option is to select the point with the largest 
uncertainty (Lewis and Gale, 1994). 

Lindenbaum et al. (2004) claimed that the problem of selective sampling is similar to 
the problem of cost-sensitive learning (Tan and Schlimmer, 1990; Turney, 1995). They 
proposed the lookahead algorithm for selective sampling (LSS) for the nearest neighbour 
classifier. The main goal of their algorithm is to develop a selective sampling 
methodology for nearest-neighbour (NN) classification learning algorithms. Our method 
is based on this algorithm. We will therefore give a short overview of it in Section 5.1. 

In our algorithm we exploit clustering to guide the selective sampling. Clustering has 
been used in the selective sampling process in other works in different ways. 

Dasgupta and Hsu use hierarchical clustering (Dasgupta and Hsu, 2008). Their 
method exploits the cluster structure (if there is any) in the unlabelled data. Their 
algorithm assumes that querying the label of only one of the data points in a cluster is 
sufficient to determine the label of the other data points in that cluster. We only assume 
that the equivalence classes (which are much smaller) are quite pure. 

Nguyen and Smeulders (2004) proposed a density-based approach that first clusters 
instances and tries to avoid querying outliers by propagating label information to 
instances in the same cluster. They first select points from the large clusters and use them 
to build a logistic regression classifier. Additional points are selected, either with the 
largest uncertainty or points that are cluster centres. The algorithm is obviously very 
different from the algorithm we propose here. Moreover, our algorithm is based on an 
NN classifier whereas theirs is based on logistic regression. Thus, in our case, using the 
point with the largest uncertainty would not necessarily approximate the best contribution 
to the classifier. 

Similarly, Xu et al. (2007) use clustering to construct sets of queries for batch-mode 
active learning with SVMs. Specifically, they query the centroids of clusters of instances 
that lie closest to the decision boundary. 

3 Distance metric learning using ensemble clustering 

We now turn to define our ensemble clustering-based distance metric. Let A be a set of 
instances, where each xi ∈ A is a vector in some space χ. Instances are assumed to be 
i.i.d. distributed according to some unknown fixed distribution ρ. The Euclidean distance 
defined on A does not always reflect the actual similarity or dissimilarity of the objects to 
be classified. However, it is known that points belonging to the same cluster usually share 
some common traits even though their geometric distance might be large. 

The main problem with such an approach is that there is no known method for 
choosing the best clustering. Several attempts have been made to select the optimal 
parameter values of the clustering algorithms in supervised and unsupervised settings, 
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usually in the range image and colour image domain, but a general solution to this 
problem has not been found (Min et al., 2004; Chabrier et al., 2006; Zhang et al., 2008). 
We therefore decided to run different clustering algorithms several times with different 
parameter values. The result of all these runs yields a cluster ensemble (Fern, and 
Brodley, 2004). 

There are many approaches proposed that can be used in our method to generate 
different multiple clustering; Strehl and Ghosh (2002) apply various clustering 
algorithms. Fred and Jain (2003) use one algorithm with different built-in initialisation 
and parameters, and Fern and Brodley (2003) project data onto different subspaces, 
Topchy et al. (2003) choose different subsets of features. Fischer and Buhmann (2003b) 
and Minaei-Bidgoli et al. (2004) select different subsets of data points and run a 
clustering algorithm on each subset. All these are instances of these generative 
mechanisms. 

In our approach the clustering results are stored in a matrix denoted the cluster matrix 
C ∈ MatN×K, where N = |A| and K is the number of times the clustering algorithms were 
run. The ith row consists of the cluster identities of the ith point in the different runs. This 
results in a new instance space, χcl = ZK, which contains the rows of the cluster matrix. 

The new distance between points from this space should be defined in order to reflect our 
intuitive notion of proximity among the corresponding points. 

( )
1

( , ) , ,
K

cl i i
i

d x y dis x y
=

=∑  (1) 

where 
1

( , )
0

i i
i i

i i

x y
dis x y

x y
≠⎧

= ⎨ =⎩
 is the metric of a single feature. This metric is known as 

the Hamming distance. The idea of measuring the similarity between objects according to 
their clustering labels was introduced in Strehl and Ghosh (2002). Over this metric we 
define the following equivalence relation. Let E be a binary relation on χcl, where E 
defined as 

, , ( , ) ( , ) 0.cl clx y x y E d x yχ∀ ∈ ∈ ⇔ =  

The relation E is an equivalence relation on χcl. By this relation, points which always 
belong to the same clusters in the different clustering iterations will define an equivalence 
class [·]E. Thus, all the equivalent points will be represented by a single point in the 
quotient set, and we can now work with A/E, which yields Ceq ∈ MatM×K, where  
M = |A/E|. Points which always belong to different clusters will, however, be infinitely 
distant (i.e., dcl(x, y) = ∞ if and only if x and y always belong to different clusters). Thus, 
x is a neighbour of y if and only if dcl(x, y) < ∞. The set of the neighbours of x will be 
defined as: = {y|dcl(x, y) < ∞}. For each x ∈ A, Nx = Ø, since by using the reflexive 
property of E, we get dcl(x, x) = 0 < ∞, and thus, x ∈ Nx. 

The goal now is to adapt the kNN classifier to work with this new distance metric 
using the new instance space. Consider the following paradigm. Let X be the unlabelled 
data – a set of unlabelled instances where each xi is a vector in χ. Each instance xi has a 
label wi ∈ W (where in our case W = {0, 1}) distributed according to some unknown 
conditional distribution P(w|x). Let D = {〈xi, f(xi)〉: xi ∈ X, i = 1, …, ND} be the training 
data – a set of labelled examples already known. In our algorithm the sets X and D are 
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represented by the equivalence classes Xcl and Dcl respectively. In this setting all the 
unlabelled points in Xcl will be labelled according to a given training dataset Dcl. 

As our metric is general and can be used with any approach which uses a distance 
metric, we decided to evaluate how this new metric function improves the selection of 
most informative samples to be labelled and added to the training dataset. We decided to 
work with the selective sampling for nearest neighbour classifier (LSS) (Lindenbaum  
et al., 2004), because it is based on kNN. 

The main assumption made by the algorithms is that equivalent points have the same 
label, but this assumption does not always hold in practice. Several options exist for 
overcoming this hurdle. One is to label several points from each equivalence class  
xcl ∈ Dcl; xcl will then be labelled according to the majority voting. Another option is to 
label xcl according to its centroid. Thus, with high probability a point will be selected 
from the majority class of the equivalence class. It is also possible to run the clustering 
algorithms more times, increasing the number of equivalence classes to yield ones that 
are smaller but hopefully purer. 

4 Ensemble clustering using the mean shift and k-means algorithms 

As mentioned above, the main problem with a clustering-based approach is that there is 
no known method for choosing the best clustering. It is unknown how many clusters 
there should be, their shapes, which clustering algorithm is best, and which parameter 
values should be used. We therefore decided to run two different clustering algorithms 
several times with different parameter values. We use the well-known k-means algorithm 
(MacQueen, 1967) and the mean shift clustering algorithm (Georgescu et al., 2003; 
Comaniciu and Meer, 2002) in order to build the cluster matrix. Our algorithm, however, 
is general and any good clustering algorithm could be used. In general there is no specific 
clustering algorithm that is suitable for all datasets and the choice of the clustering 
algorithm depends on the dataset. Thus, each clustering algorithm that maps the dataset 
structure and yields pure equivalence classes will work. In addition, the clustering matrix 
can contain clustering results from different clustering algorithms. 

For completeness we will now give a short overview of the mean shift algorithm. 
Mean shift is a non-parametric clustering algorithm. As it requires no prior knowledge of 
the number of clusters nor places any constraints on their shape, it is ideal for handling 
clusters of arbitrary shape and number. In addition, it is an iterative technique, but instead 
of the means, it estimates the modes of the multivariate distribution underlying the 
feature space. The number of clusters is obtained automatically by finding the centres of 
the densest regions in the space (the modes). 

The density is evaluated using kernel density estimation, which is a non-parametric 
way to estimate the density function of a random variable. This is also called the Parzen 
window technique. Given a kernel K with a bandwidth parameter h, which is a smoothing 
parameter of the estimated density function, the kernel density estimator for a given set of 
d-dimensional points is: 

1

1ˆ ( ) .
n

i
d

i

x x
f x K

hnh =

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∑  (2) 



   

 

   

   
 

   

   

 

   

    An ensemble-clustering-based distance metric and its applications 271    
 

    
 
 

   

   
 

   

   

 

   

       
 

For each data point, a gradient ascent process is performed on the local estimated density 
until convergence. The convergence points represent the modes of the density function. 
All points associated with the same convergence point belong to the same cluster. 

We worked with the two mean shift algorithm types: the simple, and the adaptive; see 
Georgescu et al. (2003) and Comaniciu and Meer (2002) for more details. The simple 
mean shift works with a fixed bandwidth h. We chose 80 different values of h with fixed 
intervals from 0.1 to 0.9 of the space size. The adaptive mean shift algorithm is given the 
number of neighbours k as a parameter and the bandwidth is determined for each point in 
the data as the distance to its kth neighbour. We chose 30 different values of k with fixed 
intervals between 1% to 30% of N (for more details see Section 6). 

Some clustering algorithms work with continuous parameters, such as the mean shift 
algorithm described above, or with continuous weights over the features, such as the 
EDISON program which will be discussed in Section 7. In these cases the differences 
between two consecutive iterations might be small. There are two possible ways to deal 
with these similar clusterings: by eliminating the clustering results or by simply taking all 
of them. We preferred the latter because, if a set of samples were clustered together in 
several clustering runs, there is a higher probability that these samples belong to one 
class. So if we eliminate them we stand to lose this information. However, it is not 
efficient to preserve similar clustering runs. Therefore, we decided to join them, as a 
result of which the dimensionality of the data is reduced. We use the Rand (1971) index, 
which is a measure of similarity between two data clusterings, to decide whether to join 
them. 

The Rand index is defined as follows. Let C1, C2 be two clustering iterations. Then 
the measure between them is: 

( 1, 2) ,

2

R C C
n

α β α β
α β γ δ

+ +
= =

+ + + ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3) 

where α describes the number of pairs of elements in the instance space that are in the 
same set (i.e., cluster) in C1 and in the same set in C2, β describes the number of pairs of 
elements that are in a different set in C1 and in a different set in C2, s describes the 
number of pairs of elements that are in the same set in C1 and in a different set in C2, and 
δ describes the number of pairs of elements that are in a different set in C1 and in the 
same set in C2. 

Similar clusterings are represented by a single column, weighted by the number of 
clusterings it represents. Accordingly, the metric function has become: 

( )
1

( , ) , ,
q

cln i i i
i

d x y n dis x y
=

=∑  (4) 

where x, y ∈ χcln are two points in the new weighted space, q is the dimension of χcln, and 
ni is the weight of each representative column. 

The advantage of this method is that it maintains the relation between the samples 
according to the clustering results, while maintaining a relatively small dimension of the 
clustering matrix. 
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This method worked quite well for mean shift clustering as the bandwidth acts as a 
smoothing parameter for the density estimation. However, for k-means, the differences 
between consecutive runs of the algorithm were significant and thus columns could not 
be joined. 

5 Lookahead algorithm for selective sampling using ensemble clustering 

As mentioned above, we also evaluate the improvement achieved by the  
ensemble-clustering-based metric by applying it to selective sampling methods. 

Selective sampling is one of the common active learning approaches. It assumes that a 
set of unlabelled examples is available, and the learner selects an unlabelled example 
from the given set and asks the teacher to label it. It is important in many cases when we 
wish to construct a training dataset or add examples to it in order to improve the 
classifier’s accuracy. In real environments, it is usually difficult to obtain a large set of 
labelled examples because each example must be labelled by a domain expert. Reducing 
the number of the training examples is therefore essential. 

The algorithm that will now be described is based on the selective sampling for 
nearest neighbour classifier (LSS) (Lindenbaum et al., 2004). We will therefore first 
review this algorithm and then describe the algorithm we developed (LSS-EC) which is 
based on the ensemble clustering distance. 

5.1 Lookahead algorithm for selective sampling 

An active-learner consists of a classifier learning algorithm L, and a selective sampling 
algorithm SL. The selective sampling algorithm determines which unlabelled instance in 
X should be labelled by the teacher f, which is a mapping f : χ → W. 

The active learner first applies SL to choose one unlabelled instance x from X. The 
label w of x is then revealed and the pair (x, w) is added to D and x is removed from X. 
Then the learner applies L to induce a new classifier. This sequence repeats until some 
stopping criterion is satisfied. 

The lookahead algorithm for selective sampling considers all the unlabelled examples 
and selects the example that yields the best expected classifier. Let UL (x, D) be a utility 
function that estimates the merit of adding an unlabelled instance x to the set D as a 
training example for learning algorithm L. Let P (f (x) = w|D) denote the conditional class 
probabilities of x for a given labelled set D. For each unlabelled example, its expected 
utility is measured using the utility function on the training set and using expected 
probabilities for the possible classes of the unlabelled example. Then the lookahead 
algorithm for selective sampling with respect to learning algorithm L selects the example 
that leads to the learning example with the highest expected utility. This algorithm is 
depicted in Algorithm 1. 
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Algorithm 1 Lookahead selective sampling (X, D) 

1. If D is empty, return a random point from X. 
2. Otherwise, set Umax ← 0. 
3. For each x ∈ X do. 
  (a) D′ ← D ∪ {〈x, −1〉}. 
  (b) Compute class probabilities for all points in X based on data D′. 
  (c) Compute utility by approximating the accuracy AL (D′) of the classifier based on 

data D′, U1 ← AL (D′). 
  (d) Repeat the above steps for D′ ← D ∪{〈x, −1〉} and get U2(x). 
  (e) Compute class probabilities for x based on data D. 
  (f) U(x) ← P (f(x) = −1|D) · U1(x) + P (f(x) = 1|D) · U2(x). 
  (g) If Umax < U(x) then Umax ← U(x), xbest ← x. 
4. Return xbest. 

In order to be able to use this general algorithm for a specific learner, AL(D) and  
P(f(x) = w|D) have to be defined. AL (D) denotes the expected accuracy of classifier  
h = L(D) as: 

1( ) ( ( )  ( ) | ),
| |L

x X

A D P f x h x D
X ∈

= =∑  (5) 

is produced by a learning algorithm L on labelled data D. 
As f (x) is unknown for the unlabelled dataset X, we are not able to calculate these 

probabilities. A possible solution for this problem is to use the maximum likelihood 
estimation, which assumes that if 1

2( ( ) 1 | ) ,P h x D= >  then f (x) = 1 else f (x) = −1. 
Therefore, we define: 

( ) ( ) ( )( )max  |  max ( ) 1 |  ,   ( ) 1 |P x D P h x D P h x D= = = −  

and use it to estimate AL(D) as follows: 

max
1( ) ( | ).

| |L
x X

A D P x D
X ∈

= ∑  (6) 

The last piece of the puzzle is to assign conditional class probabilities to the nearest 
neighbour classifier. To this end the random field model is used to estimate the 
probabilities for the 2-NN classifier. 

In order to calculate P (f (x) = 1|D), first the two nearest neighbours y, z from the 
labelled data D must be found. Then the probability will be 

( ) ( ) ( )

( )

( ) ( , ) ( ) ( , )1( ) 1 | ,  ,
12 2 ( ) ( ) ( , )
2

l y d x y l z d x z
P f x y z

l y l z d y z

γ γ

γ

⋅ + ⋅
= = +

+ ⋅ ⋅ ⋅
 

where l(x) is the label of x and d(x, y) is the distance between x and y 
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where D is a scaling parameter. 

5.2 Selective sampling using ensemble clustering 

We will now describe the changes we made to the original LSS formulas to cause the 
algorithm to work with the new distance metric and the new instance space. In each 
iteration of the LSS-EC algorithm, one of the equivalence classes is chosen to be added to 
the training dataset. Its representative point x0 is labelled by the expert and added to Dcl. 
This is in contrast to the original LSS where a single point is chosen. In order to choose 
the equivalence class, the expected accuracy from (6) will be modified to be: 

( ) ( ) ( ) ( )
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′∈

⎡
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⎢⎣
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⎥′+ ⋅
⎥
⎦

∑

∑
 

where eq
clX  is a set of equivalence points, 0{ },cl clD D x′ = ∪  and card(x) is the cardinality 

of x, which is |[x]E|. The probability max ( | )clP x D′  of each point is multiplied by its 
cardinality because in the original space X each point represents |[x]E| points which we 
assume have the same label. max ( | ) 1cl clP x D D′∈ =  because Dcl is labelled. As a result, 
the expected accuracy will be: 
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The contribution of the point x0 to the utility function is: 

( )( ) ( )

( ) ( )( )

max 0 0

max max
\

1 1
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x X D
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′∈

⎡
⎢ − ⋅
⎢
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⎤
⎥′+ − ⋅
⎥
⎦

∑
 (8) 

Studying the two components of (8), we can see that the first, which is termed the 
uncertainty component, is the product of the cardinality of the set of points equivalent to 
x0 with the reduction in uncertainty obtained since x0 has been chosen. Pmax (x0|Dcl) is the 
probability of x0 to be classified correctly in the past, and now since x0 is chosen its 
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probability will be 1. The second component, which is termed the classifier component, 
estimates the added contribution to the utility function, which will be obtained by 
reducing the uncertainty of the neighbours of x0 to less than what it was for set Dcl. This 
term measures how the classifier improves when x0 is added to the labelled set. 

As in the original LSS algorithm, in our algorithm the size of D also affects 
performance. As D increases, max ( | )clP x D′  decreases. As a result, for large values of D 
the points are selected only according to their cardinalities and not by the probabilities of 
their neighbours. As the size of D decreases, the importance of the neighbourhood 
increases. 

We ran the lookahead selective sampling algorithm using the dcl metric and the new 
accuracy to choose the most informative points to be given to the expert. The rest of the 
points were labelled by the classifier h using the dcl metric. The LSS ensemble clustering 
method (LSS-EC) is expected to be much more efficient than LSS since |X/E|  |X|. 

6 Experiments on numerical datasets 

In order to measure the ability of the new distance function to reflect the actual similarity 
or dissimilarity between objects, we ran two sets of experiments: on numerical and on 
image datasets. For the numerical datasets, we measured the improvement of our distance 
function on the performance of the kNN and LSS algorithms. The results will be 
presented in this section, and the results for the image dataset in Section 7.We first 
compare the performance of kNN-EC to that of kNN. We then compare the performance 
of our LSS-EC algorithm to the random sampling, uncertainty sampling, and LSS 
methods. All the algorithms were implemented in MATLAB. 

We ran our experiments on three standard numerical datasets: the image segmentation 
dataset [UCI machine learning repository (Frank and Asuncion, 2010)], the breast cancer 
dataset [LIBSVM library (Chang and Lin, 2011)], and Leo Breiman’s ring norm  
(Bias, 1996). The image segmentation dataset contains 2310 instances, which are divided 
into seven classes. Since we chose towork with a binary kNN, the classes were joined to 
create two class labels (as was done in Lindenbaum et al., 2004), one corresponding to 
BRICKFACE, SKY and FOLIAGE and the other corresponding to CEMENT, 
WINDOW, PATH and GRASS. The breast cancer dataset contains 683 instances, divided 
into two class labels, with 444 points from the first class and the rest from the second. 
Leo Breiman’s ring norm dataset contains 7,400 instances of a two-class classification 
problem. Each class is drawn from a multivariate normal distribution. All these datasets 
were labelled, but this knowledge was used only to evaluate the accuracy of the resulting 
classifier. In all experiments these datasets are assumed to be unlabelled. 

To build the cluster matrix, we used the mean shift or the k-means algorithms, as 
discussed in Section 4. As our method is general we arbitrarily chose to start with the 
mean shift algorithm for all the numerical datasets with the k or h values described there. 
But, because the mean shift algorithm did not yield pure equivalence classes for breast 
cancer and ring norm datasets, we used the k-means algorithm for these two datasets. For 
the breast cancer dataset, k-means was run with k = 3.15 and for the ring norm dataset it 
was run with k = 3.30. Later (in the experiment in Section 6.1.3) we can see that the 
values of k are not critical for the algorithms performance. The results are stored in the 
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cluster matrix C. The equivalence relation E was employed to build the equivalence 
matrix Ceq. As can be seen in Table 1, the new space is usually smaller than the original 
space without the equivalence classes. The ratio between the sizes of the two spaces is 
given in the fourth column. Our algorithm assumes that points belonging to the same 
equivalence class have the same label. However, as can be seen from the last column, the 
equivalence classes are not perfectly pure. 
Table 1 Dataset properties 

Dataset 
type Dataset Dataset 

size 
Cluster 

matrix size 
Equivalence 
matrix size 

Rati
o 
% 

Purit
y 
% 

I. Segmentation 2,310 × 19 2310 × 38 548 × 38 24 97 

Breast Cancer 683 × 8 683 × 13 160 × 13 23 98 

Numerical 
datasets 

Ring Norms 7,400 × 20 7,400 × 28 7,400 × 28 100 100 

One Bird 131 × 100 13,100 × 18 1,312 × 18 10 99 

Three Birds 207 × 352 72,864 × 11 3,073 × 11 4 98 

Image 
datasets 

Wolf 321 × 481 154,401 × 24 3,348 × 24 2 96.7 

6.1 kNN-EC experiments 

In the first stage of each algorithm a training set of size 20% to 40% of the dataset is 
randomly drawn and labelled. For each training dataset the algorithms run with different 
numbers of neighbour values (i.e., k = 3, 5, 7). For each k the accuracy was evaluated by 
the ability of the classifier to label the rest of the unlabelled points. The results are 
averaged over ten different runs on each dataset. A resulting curve was constructed for 
each dataset to evaluate how well the algorithm performed. 

6.1.1 Results 

As can be seen from Figure 2, kNN-EC performs better than or comparable to kNN with 
the Euclidean distance. The learning curves are constructed by computing the ratio of 
correctly classified instances to the whole unlabelled data. For the image segmentation 
and breast cancer datasets, the curves show that kNN-EC performs comparably to kNN, 
while for ring norm they show that kNN-EC exhibits superior performance. As Figure 2 
shows, kNN-EC achieves accuracy of 85% while kNN achieves accuracy of 65%. This 
improvement in kNN-EC accuracy is due to the ability of the EC metric to better measure 
the actual similarity between the objects. We also computed the runtime of the two 
algorithms when the training dataset includes 30% of the points, and k = 5. Table 2 shows 
that using the EC metric usually results in a speedup of the algorithm. The exception is 
the ring norm dataset, for which our algorithm works slowly but that is because in this 
dataset we do not have equivalence classes, as can be seen in Table 1. We thus performed 
another experiment to determine how much the runtime of our algorithm depends on the 
number of equivalence classes. In this experiment we ran k-means on a different range 
(i.e., k = 3.10 instead of 3.30) and we got 3351 equivalence classes. As a result, the 
runtime of the kNN-EC algorithm is only 1.04 seconds. 
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Figure 2 Results of kNN and kNN-EC for the three datasets (see online version for colours) 
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Notes: The first row shows the learning curves of the image segmentation dataset, the 
second shows the breast cancer dataset, and the third shows the ring norm dataset. 
The columns show the learning curves for the different k values. 

Table 2 Runtime of the algorithms in seconds 

Dataset kNN kNN-EC 

Image segmentation 0.45 0.15 
Breast cancer 0.15 0.01 
Ring norms 2.4 3.9 

6.1.2 The effect of the purity of the equivalence classes 

As shown in the previous subsection, the performance of kNN-EC is not always superior. 
We conducted an experiment to determine the extent to which our algorithm’s 
performance depends on the purity of the equivalence classes. Unlike the previous 
experiment where the equivalence classes were not completely pure (e.g., 97% for the 
image segmentation dataset), in this experiment the classes were changed until a purity of 
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100% was obtained. As can be seen in Figure 3, there is a linear relationship between the 
accuracy and the purity of the equivalence classes. The accuracy increased by about 3% 
while the purity increased from 97% to 100%. 

Figure 3 The effect of purity: Results of kNN and kNN-EC for the image segmentation dataset 
with the different k values (see online version for colours) 
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6.1.3 The effect of number of clustering iterations on kNN-EC performance 

We performed yet another experiment to determine the extent to which our algorithm 
depends on the number of clustering iterations. In this experiment we evaluate the 
performance of the 5NN-EC classifier on the ring norm dataset, with 20% of the dataset 
used as a training set. We run the k-means algorithm on three different ranges: k = 3.10,  
k = 3.20 and k = 3.30, as shown in Table 3. As the number of clustering runs increases, 
the purity of the equivalence classes also increases, and the number of equivalence 
classes increases dramatically. (When the clustering runs increased from 8 to 18, the 
purity increased from 93 to 99.8% and the number of equivalence classes increased from 
3351 equivalence classes to 7171). However, the performance of the algorithm remain 
stable (i.e., the accuracy increased only from 81% to 83%). This occurred because the 
distance function metric based on ensemble clustering is stable, and if, for example, an 
equivalence class was partitioned, then the distance between the equivalent instances 
would be 1 instead of zero. Thus with high probability, these instances would still be 
classified as belonging to the same class. 
Table 3 The effect of the number of clustering iterations 

k-means Equivalence matrix size Purity % Accuracy% 

k = 3.10 3,351 × 8 93 81 
k = 3.20 7,171 × 18 99.8 83 
k = 3.30 7,400 × 28 100 85 

6.2 LSS-EC experiments 

We now turn to the selective sampling algorithms. In the first stage of the algorithms, a 
training set of size 4 was randomly drawn and labelled. The algorithms were then asked 
to select 20 additional points. During each iteration the active learner selects a sample 
point to be labelled and added to the training set. After each iteration the accuracy was 
evaluated by the ability of the classifier to label the rest of the unlabelled points. The 
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results were averaged over 10 different runs of the algorithms on each dataset. For each 
dataset we constructed a curve to evaluate how well the algorithms select the points. 

Figure 4 shows the superior performance of LSS-EC, which outperforms its 
competitors over all the datasets. It also converges faster to its maximum after only one 
iteration. 

Figure 4 Results of LSS and the LSS-EC for the numerical datasets (see online version  
for colours) 
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7 Experiments with images 

In a second set of experiments we tested our algorithms using three real colour images. 
We used images for two reasons: first, they provide large, complex datasets, and second, 
the results obtained by applying learning algorithms on them are easy to view and 
evaluate. The first image shows one bird [Figure 5(a)], the second shows three birds 
[Figure 6(a)], and the third [from the Berkeley database (Martin et al., 2001)]  
shows a wolf [Figure 6(c)]. Each image was manually segmented into two classes, the 
foreground (birds and wolf) and the background, yielding the ground truth as shown in 
Figures 5(b), 6(b) and 6(d). The reader can appreciate that segmenting these images using 
a colour-based segmentation algorithm will not be an easy task. 

As can be seen in the 6th column in Table 1, the number of equivalence classes is 
usually between 2% and 10% of the number of pixels. As the complexity of the algorithm 
for each iteration is O(N2), the running time of LSS-EC is two orders of magnitude 
smaller than the running time of LSS. Therefore we are able to run the LSS-EC algorithm 
on the large number of pixels in these images, which we are not able to do with the much 
slower LSS algorithm. We therefore compared the LSS-EC algorithm only with the 
uncertainty and the random sampling algorithms. 

We worked with the edge detection and image segmentation (EDISON) system 
(Christoudias et al., 2002). This program implements the mean shift image segmentation 
algorithm described in Section 4. Each pixel in the image is represented by its two image 
coordinates and RGB colour values, yielding a 5D dataset. The user is asked to provide 
the algorithm with values for two bandwidths, one for the spatial domain hs (the image 
coordinates) and the other for the range domain hr (the RGB values). The output of this 
program is a clustered image. 
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Figure 5 (a) The original image with one bird (b) The classified image (goal)  
(c) The equivalence class image (see online version for colours) 

   
(a) (b) (c) 

Figure 6 (a) and (c) The original images (b) and (d) The classified images (goal)  
(see online version for colours) 

   
(a)     (b) 

  
(c)     (d) 

Each cluster was assigned a colour, (i.e., points in the same cluster have the same colour). 
Figure 7 shows some of these clustering results for the single bird image. In our 
experiments we used the following values for the two bandwidths, hs = {5, 10, 20, 30} 
and hr = {10, 15, 20, 25, 30, 35}, yielding 24 clustered images. Results for which nearly 
the whole image belonged to a single cluster were automatically discarded. It is important 
to note that the uncertainty and random sampling methods have to choose values for these 
bandwidths (or actually their ratio) in order to define the distance metric between points. 
As optimal values for these bandwidths are not available, it is not clear how these 
methods can be compared to LSS-EC. In the experiments we therefore ran them using all 
24 bandwidth pair values. 
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Figure 7 Output of the EDISON system (see online version for colours) 

   
(a) (b) (c) 

The clustering images were mapped to the cluster matrix C, in the same way as in the 
first three datasets. From this matrix the equivalence point matrix Ceq was generated. 
Figure 5(c) shows the equivalence image for the one bird image. 

7.1 kNN-EC experiments on images 

The kNN-EC and kNN algorithms were tested on the three images. The two classifiers 
were evaluated on several training sets of 40 to 200 pixels, with different numbers of 
neighbour values (i.e., k = 3, 5). As the optimal bandwidth parameters cannot be found 
automatically in the kNN algorithm, in Figure 8 we show only the best case and the worst 
case of the kNN algorithm for each training set, and compare them to the kNN-EC 
accuracy. 

Figure 8 Results of kNN and kNN-EC for the three images (see online version for colours) 
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As can be seen from Figure 8, kNN-EC performs better than kNN with the Euclidean 
distance with different values of k. The learning bars, which describe the accuracy for 
each classifier of the three images, show that kNN-EC is superior over all the image 
datasets. For example, when it was run with k=5 and 120 labelled pixels on the one bird 
image, it achieved 96.4% accuracy while the best accuracy of kNN is 95.4%. For the 
three birds image the kNN-EC algorithm’s performance was about 87% while the kNN 
algorithm achieved 84% in the best case. For the wolf image the kNN-EC algorithm was 
superior, with performance of about 84% while the kNN algorithm achieved 64% in the 
best case. 

Figure 9 shows an example of running the kNN-EC and kNN (the best and the worst 
cases) algorithms with k = 5 with 120 labelled pixels as a training set on the three birds 
image. 

From these experiments it is clear that the EC metric is not only more efficient and 
more meaningful than the Euclidean distance but it also gives us uniform results.  
This is because the EC metric combines several possible sets of weights, while the 
weighted Euclidean distance uses only one set of weights which have to be determine 
somehow. 

Figure 9 Results of 5NN and 5NN-EC for the three birds image dataset using  
120 labelled pixels as a training dataset, (a) the output for the worst case  
of kNN (b) the output for the best case of kNN (c) the output for kNN-EC  
(see online version for colours) 

   
(a) (b) (c) 

Note: The colour of the pixels represents the results of the classifier. Red is background, 
green is birds, blue is misclassified background and black is misclassified birds 
pixels. 

7.2 LSS-EC experiments on images 

For each dataset the LSS-EC algorithm was given as input the matrix Ceq, and four 
randomly selected labelled points. It was then asked to sample 26 more points from each 
image. The results of the algorithm for the three images are shown in Figure 11. The 
classified images are shown in Figure 10. 

Examining Figure 10(b), we see many misclassified pixels. This occurred because the 
equivalence classes were not pure (as shown in Table 1). In several cases a point 
belonging to the minority was chosen, causing the most of the equivalence class to be 
wrongly labelled. When the centroid pixel of each equivalence class is chosen to be 
labelled by the expert, it worked much better, as can be seen in Figure 10(d). 
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Figure 10 Output of LSS-EC, (a) the output for choosing 30 points from the single bird image 
(b) the result for choosing 30 points from the three birds image (c) the output for 
choosing 30 points from the wolf image (d) the LSS-EC results using labelled 
centroid pixels (see online version for colours) 

  
(a) (b) 

  
(c) (d) 

Notes: The colour of the pixels represents the results of the classifier. Red is background, 
green is foreground, white is unknown background, magenta is unknown 
foreground, blue is incorrect background and black is incorrect foreground pixels. 

Figure 11 Results of the LSS-EC and uncertainty algorithms over the images according to the 
chosen pixels (see online version for colours) 
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Note: The blue curve describes the LSS-EC results, the red curve describes the best 
uncertainty results, and the green curve describes the worst uncertainty results. 

In a final experiment we compare LSS-EC with uncertainty and random sampling. As 
mentioned above, we had to run the algorithm 24 times with all the different values of the 
two parameters, yielding 24 different distance metrics. In Figure 11 we plot for each 
image the best and worst obtained results. We can see in these plots that LSS-EC 
performs better than uncertainty sampling. Furthermore the accuracy of the latter varies 
greatly, as can be seen by studying the curves. For the single bird image, our algorithm 
achieved 97.7% accuracy with 30 points. Similar results were previously obtained using 
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three points. In comparison, the best uncertainty sampling achieved only 90.0% accuracy. 
The random sampling algorithm achieved 83.3%–95% accuracy but further analysis 
showed worse results for the foreground pixels: between 4.5% to 93.4%. In some cases 
the foreground object was not detected at all. For the three birds image our algorithm 
achieved 93.25% accuracy with 30 points. The maximal results were already achieved 
after 13 points were sampled. This is in contrast to uncertainty sampling, which achieved 
only 80.0% accuracy for this number of samples. 

All in all, the accuracy of the random sampling algorithm ranges between  
74.6%–86.6%. For the wolf image our algorithm achieved 94.7% accuracy with 30 points 
while the best case of the uncertainty algorithm achieved accuracy of 92.7%. Random 
sampling achieved accuracy values between 70.5% and 78.5%. 

8 Conclusions 

In this work, we have presented a new unsupervised distance learning metric based on 
ensemble clustering and used it within the kNN classifier and the LSS framework. Each 
data point is characterised by the identity of the clusters it belongs to in several clustering 
runs. The distance metric is defined as the Hamming distance between these clustering 
results. Our experimental results show that the new ensemble-based distance function 
reflects the actual similarity between the objects better than the Euclidean one. 

This results in a better kNN classifier and a better LSS algorithm. Moreover, our 
observation that all points which always belong to the same cluster form an equivalence 
class means that the algorithm only has to consider one member of each such class. This 
reduces the complexity of the algorithms considerably (by at least two orders of 
magnitude in our case). This equivalence class representation is, in effect, a private case 
of the more general concept of data reduction. As such, it is orthogonal to other methods 
of data reduction such as feature selection or PCA, which reduce the size of the 
representation of the data points but not their number. 

Because our distance metric does not depend on a specific clustering algorithm, it can 
be used with any good clustering algorithm whose resulting clusters are strongly 
correlated to the classes. In addition, according to the experimental results we conclude 
that the number of the clusterings runs is not critical for the algorithm’s performance. 

Moreover, we saw that with some datasets, the Euclidean distance does not gives us 
uniform results because it sometimes requires different parameter values whereas, the 
new clustering-based distance metric takes into account the different parameter values 
and yields uniform and better results. 

Acknowledgements 

This research was supported by the IMG4 consortiums of the Ministry of Industry and 
Commerce as well as a graduate student fellowship from the Ministry of Science and 
Technology. 



   

 

   

   
 

   

   

 

   

    An ensemble-clustering-based distance metric and its applications 285    
 

    
 
 

   

   
 

   

   

 

   

       
 

References 
AbedAllah, L. and Shimshoni, I. (2012) ‘k nearest neighbor using ensemble clustering’,  

Proceedings of the 14th Data Warehousing and Knowledge Discovery, pp.265–278  
Belkin, M. and Niyogi, P. (2003) ‘Laplacian eigenmaps for dimensionality reduction and data 

representation’, Neural Computation, Vol. 15, No. 6, pp.1373–1396. 
Bias, L. (1996) Variance and Arcing Classifiers, Tec. Report 460,Statistics Department. 
Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E. and Warmuth, M.K. 

(1997) ‘How to use expert advice’, Journal of the ACM (JACM), Vol. 44, No. 3, pp.427–485. 
Chabrier, S., Emile, B., Rosenberger, C. and Laurent, H. (2006) ‘Unsupervised performance 

evaluation of image segmentation’, EURASIP Journal on Applied Signal Processing, No. 1, 
pp.1–12.  

Chang, C-C. and Lin, C-J. (2011) ‘LIBSVM: a library for support vector machines’,  
ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 27, pp.1–27 [online] 
http://www.csie.ntu.edu.tw/-cjlin/libsvm. 

Chopra, S., Hadsell, R. and LeCun, Y. (2005) ‘Learning a similarity metric discriminatively,  
with application to face verification’, IEEE Conf. on Computer Vision and Pattern 
Recognition, pp.26–33. 

Christoudias, C., Georgescu, B. and Meer, P. (2002) ‘Synergism in low level vision’,  
in Proceedings of International Conference on Pattern Recognition, pp.150–155. 

Cohn, D., Atlas, L. and Ladner, R. (1994) ‘Improving generalization with active learning’, Machine 
Learning, Vol. 15, No. 2, pp.201–221. 

Comaniciu, D. and Meer, P. (2002) ‘Mean shift: A robust approach toward feature space analysis’, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, pp603–619. 

Cover, T. and Hart, P. (1967) ‘Nearest neighbor pattern classification’, IEEE Transactions on 
Information Theory, Vol. 13, No. 1, pp.21–27. 

Dagan, I. and Engelson, S.P. (1995) ‘Committee-based sampling for training probabilistic 
classifiers’, in Proceedings of the 12th International Conference on Machine Learning, 
pp.150–157. 

Dasgupta, S. and Hsu, D. (2008) ‘Hierarchical sampling for active learning’, in Proceedings of the 
25th International Conference on Machine Learning, pp.208–215. 

Davis, D.T. and Hwang, J.N. (1992) ‘Attentional focus training by boundary region data selection’, 
in Proceedings of International Joint Conference on Neural Networks, pp.676–681. 

Derbeko, P., El-Yaniv, R. and Meir, R. (2004) ‘Explicit learning curves for transduction and 
application to clustering and compression algorithms’, Journal of Artificial Intelligence 
Research, Vol. 22, No. 1, pp.117–142. 

Domeniconi, C., Gunopulos, D. and Peng, J. (2005) ‘Large margin nearest neighbor classifiers’, 
IEEE Transactions on Neural Networks, Vol. 16, No. 4, pp.899–909. 

Dudoit, S. and Fridlyand, J. (2003) ‘Bagging to improve the accuracy of a clustering procedure’, 
Bioinformatics, Vol. 19, No. 9, pp.1090–1099. 

Fern, X.Z. and Brodley, C.E. (2003) ‘Random projection for high dimensional data clustering:  
a cluster ensemble approach’, in Proceedings of 20th International Conference on Machine 
Learning, pp.186–193. 

Fern, X.Z. and Brodley, C.E. (2004) ‘Solving cluster ensemble problems by bipartite graph 
partitioning’, in Proceedings of the 21st International Conference on Machine Learning, 
pp.36–43, ACM. 

Fischer, B. and Buhmann, J.M. (2003a) ‘Bagging for path-based clustering’, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 25, No. 11, pp.1411–1415. 

Fischer, B. and Buhmann, J.M. (2003b) ‘Path-based clustering for grouping of smooth curves and 
texture segmentation’, IEEE Transactions on Pattern Analysis and Machine Intelligence,  
Vol. 25, No. 4, pp.513–518. 



   

 

   

   
 

   

   

 

   

   286 L. AbdAllah and I. Shimshoni    
 

    
 
 

   

   
 

   

   

 

   

       
 

Frank, A. and Asuncion, A. (2010) ‘UCI machine learning repository’ [online] 
http://archive.ics.uci.edu/ml (accessed 2013). 

Fred, A.L.N. and Jain, A.K. (2003) ‘Data clustering using evidence accumulation’, in Proceedings 
of 16th International Conference on Pattern Recognition, pp.276–280. 

Georgescu, B., Shimshoni, I. and Meer, P. (2003) ‘Mean shift based clustering in high dimensions: 
a texture classification example’, in Proceedings of the 9th International Conference on 
Computer Vision, pp.456–463. 

Goldberger, J., Roweis, S., Hinton, G. and Salakhutdinov, R. (2004) ‘Neighbourhood components 
analysis’, in Proceedings of the 21st International Conference of Advances in Neural 
Information Processing System, pp.513–520. 

Gonzalez, R.C. and Woods, R.E. (2001) Digital Image Processing, 2nd ed., Addison-Wesley 
Longman Publishing Co., Inc., Boston, MA, USA. 

Hastie, T. and Tibshirani, R. (1996) ‘Discriminant adaptive nearest neighbor classification’, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 6, pp.607–616. 

Lewis, D.D. and Catlett, J. (1994) ‘Heterogeneous uncertainty sampling for supervised learning’,  
in Proceedings of the 11th International Conference on Machine Learning, pp.148–156. 

Lewis, D.D. and Gale, W.A. (1994) ‘A sequential algorithm for training text classifiers’,  
in Proceedings of the 17th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, pp.3–12, Springer-Verlag, New York, Inc. 

Lindenbaum, M., Markovitch, S. and Rusakov, D. (2004) ‘Selective sampling for nearest neighbor 
classifiers’, Machine Learning, Vol. 54, No. 2, pp.125–152. 

MacQueen, J.B. (1967) ‘Some methods for classification and analysis of multivariate 
observations’, Proceedings of the 5th Symposium on Math, Statistics, and Probability,  
pp.281–297. 

Martin, D., Fowlkes, C., Tal, D. and Malik, J. (2001) ‘A database of human segmented natural 
images and its application to evaluating segmentation algorithms and measuring ecological 
statistics’, in Proceeding of the 8th International Conference on Computer Vision, Vol. 2, 
pp.416–423, July. 

Min, J., Powell, M. and Bowyer, K.W. (2004) ‘Automated performance evaluation of range image 
segmentation algorithms’, IEEE Transactions on Systems, Man, and Cybernetics, Part B. 
Cybernetics, Vol. 34, No. 1, pp.263–271. 

Minaei-Bidgoli, B., Topchy, A. and Punch, W.F. (2004) ‘Ensembles of partitions via data 
resampling’, in Proceedings of International Conference on Information Technology. Coding 
and Computing, pp.188–192. 

Nguyen, H.T. and Smeulders, A. (2004) ‘Active learning using pre-clustering’, in Proceedings of 
the 21st International Conference on Machine Learning, pp.623–630. 

Rand, W.M. (1971) ‘Objective criteria for the evaluation of clustering methods’, Journal of the 
American Statistical Association, Vol. 66, No. 336, pp.846–850.  

Saul, L.K. and Roweis, S.T. (2003) ‘Think globally, fit locally: unsupervised learning of low 
dimensional manifolds’, The Journal of Machine Learning Research, Vol. 4, pp.119–155.  

Shalev-Shwartz, S., Singer, Y. and Ng, A.Y. (2004) ‘Online and batch learning of pseudo-metrics’, 
in Proceedings of the 21st International Conference on Machine Learning, pp.94–102, ACM. 

Strehl, A. and Ghosh, J. (2002) ‘Cluster ensembles – a knowledge reuse framework for combining 
multiple partitions’, The Journal of Machine Learning Research, Vol. 3, pp.583–617.  

Tan, M. and Schlimmer, J.C. (1990) ‘Two case studies in cost-sensitive concept acquisition’,  
in Proceedings of the 8th National Conference on Artificial Intelligence, pp.854–860. 

Tenenbaum, J.B., Silva, V. and Langford (2000) ‘A global geometric framework for nonlinear 
dimensionality reduction’, Science, Vol. 290, No. 5500, pp.19–23. 

Topchy, A., Jain, A.K. and Punch, W. (2003) ‘Combining multiple weak clusterings’, in Third 
IEEE International Conference on Data Mining, pp.331–338, IEEE. 



   

 

   

   
 

   

   

 

   

    An ensemble-clustering-based distance metric and its applications 287    
 

    
 
 

   

   
 

   

   

 

   

       
 

Topchy, A., Jain, A.K. and Punch, W. (2005) ‘Clustering ensembles: Models of consensus and 
weak partitions’, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, 
No. 12, pp.1866–1881. 

Turney, P.D. (1995) ‘Cost-sensitive classification: Empirical evaluation of a hybrid genetic 
decision tree induction algorithm’, Journal of Artificial Intelligence Research, Vol. 2, No. 1, 
pp.369–409. 

Weinberger, K.Q. and Saul, L.K. (2006) ‘Distance metric learning for large margin nearest 
neighbor classification’, Proceedings of the 18th International Conference of Advances in 
Neural Information Processing Systems, pp.1473–1480. 

Xu, Z., Akella, R. and Zhang, Y. (2007) ‘Incorporating diversity and density in active learning for 
relevance feedback’, Advances in Information Retrieval, Vol. 4425, pp.246–257.  

Zhang, H., Fritts, J.E. and Goldman, S.A. (2008) ‘Image segmentation evaluation: a survey  
of unsupervised methods’, Computer Vision and Image Understanding, Vol. 110, No. 2, 
pp.260–280. 


